Timepix in open space



Similar documents
Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission

CSSAR Space Science Cooperation

Space Users: Status, Requirements and Open Issues

Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

JPL ANOMALY ISSUES. Henry B. Garrett Jet Propulsion Laboratory California Institute of Technology Pasadena, CA, 91109

Space Weather Research and Forecasting in CRL, Japan

Cyclotron Centre in Poland and 2D thermoluminescence dosimetry

Radiation effects on space electronics. Jan Kenneth Bekkeng, University of Oslo - Department of Physics

ESA Space Weather Initiatives

THE CONCURRENT DESIGN PLATFORM AND THE PRIVATE CLOUD FOR SPACE SCIENCE. Yang Zhen SECESA /10/2012

Czech Space Research Centre

Development of on line monitor detectors used for clinical routine in proton and ion therapy

Information about the T9 beam line and experimental facilities

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY VIETNAM NATIONAL SATELLITE CENTER CUBESAT PICO DRAGON. Presenter Name: Do Xuan Phong

Activities of the Japanese Space Weather Forecast Center at Communications Research Laboratory

Space Weather: An Introduction C. L. Waters. Centre for Space Physics University of Newcastle, Australia

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

How To Make A High Energy Ion Detector

Proton tracking for medical imaging and dosimetry

Solar Energetic Protons

Yukikatsu Terada (Saitama Univ, Japan), on behalf of the Astro-H Software Calibration board

Cosmic Ray Astrophysics with AMS-02 Daniel Haas - Université de Genève on behalf of the AMS collaboration

Track Trigger and Modules For the HLT

The National Strategy, Current Activities for Space Technology Development and Application

2-1-5 Space Radiation Effect on Satellites

NASA ISS Research Academy and Pre-Application Meeting. Erin Beck Mission Integrator August 4, 2010

Plasma and Radiation Monitoring Workshop: Introduction and context

How To Understand Space Weather

Precision Tracking Test Beams at the DESY-II Synchrotron. Simon Spannagel DPG 2014 T88.7 Mainz,

SPATIAL DISTRIBUTION OF NORTHERN HEMISPHERE WINTER TEMPERATURES OVER THE SOLAR CYCLE DURING THE LAST 130 YEARS

CubeSats for Geospace Science at Montana State University: Tailored approaches to CubeSat Mission Implementation

Fernando Aguado-Agelet University of Vigo - INTA

Fig.1. The DAWN spacecraft

Zagadnienia termiczne instrumentu naukowego STIX misji kosmicznej Solar Orbiter

Search for supersymmetric Dark Matter with GLAST!!

Statistical Study of Magnetic Reconnection in the Solar Wind

Dawn - Overview, Science Objectives, Mission Progress. Hap McSween For PI Chris Russell

Overview of NASA s Laser Communications Relay Demonstration

The OPERA Emulsions. Jan Lenkeit. Hamburg Student Seminar, 12 June Institut für Experimentalphysik Forschungsgruppe Neutrinophysik

SINP SPACE MONITORING DATA CENTER PORTAL

Artur Scholz University of Applied Sciences Aachen, Germany

NASA s Future Missions in X-ray Astronomy

Thermal Modeling Issues Concerning the Mechanically Pumped Two-Phase CO 2 Cooling for the AMS-2 2 Tracker

How Long Do You Need To Achieve Your Scientific Objectives?

The VHE future. A. Giuliani

Development of the Extreme Ultraviolet Spectrometer: EXCEED

KZO Tactical UAV System Overview

Progress Towards the Solar Dynamics Observatory

Satellite Laser Communications on the Cheap

Large FOV Mobile E-O Telescope for Searching and Tracking Low-orbit Micro-satellites and Space Debris

Secondary Neutrons in Proton and Ion Therapy

Robotic Pre-Cursor Contribution to Human NEA Mission. H. Kuninaka JSPEC/JAXA

1. COSIMA Scientific Objectives

SpaceX Overview Tom Markusic Director, McGregor Rocket Development Facility 27 July, SpaceX

The Threat of Orbital Debris and Protecting NASA Space Assets from Satellite Collisions 28 April 2009

CBERS Program Update Jacie Frederico dos Santos Liporace AMS Kepler

A First-MOVE in satellite development at the TUM

ViaLight. Communications

How To Understand Light And Color

Aviation Route Dose Calculation and its Numerical Basis

ADS-B over Satellite Global Air Traffic Surveillance from Space

Description of the AAU satellite Project. CubeSat Concept. Financing. Organization

Gamma Ray Detection at RIA

Laue lens for Nuclear Medicine

Calorimetry in particle physics experiments

16 th IOCCG Committee annual meeting. Plymouth, UK February mission: Present status and near future

The Extreme Solar Storms of October to November 2003

AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission. Joint ESA NASA AIDA Team

The Radiation Environment in Space

Performance of Silicon N-in-P Pixel Detectors Irradiated up to neq /cm2 for Future ATLAS Upgrades

Can Hubble be Moved to the International Space Station? 1

A Fractionated Space Weather Base at L 5 using CubeSats & Solar Sails

ACCELERATORS AND MEDICAL PHYSICS 2

Quest- 1 Satellite Functional Description

How To Understand The History Of Space Exploration

Satellites and Space Stations

SATELLITE VULNERABILITY TO SPACE DEBRIS RISK

DSL Mission Concept at Lunar Orbit

Congresso della SAIT Museo della Scienza e della Tecnologia di Milano 15 Maggio 2014

Mars Sample Return Campaign: An Overview. Dr. Firouz Naderi Associate Director NASA s JPL

Clouds and the Energy Cycle

Lessons Learned during the Refurbishment and Testing of an Observatory after Longterm

ShindaiSat : A Visible Light Communication Experimental Micro-Satellite

DTUsat II An Asteroseismic CubeSat

Space Telemetric Panomorph Imaging System for micro/nano Satellite

Chang e-3 s Progress and Achievement 2/2014

EXPERIMENTAL CONDITIONS FOR CROSS SECTION MEASUREMENTS FOR ANALYTICAL PURPOSES. L. Csedreki 1. Abstract. I. Introduction

MICE detectors and first results. M. Bonesini Sezione INFN Milano Bicocca

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

Remote RadEye Product Family

Monte Carlo Simulations in Proton Dosimetry with Geant4

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer

HOW TO BUILD A NANORACKS PAYLOAD: NANOLABS

Department of Aeronautics and Astronautics School of Engineering Massachusetts Institute of Technology. Graduate Program (S.M., Ph.D., Sc.D.

AMS COLLABORATION. First Results from the Alpha Magnetic Spectrometer (AMS) Experiment

Laser Ranging to Nano-Satellites

Satellite Breakup Risk Mitigation

Overview of the Canadian Electric Field Instrument (CEFI) for Swarm

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento

Japanese Space Industry s Efforts regarding Long-term Sustainability of Space Activities. 14 Feb The Society of Japanese Aerospace Companies

Transcription:

Medipix Collaboration Meeting CERN, 19-20.2.2014 Seminář o malých družicích v ČR, CSO / FEL ČVUT, Praha, 4.3.2014 Timepix in open space Science/physics research Space radiation physics + space weather Space crew dosimetry + shielding Radiation effects (SEE, SEU) on spacecraft, payloads and EECs Space technology Spacecraft platform device Detection and track visualization of space radiation at LEO orbit onboard ESA Proba-V satellite Carlos Granja, Štepan Polansky*, Daniel Tureček*, Stanislav Pospíšil, Zdeněk Vykydal*, Václav Kraus*, Jan Jakůbek Institute of Experimental and Applied Physics,, Czech Republic Karim Mellab, Alan Owens, Petteri Nieminen European Space Agency (ESA), ESTEC, Netherlands M. Šimčák, Z. Dvořák, Z. Kozaček $, P. Vána $, J. Máreš $ Czech Space Research Center, Brno, Czech Republic *PhD student $ former staff Research performed in frame of the CERN Medipix Collaboration Project funded by the European Space Agency IEAP CTU Prague

Other projects, teams/co-authors www.cern.ch/medipix 5x TPX devices onboard ISS since 2012, Houston/NASA (launched/in orbit 3Q 2012) Timepix tracker/particle telescope for micro-satellite RISESAT, Japan (2015) Pixel detector payload for ESA BEXUS Ballon, Ch. Univ. Prague (2011) Michal Platkevic*, Iván Caicedo* &, Benedikt Bergmann* #% Institute of Experimental and Applied Physics,, Czech Republic Petteri Nieminen European Space Agency (ESA), ESTEC, Netherlands Lawrence Pinsky, et al. University of Houston/NASA, USA Toshinori Kuwahara Tohoku University, Sendai, Japan Jaroslav Urbar* Charles Univ. Prague/Czech Space Office, Czech Republic # MC simulations * PhD student % U of Erlangen, Germany & U de los Andes, Bogota, Colombia X LASNPA Uruguay, 1-6 Dec. 2013, Universidad de la República, Montevideo Carlos Granja, IEAP CTU Prague 2

capability, dynamic range Institute of Experimental and Applied Physics tasks Timepix in open space Characterization and particle visualization of mixed radiation fields in space Quantum counting/pos-sen/directional detector + integrated RO electronics + data processing SW + nuclear physics/radiation spectrometry/imaging/tracking sensitivity p, α, ions, e, muons, neutrons, X-rays: de + particle species resolving power Detection, radiation monitoring, quantum imaging dosimetry + wide DR Tracking, visualization, directional information (particle telescope) Spectrometry (de), coincidence spectroscopy, reaction/fragmentation, Single-quantum sensitivity, noiseless detection, high signal-to-noise ratio Wide dynamic range (particle flux, particle energies, particle species) Linear-energy transfer (LET) measurement, low level threshold 4 kev High spatial resolution (sub-pixel resolution µm) Directional angular resolution: 1º (single sensor), 0.1º (stack telescope) Wide field-of-view: 2π, even 4π (no collimators, full sky mapping) instrumentation technical Single device, integrated electronics, no cryogenics, no shielding Light weight: e.g. (only) launch cost 100 EUR per g Miniaturized size, low power! CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 3

Space Radiation Environment Mixed radiation field + broad E spectra + high flux gradients + directionality CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 4

L. Pinsky, U. of Houston Solar Particle Events Coronal mass ejections CMEs CMEs are directional..! Energetic solar particles follow curved dynamical field lines CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 5

L. Pinsky, U. of Houston Earth radiation belts & South Atlantic Anomaly Inner Belt - mainly protons; energies up to ~500 MeV - 400 MeV peak ~1.3 R E - 4 MeV ~2.0 R E Outer Belt - mainly electrons; energies > several MeV - Large variations (2-4 orders of magnitude) over periods of hours to days Rapid transits through belts limit doses to crews South Atlantic Anomaly CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 6

Space Radiation Environment Solar particle/proton events (SPEs): intense, temporal & highly directional..! Integral fluence of protons [events/cm 2 ] Rapid onset times (minutes), with durations up to hours or days Essentially unpredictable, however generally coincide with solar maximum periods Proton energies up to ~100s of MeV, sometimes GeV range Integral fluence up to ~10 9 10 10 p/cm 2 (>1 MeV) Contribution from heavy ions and e- In the main phase of an event, local particle fluxes isotropic X LASNPA Uruguay, 1-6 Dec. 2013, Universidad de la República, Montevideo Carlos Granja, IEAP CTU Prague 7

X LASNPA Uruguay, 1-6 Dec. 2013, Universidad de la República, Montevideo Carlos Granja, IEAP CTU Prague 8

X LASNPA Uruguay, 1-6 Dec. 2013, Universidad de la República, Montevideo Carlos Granja, IEAP CTU Prague 9

T. Kuwahara, U Tohoku, Japan L. Pinsky, et al., U Houston/NASA, D. Turecek, Z. Vykydal, S. Pospisil, IEAP M. Platkevic, V. Kraus, D. Turecek, IEAP Timepix-based space payloads/instruments platform device open space Scientific payload International Space Station ESA Proba V satellite RISESAT satellite In orbit since 3Q 2012 400 km Launched 7 th May 2013 820 km Launch 2014/5 Type Size (mass) 150 Kg Minisatellite 100 200 Kg 5 x Timepix devices Microsatellite Nanosatellite 10 100 Kg 1 10 Kg 50 Kg Picosatellite < 1 Kg CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 10

Timepix detector in the highly miniaturized LITE architecture (a) customized for the ISS (b) as deployed with an on-board laptop via USB port (c) in a NASA Module at the ISS (d). Work done in cooperation with NASA and the University of Houston. 1 CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 11

Online miniaturized Timepix Quantum Dosimeter for the International Space Station (ISS) 5 detector units launched in space on August 2012, all running since, taking data HW Physics + methodology + SW 1,4 cm Daniel CSO / FEL Turecek, ČVUT, Praha, 6 th July 4 th March 20112014 13 th IWORID Zürich IEAP, CTU in Prague Carlos Granja, ÚTEF ČVUT v Praze 12

Timepix onboard the ISS Detection, meaurement of charged particle flux, visualization Radiation field at the ISS, acq t = 4 s CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 13

Timepix onboard the ISS Radiation over the South Atlantic Anomaly (SAA) CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 14

µgy/min Institute of Experimental and Applied Physics Timepix onboard the ISS Quantum dosimetry + wide dynamic range Airline altirude 11 km (Madrid-Bogota): 0,025 µgy/min = 0.036 mgy/d = 0.013 Gy/y Spatial-correlated radiation dose Earth map @ 400 km altitude Ground level (Prague): 0,001 µgy/min = 0.0015 mgy/d = 0.0005 Gy/y 0.3 mgy/day 0.1 Gy/y 3 mgy/day 1.1 Gy/y 5.5 mgy/day 5.5 Gy/y REM Dose Rate Data (mg/min) measured by Timepix onboard the ISS 6 ugy/min 47 usv/min CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 15

All events North Atlantic/Northern Hemisphere All events Timepix onboard the ISS Spatial-correlated flux of charged particles South America/ South Atlantic Anomaly/Southern Hemisphere HCP/LCP Earth map spatial distributions measured by Timepix onboard ISS displaying the flux of all radiation components integrated LCP/HCP Energetic events Radiation flux measured by Timepix onboard ISS at 400 km altitude, 12 month data South America/ South Atlantic Anomaly/Southern Hemisphere CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 16

Timepix in open space Spacecraft payload HW/SW Redesign + space qualification testing Spacecraft payload + constraints/limitations/requirements HW: front-end + readout electronics Low power, heating dissipation, high vacuum Light weight, shielding, payload accommodation DAQ & memory/downlink capacity Space-qualified components/parts/fpga s etc SW: firmware + control + readout Remote/on-board control, autonomous operation On-board memory buffer (limited capacity) Data downlink (limited capacity) Telecommanding + file compression + data parsing Qualification/space flight testing Thermal, heating dissipation, high vacuum Vibrational + G-force acceleration EM interference Integration into satellite system Reengineering Downgrade Breadboard model Engineering model (EM) Flight model (FM) Spacecraft payload CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 17

Timepix SATRAM Payload ESA Proba-V satellite Characterization of space radiation at the Low Earth Orbit (LEO) on ESA PROBA-V satellite Altitude ~ 820 km Timepix for the first time in open space currently TRL 9 Launched May 2013 SATRAM payload: Space Application of Timepix Radiation Monitor CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 18

SATRAM payload (arrow) onboard ESA Proba-V satellite attached to ESA Vega-2 launcher rocket prior launch CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 19

ESA Vega- 2 rocket SATRAM payload (arrow) onboard ESA Proba-V satellite. ESA Vega-2 launcher rocket upper stage CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 20

Timepix/ESA Proba-V: LEO space radiation @ 820 km High radiation regions & heavy charged particles (p s) CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 21

Timepix/ESA Proba-V: LEO space radiation @ 820 km Low radiation regions & light charged particles (p s) CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 22

Timepix/ESA Proba-V: LEO space radiation @ 820 km Energetic heavy charged particles (ions) CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 23

7 th Feb 2014 SATRAM Proba-V 8-9 h Jan 2014 SPE SATRAM Proba-V CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 24

Timepix/ESA Proba-V + LEO space radiation @ 820 km Spatial + time correlated distributions CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 25

SATRAM Proba-V The Americas South America, Antarctica, South Atlantic Anomaly SAA Radiation field Earth map spatial distributions measured by Timepix based SATRAM payload onboard ESA Proba-V satellite LEO orbit 820 km altitude displaying all radiation components integrated over 5.5 months CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 26

SATRAM Proba-V Australia/Oceania South America, Antarctica, South Atlantic Anomaly SAA Asia/west Pacific Radiation field Earth map spatial distributions measured by Timepix onboard ESA Proba-V satellite LEO orbit 820 km altitude displaying all radiation components integrated over 5.5 months CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 27

100 mm RISESAT + Timepix particle tracker payload Particle visualization + telescope breadboard Visualization of direction of energetic particles with single layer Timepix in hadron therapy ( 12 C) field EM Enhanced visualization of direction of energetic particles with stacked Timepix particle telescope CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 28

capability, dynamic range Institute of Experimental and Applied Physics tasks Small satellite(s) Timepix-based compact payloads: Science instrument, platform device Characterization and particle visualization of space radiation sensitivity p, α, ions, e, muons, neutrons, X-rays: de + particle species resolving power Detection, radiation monitoring, quantum imaging dosimetry + wide DR Tracking, visualization, directional information (particle telescope) Spectrometry (de), coincidence spectroscopy, reaction/fragmentation, Single-quantum sensitivity, noiseless detection, high signal-to-noise ratio Wide dynamic range (particle flux, particle energies, particle species) Linear-energy transfer (LET) measurement, low level threshold 4 kev High spatial resolution (sub-pixel resolution µm) Directional angular resolution: 1º (single sensor), 0.1º (stack telescope) Wide field-of-view: 2π, even 4π (no collimators, full sky mapping) instrumentation technical Single device, integrated electronics, no cryogenics, no shielding Configurability, sensor array modularity/assembly, particle telescope, Light weight: e.g. (only) launch cost 100 EUR per g Miniaturized size, low power CSO / FEL ČVUT, Praha, 4 th March 2014 Carlos Granja, ÚTEF ČVUT v Praze 29!