Quantum Computing Architectures



Similar documents
Bits Superposition Quantum Parallelism

0.1 Phase Estimation Technique

Introduction to Quantum Computing

Factoring by Quantum Computers

Quantum Computing. Robert Sizemore

Shor s algorithm and secret sharing

Quantum Algorithms in NMR Experiments. 25 th May 2012 Ling LIN & Michael Loretz

Designing Scalable Quantum Computer Architectures: Layout and Initialization

Quantum computing in practice

Kandidatexamen. A Review of Freely Available Quantum Computer Simulation Software Johan Brandhorst-Satzkorn. LiTH-MAT-EX 2012/07 SE

Quantum Computing: Lecture Notes. Ronald de Wolf

Quantum Computing Lecture 7. Quantum Factoring. Anuj Dawar

Quantum Computers. And How Does Nature Compute? Kenneth W. Regan 1 University at Buffalo (SUNY) 21 May, Quantum Computers

Keywords Quantum logic gates, Quantum computing, Logic gate, Quantum computer

Lecture 1 Version: 14/08/28. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo l.dicarlo@tudelft.nl dicarlolab.tudelft.

QUANTUM INFORMATION, COMPUTATION AND FUNDAMENTAL LIMITATION

What Has Quantum Mechanics to Do With Factoring? Things I wish they had told me about Peter Shor s algorithm

Quantum Algorithms Lecture Notes Summer School on Theory and Technology in Quantum Information, Communication, Computation and Cryptography

Introduction to computer science

Quantum Computing. Robert Senser, PhD. CSC 5446 Presentation Spring Version

ECE 842 Report Implementation of Elliptic Curve Cryptography

Quantum Computation: a Tutorial

QOT - Quantum Optical Technologies

arxiv:quant-ph/ v2 19 Jan 2000

Quantum Computers vs. Computers

QUANTUM COMPUTERS AND CRYPTOGRAPHY. Mark Zhandry Stanford University

Using quantum computing to realize the Fourier Transform in computer vision applications

Quantum Systems for Information Technology

A Recent Improvements in Quantum Model and Counter Measures in Quantum Computing

Quantum Computability and Complexity and the Limits of Quantum Computation

A Beginning in the Reversible Logic Synthesis of Sequential Circuits

arxiv:quant-ph/ v2 25 Jan 1996

Simulated Quantum Annealer

Fast Fourier Transform: Theory and Algorithms

Techniques algébriques en calcul quantique

Quantum Computing with NMR

Factoring Algorithms Based on NMR Quantum

Lecture 13: Factoring Integers

CAs and Turing Machines. The Basis for Universal Computation

"in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it

SIMULATING QUANTUM COMPUTING: QUANTUM EXPRESS

A New Reversible TSG Gate and Its Application For Designing Efficient Adder Circuits

Quantum Computing and Grover s Algorithm

2 Elements of classical computer science

How To Solve An Npa-Complete Problems With Quantum Computing And Chaotic Dynamics

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup

Quantum and Non-deterministic computers facing NP-completeness

Quantum Network Coding

Introduction to Quantum Computing

Sensors & Transducers 2015 by IFSA Publishing, S. L.

An Extension to DNA Based Fredkin Gate Circuits: Design of Reversible Sequential Circuits using Fredkin Gates

Secure Network Communication Part II II Public Key Cryptography. Public Key Cryptography

Nanoscience Course Descriptions


Network Security Technology Network Management

Lecture 13 - Basic Number Theory.

Cryptography Lecture 8. Digital signatures, hash functions

Chapter 6 Quantum Computing Based Software Testing Strategy (QCSTS)

The Limits of Adiabatic Quantum Computation

6.080/6.089 GITCS Feb 12, Lecture 3

Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary

Lecture 9 - Message Authentication Codes

Lecture 3: Linear methods for classification

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Synchronization. Todd C. Mowry CS 740 November 24, Topics. Locks Barriers

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

arxiv:quant-ph/ v1 11 Jul 1996

Entanglement: The Holy Grail of High-Speed Design

CHAPTER 3 Boolean Algebra and Digital Logic

INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE

Open Problems in Quantum Information Processing. John Watrous Department of Computer Science University of Calgary

Chapter 1. Computation theory

Computer Security: Principles and Practice

Factorization Methods: Very Quick Overview

Chapter 3. if 2 a i then location: = i. Page 40

A Layered Software Architecture for Quantum Computing Design Tools

MTAT Cryptology II. Digital Signatures. Sven Laur University of Tartu

ASYNCHRONOUS COUNTERS

Quantum Computing in Finance. Colin P. Williams D- Wave Systems Inc.

Final Exam. IT 4823 Information Security Administration. Rescheduling Final Exams. Kerberos. Idea. Ticket

Transcription:

Quantum Computing Architectures 1:-2: Fred Chong (UCD) - Intro, quantum algorithms, and error correction 2:-2:3 Break and discussion 2:3-3:3 Ike Chuang (MIT) - Device technology and implementation issues 3:3-4: Break and official refreshments 4:-5: Mark Oskin (UW) - Quantum architectures 5:- Discussion Plenty of time for questions and discussion All materials available at: http://www.cs.washington.edu/homes/oskin/quantum-tutorial ISCA 5/2 F. Chong -- QC 1

Quantum Computing for Architects + Fred Chong University of California at Davis

Science Fiction? 5 and 7-bit machines have been built 1-bit machines are planned Better technologies are coming Why architectural study? [Vandersypen1, Laflamme99] [Kane98,Vrijen99,Nakamura99,Mooij99] perspective to guide device development ISCA 5/2 F. Chong -- QC 3

Outline Quantum bits and operations Algorithms Quantum search Factorization Error correction Teleportation ISCA 5/2 F. Chong -- QC 4

Quantum Bits (qubit) + 1 qubit probabilistically represents 2 states a> = C > + C 1 1> Every additional qubit doubles # states ab> = C > + C 1 1> + C 1 1> +C 11 11> Quantum parallelism on an exponential number of states But measurement collapses qubits to single classical values ISCA 5/2 F. Chong -- QC 5

7 qubit Quantum Computer ( Vandersypen, Steffen, Breyta, Yannoni, Sherwood, and Chuang, 21 ) Bulk spin NM: nuclear spin qubits Decoherence in 1 sec; operations at 1 Kz Failure probability = 1-3 per operation Potentially 1 sec @ 1 Kz = 1-6 per op pentafluorobutadienyl cyclopentadienyldicarbonyliron complex ISCA 5/2 F. Chong -- QC 6

Silicon Technology ( Kane, Nature 393, p133, 1998 ) ISCA 5/2 F. Chong -- QC 7

Quantum Operations Manipulate probability amplitudes Must conserve energy Must be reversible ISCA 5/2 F. Chong -- QC 8

ISCA 5/2 F. Chong -- QC 9 Bit Flip Flips probabilities for > and 1> Conservation of energy eversibility => unitary matrix (* means complex conjugate) 1 X Gate Bit-flip, Not = + X α β α β 1 1 1 2 2 2 = + = β α C i i I X X T = = 1 1 1 1 ) ( *

Bloch Sphere Visualize a qubit as a vector on a sphere z f Y Operations composed of a rotation primitive x q y 1 ISCA 5/2 F. Chong -- QC 1

Controlled Not Controlled Not Controlled X CNot X 1 1 1 1 a b c d = a + b1 + d1 + c11 Control bit determines whether X operates Control bit is affected by operation ISCA 5/2 F. Chong -- QC 11

Quantum subsumes Classical A B C A B C AB Toffoli gate, or controlled-controlled-not NAND does not conserve energy Number of inputs must equal number of outputs Toffoli gate simulates NAND Inputs = a,b; c set to 1 Output = c ISCA 5/2 F. Chong -- QC 12

Universal Quantum Operations Gate adamard 1 1 1 α (α + β) > + (α β) 1 > = 2 1 1 β 2 T Gate T α - iπ = αe 8 β e iπ - iπ iπ 8 e 8 8 > + βe 1 > Z Gate Phase-flip Z 1 α -1 β = α > β 1 > Controlled Not Controlled X CNot X 1 1 1 a b 1 c d = a > + b 1 > + d 1 > + e 11 > ISCA 5/2 F. Chong -- QC 13

Quantum Algorithms Search (function evaluation) Factorization (FFT, discrete log) Key distribution Digital signatures Clock synchronization ISCA 5/2 F. Chong -- QC 14

Quantum Parallelism > + 1 > 2 x x Uf ψ > > y y f(x) f(x) :{,1} {,1} ψ > =, f() > + 1, f(1) > 2 ISCA 5/2 F. Chong -- QC 15

Deutch s Algorithm(1) [Deutch 85] > x x Uf 1> y y f(x) ψ 1 > ψ 1 >= > + 1 > > 1 > 2 2 ISCA 5/2 F. Chong -- QC 16

Deutch s Algorithm(2) > x x Uf 1> y y f(x) Note that the xor just flips the probabilities for > and 1> : U f > 1 > f x) x > = ( 1) x 2 > 1 > 2 ( > ISCA 5/2 F. Chong -- QC 17

Deutch s Algorithm(3) > x x Uf 1> y y f(x) ψ 2 > ψ 2 > = > + 1> > 1> ± 2 2 > 1> > 1> ± 2 2 if if f ( ) = f (1) f ( ) f (1) ISCA 5/2 F. Chong -- QC 18

Deutch s Algorithm(4) > x x Uf 1> y y f(x) ψ 3 > = > 1> ± > 2 > 1> ± 1> 2 if if ψ 3 > f ( ) = f (1) f ( ) f (1) = ± f () f (1) > > 1 > 2 ISCA 5/2 F. Chong -- QC 19

Quantum Factorization For N = pq, where p,q are large primes, find p,q given N Let r = Order(x,N), which is min value > such that x r mod N = 1, x coprime N Then (x r/2 +/- 1) mod N = p,q eg Order(2, 15) = 4 (x 4/2 +/-1) mod 15 = 3,5 ISCA 5/2 F. Chong -- QC 2

Shor s Algorithm [Shor94] m qubits > r r FT s/r n qubits > x r mod N j j=1: r> = > + 4> + 8> + 12> + j=2: r> = 1> + 5> + 9> + 13> + j=4: r> = 2> + 6> + 1> + 14> + j=8: r> = 3> + 7> + 11> + 15> + ISCA 5/2 F. Chong -- QC 21

Quantum Fourier Transform r is in the period, but how to measure r? QFT takes period r => period s/r Measurement yields I*s/r for some I educe fraction I*s/r => r is the denominator with high probability! epeat algorithm if pq not equal N O(n 3 ) instead of O(2 n )!!! ISCA 5/2 F. Chong -- QC 22

Quantum Search (function evaluation) n qubits > G G G measure Oracle workspace Iteratively concentrates probability towards desired measurement [Grover96] Can search N unordered items in N time N ISCA 5/2 F. Chong -- QC 23

Error Correction is Crucial Need continuous error correction can operate on encoded data [Shor96, Steane96, Gottesman99] Threshold Theorem [Ahanorov 97] failure rate of 1-4 per op can be tolerated Practical error rates are 1-6 to 1-9 ISCA 5/2 F. Chong -- QC 24

Quantum Error Correction Z 12 Z 23 Error Type Action +1 +1 no error no action +1-1 bit 3 flipped flip bit 3-1 +1 bit 1 flipped flip bit 1-1 -1 bit 2 flipped flip bit 2 (3-qubit code) ISCA 5/2 F. Chong -- QC 25

Syndrome Measurment X X Z 12 Ψ2 Ψ 2 ' Ψ1 Ψ 1 ' ISCA 5/2 F. Chong -- QC 26

3-bit Error Correction A 1 X X Z 1 A X X Z 12 Ψ 2 X Ψ 2 ' Ψ 1 X Ψ 1 ' Ψ X Ψ ' ISCA 5/2 F. Chong -- QC 27

Concatenated Codes Logical qubit First level of encoding... Second level of encoding......... ISCA 5/2 F. Chong -- QC 28

Error Correction Overhead 7-qubit code [Steane96], applied recursively ecursion Storage Operations Min. time (k) (7 k ) ( 153 k ) ( 5 k ) 1 1 1 1 7 153 5 2 49 23,49 25 3 343 3,581,577 125 4 2,41 547,981,281 625 5 16,87 83,841,135,993 3125 ISCA 5/2 F. Chong -- QC 29

ecursion equirements Shor s Grover s ISCA 5/2 F. Chong -- QC 3

Clustering ecursive scheme is overkill Don t error correct every operation [Oskin,Chong,Chuang IEEE Computer 2] ISCA 5/2 F. Chong -- QC 31

Space Savings Shor s p=1-6 Grover s ISCA 5/2 F. Chong -- QC 32 p=1-6

Time Savings Shor s p=1-6 Grover s ISCA 5/2 F. Chong -- QC 33 p=1-6

Teleportation Sender a> 1 qubit 2 classical bits eceiver a> Destroy source qubit and recreates at target Pre-communicate half of a CAT state ISCA 5/2 F. Chong -- QC 34

CAT State > > > + 1 > > 2 > + 11 > 2 Two bits are in lockstep both or both 1 Named for Shrodinger s cat Also EP pair for Einstein, Podolsky, osen ISCA 5/2 F. Chong -- QC 35

Teleportation Circuit source a> EP Pair (CAT) b> target c> CNOT X Z a> Source generates bc> EP pair Pre-communicate c> to target with retry Classical communication to set value Can be used to convert between codes! ISCA 5/2 F. Chong -- QC 36

Memory ierarchy Processor qubits Cache lines Memory pages teleport teleport [[343,1,15]] [[245,1,15]] [[392,3,15 More physical qubits Less complex operations Greater de More compl code ISCA 5/2 F. Chong -- QC 37

ISCA 5/2 F. Chong -- QC 38 Quantum Fourier Transform 4 9 2 8 6 3 7 4 7 6 5 2 4 3 5 3 2 2 4 3 2 6 8 4 5 7 5 3 3 4 2 3 6 2 2 5

Blocked QFT 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 2 3 4 5 6 7 2 3 4 5 6 2 3 4 5 2 3 4 2 3 2 ISCA 5/2 F. Chong -- QC 39

Summary Quantum computers can be built Error correction allows scalability Tremendous potential for some applications ISCA 5/2 F. Chong -- QC 4

est of the afternoon Isaac Chuang - Quantum devices ow things really work Mark Oskin Quantum architectures What architects can do ISCA 5/2 F. Chong -- QC 41