Practical 1: Measure the molar volume of a gas
|
|
|
- Abraham Burns
- 9 years ago
- Views:
Transcription
1 Practical Student sheet Practical : Wear eye protection. Ensure the delivery tube does not become blocked. Ethanoic acid will sting if it gets into cuts in the skin. Equipment boiling tube stand and clamp bung fitted with delivery tube to fit boiling tube water bath for gas collection 00 cm 3 measuring cylinder 50 cm 3 measuring cylinder test tube mass balance (2 d.p.) mol dm 3 ethanoic acid powdered calcium carbonate Procedure All the maths you need Recognise and make use of appropriate units in calculations. Use ratios, fractions and percentages. Translate information between graphical, numerical and algebraic forms. Plot two variables from experimental or other data. Diagram. Place 30 cm 3 of mol dm 3 ethanoic acid in the boiling tube. 2. Set the apparatus up as shown in the diagram. 3. Place approximately 0.05 g of calcium carbonate in a test tube. 4. Weigh the test tube and its contents accurately. 5. Remove the bung from the boiling tube and tip the calcium carbonate into the boiling tube. Quickly replace the bung in the boiling tube. 6. Once the reaction is over, measure the volume of gas collected in the measuring cylinder. 7. Reweigh the test tube that had contained the 8. Repeat the experiment six more times, increasing the mass of calcium carbonate by about 0.05 g each time. Do not exceed 0.40 g of Analysis of results. Record your results in a suitable way. 2. Plot a graph of mass of calcium carbonate (x) against volume of carbon dioxide collected (y). Draw a straight line of best fit this line must pass through the origin. 3. Use the graph to find the volume of carbon dioxide that would be made from 0.25 g of 4. In this reaction, one mole of calcium carbonate makes one mole of carbon dioxide. Calculate the number of moles of calcium carbonate in 0.25 g and hence calculate the volume of one mole of carbon dioxide gas in dm 3.
2 Practical Student sheet Learning tips Ensure that points plotted on a graph take up more than half the available space on both scales. Axes must occupy half of the space on graph paper. Keep scales simple: one big square as 5 or 0 or 20 is ideal, one big square as 3 or 7 is very difficult to plot on and often leads to errors. Always consider whether or not the graph line should go through the origin. Straight lines should be drawn with aid of a rule one long enough to cover the full length of the line. Questions. Write a chemical equation for the reaction between ethanoic acid, CH 3 COOH and 2. Why is it more accurate to find the mass of the calcium carbonate used by weighing the test tube with calcium carbonate in, then tipping it out and reweighing the test tube, rather than weighing the empty tube at the start? 3. Identify the major source of error caused by the procedure used. 4. What change to the procedure/apparatus could be made to eradicate this error? 5. Carry out two calculations to show that the ethanoic acid was in excess in all experimental runs. Exam-style questions A student repeated the experiment you have carried out using the apparatus shown in the diagram. (a) The balance used by the student was accurate to g. Calculate the percentage error in the mass of calcium carbonate when the recorded mass of calcium carbonate was 0.30 g. (2) (b) Carbon dioxide gas is slightly soluble in water. What effect would this have on the calculated molar volume of carbon dioxide? Explain your answer. Suggest a change to the apparatus used that will prevent this problem. (3) (c) Another student suggested that the first few bubbles of gas should not be collected. Explain why they are incorrect to state this. (3) 2
3 Practical Teacher sheet Practical : Specification links Wear eye protection. Ensure the delivery tube does not become blocked. Ethanoic acid will sting if it gets into cuts in the skin. Core practical Practical techniques ; 4; CPAC statements a; 2a; 2b; 3a; 3b; 4a Procedure Notes on procedure. Place 30 cm 3 of mol dm 3 ethanoic acid in the boiling tube. 2. Set the apparatus up as shown in the diagram. 3. Place approximately 0.05 g of calcium carbonate in a test tube. 4. Weigh the test tube and its contents accurately. 5. Remove the bung from the boiling tube and tip the calcium carbonate into the boiling tube. Quickly replace the bung in the boiling tube. 6. Once the reaction is over, measure the volume of gas collected in the measuring cylinder. 7. Reweigh the test tube that had contained the 8. Repeat the experiment six more times, increasing the mass of calcium carbonate by about 0.05 g each time. Do not exceed 0.40 g of calcium carbonate. Answers to questions Use of over 0.40 g of calcium carbonate will result in the volume of gas produced exceeding the capacity of the measuring cylinder. If larger masses of calcium carbonate are to be used (such as if only a d.p. mass balance is available) then a larger measuring cylinder will be required. Use of a stronger acid will result in a faster reaction and so a greater loss of gas when the calcium carbonate is added to the acid.. CaCO 3 + 2CH 3 COOH Ca(CH 3 COO) 2 + CO 2 + H 2 O 2. Allows for the mass of any calcium carbonate that remains in the test tube after tipping it out. 3. Gas loss before replacing the bung. 4. Use tube containing the acid inside the vessel containing the calcium carbonate tip to mix the reagent. 5. When 0.40 g of calcium carbonate is used: moles CaCO 3 = 0.4 / 00. = moles ethanoic acid = c v = 30/000 = 0.03 moles acid > 2 moles calcium carbonate hence ethanoic acid in excess. Answers to exam-style questions. calcium carbonate: (( ) / 0.3 ) 00 () = 3.33% () 2. Volume of gas collected lower. () Hence molar volume of gas lower. () This can be prevented by collecting the gas in gas syringe. () 3. The first bubbles of gas collected are air. () These have been displaced from the delivery tube by the carbon dioxide made. () The volume of carbon dioxide remaining in the delivery tube at the end is the same as the volume of air displaced. ()
4 Practical Teacher sheet Sample data Mass of calcium carbonate / g 0.05 Volume of carbon dioxide collected / cm
5 Practical Technician sheet Practical : If new delivery tubes need to be made, take great care when pushing glass tubing through the rubber bung. A suitable lubricant should be used. Equipment per student/group boiling tube stand and clamp bung to fit boiling tube, fitted with delivery tube water bath for gas collection 00 cm 3 measuring cylinder 50 cm 3 measuring cylinder test tube Notes on equipment mass balance (2 d.p.) Place a test tube rack or 250 ml beaker on the balance to support the test tube while being weighed. mol dm 3 ethanoic acid The students will require about 250 cm 3 each. powdered calcium carbonate Notes The students will require about 2 g each.
DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3
DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants
Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory.
Molar Volume of Carbon Dioxide Reading assignment: Julia Burdge, Chemistry 3rd edition, Chapter 10. Goals To determine the molar volume of carbon dioxide gas and the amount of sodium carbonate in a sample.
The Molar Mass of a Gas
The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar
IB Chemistry. DP Chemistry Review
DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount
The relationship between the concentration of a reactant and the rate of reaction with respect to that reactant can be shown using rate time graphs.
The effect of concentration on rate Student sheet To study The relationship between the concentration of a reactant and the rate of reaction with respect to that reactant can be shown using rate time graphs.
Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston
Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT --------------------------------------------------------------------------------------------------------------------------------------------
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,
Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid
Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions
CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES
CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES The meaning of stoichiometric coefficients: 2 H 2 (g) + O 2 (g) 2 H 2 O(l) number of reacting particles 2 molecules of hydrogen react with 1 molecule
Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES
Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES The learning objectives of this experiment are to explore the relationship between the temperature and vapor pressure of water. determine the molar
EXPERIMENT 12: Empirical Formula of a Compound
EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound
Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:
Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Your Name: Date: Partner(s) Names: Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams
Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston
Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT -----------------------------------------------------------------------------------------------------------------------------
Apparatus error for each piece of equipment = 100 x margin of error quantity measured
1) Error Analysis Apparatus Errors (uncertainty) Every time you make a measurement with a piece of apparatus, there is a small margin of error (i.e. uncertainty) in that measurement due to the apparatus
Mineral Identification Tests. Test One: Density and Relative Mass
Test One: Density and Relative Mass Some minerals are heavier than other minerals. This allows geologists to distinguish between them. Scale Graduated Beaker or Cylinder Water Examine each of the minerals.
DETERMINING THE MOLAR MASS OF CARBON DIOXIDE
DETERMINING THE MOLAR MASS OF CARBON DIOXIDE PURPOSE: The goal of the experiment is to determine the molar mass of carbon dioxide and compare the experimentally determined value to the theoretical value.
39. The determination of copper in brass
Microscale Chemistry 163 39. The determination of copper in brass Topic Level Timing Description Metals chemical analysis. Post-16. 25 min. Apparatus (per group) In this experiment students dissolve some
QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN -
QUESTION (2012:3) (i) Complete the table below showing the conjugate acids and bases. Conjugate acid Conjugate base - HCO 3 2 CO 3 H 2 O OH HCN CN - (ii) HPO 4 2 (aq) Write equations for the reactions
DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS
DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS LAB PH 8 From Chemistry with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Phosphoric acid is one of several weak acids that present
AP CHEMISTRY 2013 SCORING GUIDELINES
AP CHEMISTRY 2013 SCORING GUIDELINES Question 4 (15 points) For each of the following three reactions, write a balanced equation for the reaction in part (i) and answer the question about the reaction
AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1
Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example
Experiment 8: Chemical Moles: Converting Baking Soda to Table Salt
Experiment 8: Chemical Moles: Converting Baking Soda to Table Salt What is the purpose of this lab? We want to develop a model that shows in a simple way the relationship between the amounts of reactants
F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.
Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.
Designing An Experiment Using Baking Soda and Vinegar
Designing An Experiment Using Baking Soda and Vinegar Introduction: Kinetics is the study of chemical reaction rates. It is the study of how fast different chemicals react with one another to form new
Q1. A student studied the reaction between dilute hydrochloric acid and an excess of calcium carbonate.
Q. A student studied the reaction between dilute hydrochloric acid and an excess of calcium carbonate. calcium carbonate + hydrochloric acid calcium chloride + water + carbon dioxide The student measured
BACKGROUND INFORMATION
BACKGROUND INFORMATION It is often important to measure the concentration of glucose in a solution. The so-called ISOTONIC drinks can be tested to see if they are in fact isotonic with the blood. You may
Molar Mass of Butane
Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures
Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.
The Empirical Formula of a Copper Oxide Reading assignment: Chang, Chemistry 10 th edition, pp. 55-58. Goals The reaction of hydrogen gas with a copper oxide compound will be studied quantitatively. By
PREPARATION FOR CHEMISTRY LAB: COMBUSTION
1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What
The Solubility of Calcium Carbonate
1 The Solubility of Calcium Carbonate Lesson Plan Developed by: John Thurmond, Plainfield North High School, Plainfield, Illinois Based on Presentation June, 2011. Northwestern University, Climate Change
The Empirical Formula of a Compound
The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,
Chemistry 101 Generating Hydrogen Gas
Chemistry 101 Generating Hydrogen Gas Objectives To experimentally verify the molar volume of hydrogen gas at STP To gain experience in collecting gas over water Discussion The molar volume of a gas is
EXPERIMENT 7 Reaction Stoichiometry and Percent Yield
EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry
CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS
CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS Purpose: It is important for chemists to be able to determine the composition of unknown chemicals. This can often be done by way of chemical tests.
1. 4. 1: Biochemistry of macromolecules and metabolic pathways
1. 4 Investigating enzymes Many factors affect the activity of enzymes and it is very easy to investigate these factors using common enzymes. Enzymes work at their optimum temperature and ph. Any changes
EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.
PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PRINCIPLES: Once the Rate Law for a reaction has been experimentally established the next step is its explanation in terms
Micro Mole Rockets Hydrogen and Oxygen Mole Ratio As adapted from Flinn ChemTopic- Labs - Molar Relationships & Stoichiometry
Micro Mole Rockets Hydrogen and Oxygen Mole Ratio As adapted from Flinn ChemTopic- Labs - Molar Relationships & Stoichiometry Introduction The combustion reaction of hydrogen and oxygen is used to produce
15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.
S HIFT INTO NEUTRAL 15. Acid-Base Titration Shift into Neutral Student Instruction Sheet Challenge Discover the concentration of an unknown acid solution using acid-base titration. Equipment and Materials
Determination of Molar Mass by Freezing-Point Depression
DETERMINATION OF MOLAR MASS BY FREEZING-POINT DEPRESSION 141 Determination of Molar Mass by Freezing-Point Depression OBJECTIVES: Gain familiarity with colligative properties of nonelectrolyte solutions
Mixtures and Pure Substances
Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They
Osmosis. Evaluation copy
Osmosis Computer 5 In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane.
Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer
Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic
Return to Lab Menu. Stoichiometry Exploring the Reaction between Baking Soda and Vinegar
Return to Lab Menu Stoichiometry Exploring the Reaction between Baking Soda and Vinegar Objectives -to observe and measure mass loss in a gas forming reaction -to calculate CO 2 loss and correlate to a
CSUS Department of Chemistry Experiment 8 Chem.1A
EXPERIMENT #8 Name: PRE-LABORATORY ASSIGNMENT: Lab Section 1. The alkali metals are so reactive that they react directly with water in the absence of acid. For example, potassium reacts with water as follows:
GCE Chemistry PSA14: A2 Physical Chemistry Determine an equilibrium contstant
hij Teacher Resource Bank GCE Chemistry : A2 Physical Chemistry Determine an equilibrium contstant Copyright 2009 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance
Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)
Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical
Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1
Experiment 10 Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1 E10-2 The task The goal of this experiment is to determine accurately the concentration of acetic acid in vinegar via volumetric
Summer Holidays Questions
Summer Holidays Questions Chapter 1 1) Barium hydroxide reacts with hydrochloric acid. The initial concentration of the 1 st solution its 0.1M and the volume is 100ml. The initial concentration of the
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
Unit 6 The Mole Concept
Chemistry Form 3 Page 62 Ms. R. Buttigieg Unit 6 The Mole Concept See Chemistry for You Chapter 28 pg. 352-363 See GCSE Chemistry Chapter 5 pg. 70-79 6.1 Relative atomic mass. The relative atomic mass
hij Teacher Resource Bank GCE Chemistry PSA10: A2 Inorganic Chemistry Carry out a redox titration
hij Teacher Resource Bank GCE Chemistry : A2 Inorganic Chemistry Copyright 2009 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee
Chapter 16: Tests for ions and gases
The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the
To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.
THE SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES 2007, 1995, 1991 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included. OBJECTIVE To measure
STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14
STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 OBJECTIVE The objective of this experiment will be the standardization of sodium hydroxide using potassium hydrogen phthalate by the titration
Determination of Molar Mass by Boiling Point Elevation of Urea Solution
Determination of Molar Mass by Boiling Point Elevation of Urea Solution CHRISTIAN E. MADU, PhD AND BASSAM ATTILI, PhD COLLIN COLLEGE CHEMISTRY DEPARTMENT Purpose of the Experiment Determine the boiling
EXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES
Name Section EXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES PRE-LABORATORY QUESTIONS The following preparatory questions should be answered before coming to lab. They are intended to
Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.
Acid-base 2816 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA LEWIS acid electron pair acceptor H +, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N + BF
Carbon Dioxide and an Argon + Nitrogen Mixture. Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10
Carbon Dioxide and an Argon + Nitrogen Mixture Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10 Measurement of C p /C v for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55
How To Calculate Mass In Chemical Reactions
We have used the mole concept to calculate mass relationships in chemical formulas Molar mass of ethanol (C 2 H 5 OH)? Molar mass = 2 x 12.011 + 6 x 1.008 + 1 x15.999 = 46.069 g/mol Mass percentage of
1A Rate of reaction. AS Chemistry introduced the qualitative aspects of rates of reaction. These include:
1A Rate of reaction AS Chemistry introduced the qualitative aspects of rates of reaction. These include: Collision theory Effect of temperature Effect of concentration Effect of pressure Activation energy
Specimen Paper. Time allowed! 60 minutes
Centre Number Surname Candidate Number Specimen Paper For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Foundation Tier Question 1 Mark Chemistry
Calcium Analysis by EDTA Titration
Calcium Analysis by EDTA Titration ne of the factors that establish the quality of a water supply is its degree of hardness. The hardness of water is defined in terms of its content of calcium and magnesium
5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C
1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )
Chapter 3! Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry
Chapter 3! : Calculations with Chemical Formulas and Equations Anatomy of a Chemical Equation CH 4 (g) + 2O 2 (g) CO 2 (g) + 2 H 2 O (g) Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2
Determination of Citric Acid in Powdered Drink Mixes
Determination of Citric Acid in Powdered Drink Mixes Citric acid and its salts (sodium citrate and potassium citrate) are found in many foods, drinks, pharmaceuticals, shampoos, and cosmetics. The tartness
Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass
Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up
Enzyme technology ACTIVITY BRIEF. Enzymes. The science at work
ACTIVITY BRIEF Enzyme technology The science at work Enzymes Enzymes have become big business. They are used in many industrial processes to catalyse biological reactions. Enzymes are exploited in a variety
Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.
Acid-base A4 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA 1. LEWIS acid electron pair acceptor H, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N BF 3 see
Experiment 5: Column Chromatography
Experiment 5: Column Chromatography Separation of Ferrocene & Acetylferrocene by Column Chromatography Reading: Mohrig, Hammond & Schatz Ch. 18 pgs 235-253 watch the technique video on the course website!
Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy
2-1 Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy Introduction: The kinetics of a decomposition reaction involving hydroxide ion and crystal violet, an organic dye used
Experiment 3 Limiting Reactants
3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The
Remember the best arguments are based on the strongest evidence and can explain why opposing arguments are incorrect.
Magnesium and carbon dioxide Student sheet Burning magnesium in carbon dioxide what will happen? Either the magnesium will go out or it will continue to burn. Which will it be? You will use the evidence
Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar?
Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar? Introduction Vinegar is basically a solution of acetic acid (CH3COOH). It is
experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.
81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum
Esterification Method 1 Method 8196 27 to 2800 mg/l (as acetic acid) Reagent Solution
Volatile Acids DOC316.53.01144 Esterification Method 1 Method 8196 27 to 2800 mg/l (as acetic acid) Reagent Solution Scope and application: For digestor sludges. 1 Adapted from The Analyst, 87, 949 (1962).
Related concepts Kohlrausch s law, equivalent conductivity, temperature dependence of conductivity, Ostwald s dilution law.
Conductivity of strong and weak electrolytes TEC Related concepts Kohlrausch s law, equivalent conductivity, temperature dependence of conductivity, Ostwald s dilution law. Principle It is possible to
Neutralizing an Acid and a Base
Balancing Act Teacher Information Objectives In this activity, students neutralize a base with an acid. Students determine the point of neutralization of an acid mixed with a base while they: Recognize
7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
Assessing safety in science experiments
20 Health, safety and risk Assessing safety in science experiments Teachers notes Objectives To carry out a risk assessment, prior to doing an experiment. Outline This activity includes an example of how
Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115
Volumetric Analysis Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115 Experimental Aims To prepare and standardize (determine concentration) a NaOH solution Using your standardized NaOH calculate
MEMORANDUM GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Paper 2
MEMORANDUM GRADE 11 PHYSICAL SCIENCES: CHEMISTRY Paper 2 MARKS: 150 TIME: 3 hours Learning Outcomes and Assessment Standards LO1 LO2 LO3 AS 11.1.1: Plan and conduct a scientific investigation to collect
The Mole Notes. There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the.
The Mole Notes I. Introduction There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the. A. The Mole (mol) Recall that atoms of
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/04 Paper 4 Theory (Extended) For Examination from 2016 SPECIMEN PAPER
Determining Equivalent Weight by Copper Electrolysis
Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.
A Beer s Law Experiment
A Beer s Law Experiment Introduction There are many ways to determine concentrations of a substance in solution. So far, the only experiences you may have are acid-base titrations or possibly determining
Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages 353 358)
Name Date Class 1 STOICHIOMETRY SECTION 1.1 THE ARITHMETIC OF EQUATIONS (pages 353 358) This section explains how to calculate the amount of reactants required or product formed in a nonchemical process.
Molar Mass and the Ideal Gas Law Prelab
Molar Mass and the Ideal Gas Law Prelab Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Determine the mass (in grams) of magnesium metal required to produce
Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.
1 Introduction to Chemistry Atomic Weights (Definitions) Chemical Calculations: The Mole Concept and Chemical Formulas AW Atomic weight (mass of the atom of an element) was determined by relative weights.
What s in a Mole? Molar Mass
LESSON 10 What s in a Mole? Molar Mass OVERVIEW Key Ideas Lesson Type Lab: Groups of 4 Chemists compare moles of substances rather than masses because moles are a way of counting atoms. When considering
Performing Calculatons
Performing Calculatons There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations of them,
ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND
#3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric
4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H 10 + 13O 2 10H 2 O + 8CO 2
4. Stoichiometry 1. Stoichiometric Equations 2. Limiting Reagent Problems 3. Percent Yield 4. Limiting Reagent Problems 5. Concentrations of Solutes 6. Solution Stoichiometry 7. ph and Acid Base Titrations
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity DataQuest 12 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
PERCENT ACETIC ACID IN VINEGAR EXPERIMENT 15
PERCENT ACETIC ACID IN VINEGAR EXPERIMENT 15 PURPOSE A will be titrated using a standardized to determine the percent acetic acid by mass. INTRODUCTION In order to determine the concentration of a, there
Controlled Assessment Additional Science/Chemistry ISA CU2.x Rates of reaction (Specimen) For use from May 20xx to April 20xx.
Controlled Assessment Additional Science/Chemistry ISA CU2.x Rates of reaction (Specimen) For use from May 20xx to April 20xx Teachers Notes This ISA relates to Additional Science / Chemistry Unit 2: C2.4
= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
Chemistry 12 Worksheet 1-1 - Measuring Reaction Rates
Chemistry 12 Worksheet 1-1 - Measuring Reaction Rates 1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is: Zn (s) + 2HCl (aq) oh 2(g)
Target Mole Lab. Mole Relationships and the Balanced Equation. For each student group Hydrochloric acid solution, HCl, 3 M, 30 ml
elearning 2009 Introduction Target Mole Lab Mole Relationships and the Balanced Equation Publication No. A common chemical reaction used in chemistry class is zinc and hydrochloric In this lab, students
