OVERVIEW ON WATER ELECTROLYSIS FOR HYDROGEN PRODUCTION AND STORAGE Results of the NOW study» Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von H 2 aus regenerativen Energien Tom Smolinka 1, Jürgen Garche 2, Christopher Hebling 1, Oliver Ehret 3 1 Fraunhofer-Institut für Solare Energiesysteme ISE 2 FCBAT - Fuel Cell and Battery Consulting 3 NOW GmbH SYMPOSIUM - Water electrolysis and hydrogen as part of the future Renewable Energy System Copenhagen/Denmark, May 10, 2012
Agenda Introduction to water electrolysis Technology (stack and system) Alkaline electrolysis - AEL PEM electrolysis - PEMEL High temperature electrolysis - HTEL Large water electrolysis plants of the last century Today s commercial systems Manufactures of electrolysers Technology outlook and R&D demand 2
Electrolytical Water Splitting for more than 200 years! Test set-up of Ritter Invention of voltaic pile (1799) enabled investigations of electrolytic approaches Main principle demonstrated around 1800 by J. W. Ritter, William Nicholson and Anthony Carlise Today 3 technologies demonstrated: Alkaline electrolysis (AEL) Electrolysis in acid environment (PEM electrolysis - PEMEL) (SPE water electrolysis) Steam electrolysis (High temperature electrolysis - HTEL or SOEL) Alkaline electrolyser around 1900 3 2 H 2 O 2 H 2 + O 2 Johann Wilhelm Ritter (1776-1810) Picture credits: all www.wikipedia.org
1890s: Hydrogen Production by Wind Power! Danish inventor, wind mill pioneer and teacher at Askov folk high school First wind mill in 1891 for rural electrification Hydrogen storage system Alkaline tubular electrolysis cells H 2 / O 2 tanks Gas lamps for school building (1895-1902) (autogenous gas welding) Poul la Cour (1846-1908) 4 Source and picture credits: en.wikipedia.org/wiki/poul_la_cou http://www.poullacour.dk/engelsk/menu.htm
The Self-sufficient Solar House in Freiburg begin of R&D activities in PEM electrolysis at Fraunhofer ISE First developments in the Eighties Field test: 1992-1995 Complete hydrogen storage system consisting of: PEM electrolyser (30 bar / 2 kw el ) H 2 and O 2 pressure tanks PEM fuel cell 5
The Self-sufficient Solar House in Freiburg Regenerative fuel cell: PEM electrolysis unit (30 bar / 2 kw el ) H 2 /O 2 storage tanks PEM fuel cell No mech. compressor! PV panel Electricity Gas Heat Electrolyser Battery Fuel Cell Storage tanks DC Load Inverte r AC load Warm water Cooking Heating Thermal usage Electrical usage 6
Electrolytical Water Splitting: Partial Reactions Technology Temperature range Cathodic Reaction (HER) Charge Carrier Anodic Reaction (OER) AEL 40-90 C H O 2e H 2OH OH - 2 2 2 PEMEL 20-100 C 2H 2e H H + 2 2OH 1 2O2 H2O 2 H O 1 O H 2 2 2 2 2 e e HTEL (SOEL) 700-1000 C H 2 2O 2e H2 O O 2-2 O 1 2O2 2 e ~10 m Ni/PSU compound Vermeiren et al. 2009 Raynel Nickel Martinez et al. 2010 ~10 m ~180 m Fraunhofer ISE Zahid, WHEC 2010 7
Stack Design Alkaline Water Electrolyser Today bipolar filter press design (several 100 cells) Atmospheric - 30 bar Active cell area < 4.0 m² 0.2-0.45 A/cm² @ < 2.4 V IHT NEL Hydrogen Hydrotechnik Hydrogenics Accagen Diaphragm Wire gauze electrode Bipolar goffered plate Schematic of a Lurgi electrolysis cell 8
System Design Alkaline Water Electrolyser Lye loop (KOH) Gas-lye seperator and scrubber Power electronics Compression und fine purification Picture credits: NEL Hydrogen/Norsk Hydro 9
Stack Design PEM Water Electrolyser Only filter press design Pressure tightness: up to 207 bar Active cell area: 10-750 cm² Current density: up to 2.5 A/cm² @ 2.2 V Cells/stack: < 120 H 2 production rate/stack: 2 Nl/h - 10 Nm³/h Proton Giner Kurchatov Siemens CETH 2 Helion Hydrogenics ITM Power Fraunhofer ISE h-tec Hamilton 10
System Design PEM Water Electrolyser 11 Comparable to AEL Simpler system design Pressure-tight construction
Stack Design High Temperature Electrolyser No commercial products Bipolar construction No pressurised stacks Cell area: ~ 100 cm² Current density: 0.3-3.0 A/cm² Kyushu University (25 cells) Idaho NL (720 Cell / 5.7 Nm3/hr / 17.5k W) Picture credits: O Brien, RelHy-Workshop 2009 Picture credits : Zahid, WHEC 2010 12
General System Layout for HTEL Only Concept Coupling with HT source (nuclear reactor) Electricity generation with steam turbine 13 Picture credits: Zahid, WHEC 2010
Realised (Alkaline) Water Electrolysis Plants Location Capacity [Nm³/h] Power [MW el ] Type Modules Construction time Zimbabwe / Kwe-Kwe Norway / Glomfjord Norway / Rjukan Egypt / Aswan 21.000 ~ 95 Lurgi 28 1971-73 27.100 ~ 142 Norsk Hydro ca. 150-1949 (decommissioned 1980) 27.900 ~ 142 Norsk Hydro ca. 150-1929 (decommissioned 1980) 32.400 160 BBC/DEMAG 132 1965-70 Peru / Cuzco 5.200 22 Lurgi 7 1965 Canada / Trail 21.000? Trail?? India / Nangal 30.000 ~ 142 De Nora? - 1961 14
Realised (Alkaline) Water Electrolysis Plants Picture credits: Barisic - ELT, 2008, NOW-Workshop Picture credits: Fell - StatoilHydro, 2008, NOW-Workshop 15
Commercial Available Electrolysis Systems AEL 1-760 Nm³/h 5 kw el -3.4 MW el PEMEL 0.01-30 Nm³/h 0.5-160 kw el PEMEL grows! In 3-5 years: Up to 250 Nm³/h (?) Up to 1.0 MW el (?) Wasserelekrolyse Hydrognics SAGIM NEL Hydrogen Hydrotechnik Schmidlin ITM Power h-tec Proton ES Treadwell 16
Main Players in Water Electrolysis Fraunhofer ISE (2011-11) 17 Mature Advanced R&D Alkaline Electrolysis PEM Electrolysis No claim to be complete!
Typical Today s Applications Apllication H 2 Generator for jewellery, laboratory and medical engineering Generator cooling in power plants Hydrogen filling station Feed Water Inertisation (BWR water chemistry) Float glas production (protective atmosphere) Electronics industry Metallurgy Food industry (fat hardening) Military und aerospace Typical size electrolyser 5-500 Nl/h 5-10 Nm³/h 5-60 Nm³/h 50 Nm³/h 50-150 Nm³/h 100-400 Nm³/h 200-750 Nm³/h 100-900 Nm³/h < 15 Nm³/h 18
Specific Energy Consumption Efficiency of Electrolysers Manufacturer's data No standardised data Differernt pressure and H 2 purity Specifications for steady state operation Spec. Spez. Energy Energieverbrauch Demand[kWh [kwh/nm³ H2] el / Nm³ H 2 ] 10,0 AEL (atmospheric) (atmosphärisch) 9,0 PEMEL Stack 8,0 7,0 6,0 5,0 4,0 Thermodynamik @ STP 3,0 2,0 AEL (pressurised) (Druck) PEMEL System Fraunhofer ISE 0,010 0,100 1,000 10,000 100,000 1000,000 Hydrogen Wasserstoffproduktionsrate Production Rate [Nm³/h] 19
Specific Energy Consumption Efficiency of Electrolysers Energy consumption will not be reduced significantly in the future Higher operating pressure High power densities due to cost pressure Spec. Spez. Energy Energieverbrauch Demand[kWh [kwh/nm³ H2] el / Nm³ H 2 ] 10,0 9,0 8,0 7,0 6,0 5,0 4,0 3,0 PEMEL Thermodynamik Thermodynamics @ @ STPNTP AEL (atmospheric) (atmosphärisch) PEMEL Stack AEL (pressurised) (Druck) PEMEL System Dynamic operation (start/stop, stand- Fraunhofer ISE by) 2,0 0,010 0,100 1,000 10,000 100,000 1000,000 Wasserstoffproduktionsrate [Nm³/h] AEL Hydrogen Production Rate [Nm³/h] 20
Where Do We Have R&D Demand in the Next Years? AEL Increasing current density (Increasing pressure tightness) Faster dynamics of the complete system (BOP) Higher part load range Decreasing production costs through economies of scale PEMEL Increasing life time of materials/ stack Scale up concepts for stack and system Decreasing costs by substitution or reduction of expensive materials (Decreasing production costs through economies of scale) HTEL Development of adapted electrodes/ electrolyte for SOEL Cell and stack design Proof of life time Pressure tightness Cycling stability 21
Back to the Future! 75 MW AEL module, concept EdF (30 bar, 160 C) (LeRoy 1983, Int. J. Hydrogen Energy) HT electrolysis plant, draft Brookhaven NL (Source: Zahid 2010, WHEC) 58 MW PEMEL plant, concept GE (Nuttall 1977, Int. J. Hydrogen Energy) AEL plant - concept 578 MW, 248 module Draft Norsk Hydro (Source: Fell/SHT 2011 NOW-Workshop) 22
Thanks a lot for your kind attention! Dr. Tom Smolinka Fraunhofer ISE Heidenhofstr. 2 / 79110 Freiburg / Germany Tel: +49 761 4588 5212 tom.smolinka@ise.fraunhofer.de www.ise.fraunhofer.de Questions? Executive summary (only in German): http://www.now-gmbh.de/fileadmin/user_upload/re-mediathek/re_publikationen_now/ NOW-Studie-Wasserelektrolyse-2011.pdf 23