Cloud Computing for SCADA



Similar documents
HMI Mobility. A White Paper from InduSoft

Cloud Computing; What is it, How long has it been here, and Where is it going?


Cloud Courses Description

Cloud Courses Description

Cloud Computing. Course: Designing and Implementing Service Oriented Business Processes

All can damage or destroy your company s computers along with the data and applications you rely on to run your business.

White Paper on CLOUD COMPUTING

CLOUD BASED SCADA. Removing Implementation and Deployment Barriers. Liam Kearns Open Systems International, Inc.

Everything You Need To Know About Cloud Computing

Session 11 : (additional) Cloud Computing Advantages and Disadvantages

Cloud Computing demystified! ISACA-IIA Joint Meeting Dec 9, 2014 By: Juman Doleh-Alomary Office of Internal Audit

How To Understand Cloud Computing

ITL BULLETIN FOR JUNE 2012 CLOUD COMPUTING: A REVIEW OF FEATURES, BENEFITS, AND RISKS, AND RECOMMENDATIONS FOR SECURE, EFFICIENT IMPLEMENTATIONS

Keyword: Cloud computing, service model, deployment model, network layer security.

How cloud computing can transform your business landscape.

East African Information Conference th August, 2013, Kampala, Uganda. Security and Privacy: Can we trust the cloud?

Securing the Cloud with IBM Security Systems. IBM Security Systems IBM Corporation IBM IBM Corporation Corporation

A.Prof. Dr. Markus Hagenbuchner CSCI319 A Brief Introduction to Cloud Computing. CSCI319 Page: 1

Securing and Auditing Cloud Computing. Jason Alexander Chief Information Security Officer

IBM Cloud Security Draft for Discussion September 12, IBM Corporation

OWASP Chapter Meeting June Presented by: Brayton Rider, SecureState Chief Architect

Overview of Cloud Computing and Cloud Computing s Use in Government Justin Heyman CGCIO, Information Technology Specialist, Township of Franklin

How cloud computing can transform your business landscape

IBM EXAM QUESTIONS & ANSWERS

ICSA Labs Risk and Privacy Cloud Computing Series Part I : Balancing Risks and Benefits of Public Cloud Services for SMBs

Cloud Models and Platforms

Service Models. Chapter Three

The cloud - ULTIMATE GAME CHANGER ===========================================

Cloud Computing. Cloud computing:

Commercial Software Licensing

Electronic Records Storage Options and Overview

Cloud Computing Submitted By : Fahim Ilyas ( ) Submitted To : Martin Johnson Submitted On: 31 st May, 2009

See Appendix A for the complete definition which includes the five essential characteristics, three service models, and four deployment models.

Overview. The Cloud. Characteristics and usage of the cloud Realities and risks of the cloud

NETWORK ACCESS CONTROL AND CLOUD SECURITY. Tran Song Dat Phuc SeoulTech 2015

Hexaware E-book on Q & A for Cloud BI Hexaware Business Intelligence & Analytics Actionable Intelligence Enabled

Kent State University s Cloud Strategy

01/02/2012. Meet CloudOne. James Pietrocarlo Vice President of Business Development CloudOne.

IJRSET 2015 SPL Volume 2, Issue 11 Pages: 29-33

Cloud Computing An Elephant In The Dark

Cloud Computing. Chapter 1 Introducing Cloud Computing

Cloud definitions you've been pretending to understand. Jack Daniel, Reluctant CISSP, MVP Community Development Manager, Astaro

AskAvanade: Answering the Burning Questions around Cloud Computing

Module 1: Facilitated e-learning

Cloud Computing. Chapter 1 Introducing Cloud Computing

Improving the Microsoft enterprise. network for public cloud connectivity

CNG IN A BOX: Cloud Based Enterprise Historian w\dash Boarding Solution for CNG Fueling Stations

How To Manage Cloud Management

IT Risk and Security Cloud Computing Mike Thomas Erie Insurance May 2011

Session 2. The economics of Cloud Computing

Security Issues in Cloud Computing

U.S. HOUSE OF REPRESENTATIVES SUBCOMMITTEE ON TECHNOLOGY AND INNOVATION COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HEARING CHARTER

Cloud Computing Flying High (or not) Ben Roper IT Director City of College Station

Tamanna Roy Rayat & Bahra Institute of Engineering & Technology, Punjab, India talk2tamanna@gmail.com

CA Cloud Overview Benefits of the Hyper-V Cloud

Cloud Computing and Government Services August 2013 Serdar Yümlü SAMPAŞ Information & Communication Systems

Cloud Computing in the Federal Sector: What is it, what to worry about, and what to negotiate.

Trust but Verify. Vincent Campitelli. VP IT Risk Management

Realize More Success with Software-plus-Services. Cloud-based software from Microsoft Dynamics ERP

Communications in the Cloud: Why It Makes Sense for Today s Business

Running head: TAKING A DEEPER LOOK AT THE CLOUD: SOLUTION OR 1

Getting Familiar with Cloud Terminology. Cloud Dictionary

WHITE PAPER SETTING UP AND USING ESTATE MASTER ON THE CLOUD INTRODUCTION

What is Cloud Computing? First, a little history. Demystifying Cloud Computing. Mainframe Era ( ) Workstation Era ( ) Xerox Star 1981!

The Cloud is Not Enough Why Hybrid Infrastructure is Shaping the Future of Cloud Computing

Datamation. 3 Ways to Move Application Development to the Cloud. Executive Brief. In This Paper

Cloud Computing. What is Cloud Computing?

Implementing & Developing Cloud Computing on Web Application

Outline. What is cloud computing? History Cloud service models Cloud deployment forms Advantages/disadvantages

An Introduction to Cloud Computing Concepts

HARNESSING THE POWER OF THE CLOUD

Capturing the New Frontier:

Storage Infrastructure as a Service

Cloud computing: benefits, risks and recommendations for information security

Enterprise Governance and Planning

Table of Contents...2 Introduction...3 Mission of IT...3 Primary Service Delivery Objectives...3 Availability of Systems Improve Processes...

Cloud Computing Phillip Hampton LogicForce Consulting, LLC

INTRODUCTION TO CLOUD COMPUTING CEN483 PARALLEL AND DISTRIBUTED SYSTEMS

SCADA Systems Automate Electrical Distribution

CLOUD COMPUTING An Overview

The Private Cloud Your Controlled Access Infrastructure

Healthcare: La sicurezza nel Cloud October 18, IBM Corporation

Contact Centers in the Cloud: A Better Way to Source

20 th Year of Publication. A monthly publication from South Indian Bank.

Cloud Computing. Chapter 1 Introducing Cloud Computing

Cloud Computing Technology

SCADA Cloud Computing

Addressing Data Security Challenges in the Cloud

Security & Trust in the Cloud

LESSON 13 VIRTUALIZATION AND CLOUD COMPUTING

TOP 7 THINGS Every Executive Should Know About Cloud Computing EXECUTIVE BRIEF

CLOUD COMPUTING. When It's smarter to rent than to buy

VDI can reduce costs, simplify systems and provide a less frustrating experience for users.

CLOUD SECURITY SECURITY ASPECTS IN GEOSPATIAL CLOUD. Guided by Prof. S. K. Ghosh Presented by - Soumadip Biswas

Bringing the Cloud into Focus. A Whitepaper by CMIT Solutions and Cadence Management Advisors

Topics. Images courtesy of Majd F. Sakr or from Wikipedia unless otherwise noted.

Transcription:

Cloud Computing for SCADA Moving all or part of SCADA applications to the cloud can cut costs significantly while dramatically increasing reliability and scalability. A White Paper from InduSoft

Larry Combs, vice president of customer service and support, InduSoft Although cloud computing is becoming more common, it s relatively new for SCADA (supervisory control and data acquisition) applications. Cloud computing provides convenient, on-demand network access to a shared pool of configurable computing resources including networks, servers, storage, applications, and services. These resources can be rapidly provisioned and released with minimal management effort or service provider interaction. By moving to a cloud-based environment, SCADA providers and users can significantly reduce costs, achieve greater reliability, and enhance functionality. In addition to eliminating the expenses and problems related to the hardware layer of IT infrastructure, cloud-based SCADA enables users to view data on devices like smartphones and tablet computers, and also through SMS text messages and e-mail. Our company, along with a number of others, provides SCADA software and services for firms that want to use their own IT infrastructure, the cloud, or a combination of both to deploy their applications. We provide upfront consulting and advice to help customers make the best choice depending on their specific requirements and capabilities. Figure 1: A public cloud formation in which the SCADA system is running onsite and delivers data via the cloud A cloud can be public or private. A public cloud infrastructure is owned by an organization and sold as services to the public. A private cloud infrastructure is operated solely for a specific customer. It may be managed by the customer or by a third party; it may exist on premise or off premise. Hybrid clouds consist of private and public clouds that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability. Cloud computing can support SCADA applications in two fashions: The SCADA application is running on-site, directly connected to the control network and delivering information to the cloud where it can be stored and disseminated, or The SCADA application is running entirely in the cloud and remotely connected to the control network.

The first method is by far the most common and is illustrated in Figure 1. The control functions of the SCADA application are entirely isolated to the control network. However, the SCADA application is connected to a service in the cloud that provides visualization, reporting, and access to remote users. These applications are commonly implemented using public cloud infrastructures. The implementation illustrated in Figure 2 is common to distributed SCADA applications where a single, local SCADA deployment is not practical. The controllers are connected via WAN links to the SCADA application running entirely in the cloud. These applications are commonly implemented using private or hybrid cloud architectures. Service choices Most experts divide the services offered by cloud computing into three categories: infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS). Figure 2: A private/hybrid cloud in which the controllers are connected via WAN links to the SCADA application running entirely in the cloud. An IaaS such as Amazon Web Services is the most mature and widespread service model. IaaS enables service provider customers to deploy and run offthe-shelf SCADA software as they would on their own IT infrastructure. IaaS provides on-demand provisioning of virtual servers, storage, networks, and other fundamental computing resources. Users only pay for capacity used, and can bring additional capacity online as necessary. Consumers don t manage or control the underlying cloud infrastructure but maintain control over operating systems, storage, deployed applications, and select networking components such as host firewalls. PaaS, like Microsoft s Azure or Google Apps, is a set of software and product development tools hosted on the provider s infrastructure. Developers use these tools to create applications over the Internet. Users don t manage or control the underlying cloud infrastructure but have control over the deployed applications and application hosting environment configurations. PaaS is used by consumers who develop their own SCADA software and want a common off-the-shelf development and runtime platform. SaaS, like web-based e-mail, affords consumers the capability to use a provider s applications running on a cloud infrastructure from various client devices through a thin client interface like a web

browser. Consumers don t manage or control the underlying cloud infrastructure but instead simply pay a fee for use of the application. SCADA vendors have been slow to adopt the SaaS service model for their core applications. This may change as the uncertainty of cloud computing begins to clear. For now, vendors are beginning to release only certain SCADA application components and functions as SaaS, such as visualization and historical reporting. Economical scalability With all three service models, scalability is dynamic and inexpensive because it doesn t involve the purchase, deployment, and configuration of new servers and software. If more computing power or data storage is needed, users simply pay on an as-needed basis. Companies don t have to purchase redundant hardware and software licenses or create disaster recovery sites they may never use. Instead they can provision new resources on demand when and if they need them. Add in the costs that a company would otherwise incur to manage an IT infrastructure, and the savings of moving to the cloud could be huge. Instead of numerous servers and backups in different geographic locations, the cloud offers its own redundancy. On-demand resource capacity can be used for better resilience when facing increased service demands or distributed denial of service attacks, and for quicker recovery from serious incidents. The scalability of cloud computing facilities offers greater availability. Companies can provision large data servers for online historical databases, but only pay for the storage they re using. Building an IT infrastructure is usually a long-term commitment. Systems can take months to purchase, install, configure, and test. Equivalent cloud resources can be running in as little as a few minutes, and on-demand resources allow for trial-and-error testing. The ability to easily switch back to a previous configuration makes it easier to make changes without having to start from scratch by taking a snapshot of a known working configuration. If a problem occurs when deploying a patch or update, the user can easily switch back to the previous configuration. On-site IT projects involve significant cost, resources, and long timelines and thus include significant risk of failure. Cloud computing deployments can be completed in a few hours with little or no financial and resource commitments, and therefore are much less risky. Manageability, security, and reliability The structure of cloud computing platforms is typically more uniform than most traditional computing centers. Greater uniformity promotes better automation of security management activities like configuration control, vulnerability testing, security audits, and security patching of platform components.

A traditional IT infrastructure environment poses the risk that both the primary and the single backup server could fail, leading to complete system failure. In the cloud environment, if one of the cloud computing nodes fails, other nodes take over the function of the failed cloud computing node without a blip. If a company chooses to implement its own IT infrastructure, access to user data in this infrastructure generally depends on the company s single Internet provider. If that provider experiences an outage, then users don t have remote access to the SCADA application. Cloud computing providers have multiple, redundant Internet connections. If users have Internet access, they have access to the SCADA application. The backup and recovery policies and procedures of a cloud service may be superior to those of a single company s IT infrastructure, and if copies are maintained in diverse geographic locations as with most cloud providers, may be more robust. Data maintained within a cloud is easily accessible, faster to restore, and often more reliable. Updates and patches are distributed in real time without any user intervention. This saves time and improves system safety by enabling patches to be implemented very quickly. Challenges and risks Cloud computing has many advantages over the traditional IT model. However, some concerns exist in regard to security and other issues. Data stored in the cloud typically resides in a shared environment. Migrating to a public cloud requires a transfer of control to the cloud provider of information as well as system components that were previously under the organization s direct control. Organizations moving sensitive data into the cloud must therefore determine how these data are to be controlled and kept secure. Applications and data may face increased risk from network threats that were previously defended against at the perimeter of the organization s intranet, and from new threats that target exposed interfaces. Access to organizational data and resources could be exposed inadvertently to other subscribers through a configuration or software error. An attacker could also pose as a subscriber to exploit vulnerabilities from within the cloud environment to gain unauthorized access. Botnets have also been used to launch denial of service attacks against cloud infrastructure providers. Having to share an infrastructure with unknown outside parties can be a major drawback for some applications, and requires a high level of assurance for the strength of the security mechanisms used for logical separation. Ultimately to make the whole idea workable, users must trust in the long-term stability of the cloud provider and must trust the cloud provider to be fair in terms of pricing and other contractual matters. Because the cloud provider controls the data to some extent in many implementations, particularly SaaS, it can exert leverage over customers if it chooses to do so.

As with any new technology, these issues must be addressed. But if the correct service model (IaaS, PaaS, or SaaS) and the right provider are selected, the payback can far outweigh the risks and challenges. The cloud s implementation speed and ability to scale up or down quickly means businesses can react much faster to changing requirements. The cloud is creating a revolution in SCADA system architecture because it provides very high redundancy, virtually unlimited data storage, and worldwide data access all at very low cost. TABLE 1: Benefits of cloud computing for SCADA Add new resources on demand when and if needed No need to purchase redundant hardware and software licenses, or set up disaster recovery sites that may not be used Provides huge amounts of storage capacity that can be purchased incrementally Provides improved reliability and redundancy via multiple Internet connections and more backup servers New infrastructure can be running in a few minutes Makes real-time and historical information available on any type of Internet-connected device, including laptops and Smartphones Easier to manage updates and patches, and Provides testing advantages through the ability to clone machines Remote SCADA with local HMI look and feel Vipond Controls in Calgary provides control system and SCADA solutions to the oil and gas industry, including Bellatrix Exploration. To keep up with customer demand for faster remote data access, Vipond developed iscada as a service to deliver a high-performance SCADA experience for each client.

One of the greatest challenges in developing iscada was the state of the Internet itself as protocols and web browsers weren t designed for real-time data and control. Common complaints of previous Internet-based SCADA system users included having to submit then wait, or pressing update or refresh buttons to show new data. Many systems relied only on web-based technologies to deliver real-time data. Because the HTTP protocol was never designed for real-time control, these systems were always lacking and frustrating to use whenever an operator wanted to change a setpoint or view a process trend. Users were asking for an Internet-based SCADA system with a local HMI look and feel, and that became the goal of Vipond Controls. This goal was reached with iscada as a service by giving each customer an individual virtual machine within Vipond s server cloud. All data is now kept safe and independent of other machines running in the cloud. A hypervisor allows multiple operating systems or guests to run concurrently on a host computer, and to manage the execution of the guest operating systems. The hypervisors are highly available and portable, so in the event of a server failure, the virtual machine can be restarted on another hypervisor within minutes. All the SCADA software runs within the virtual machine, and users are offered a high degree of personal customization. Customers can connect directly to on-site controllers, and Vipond can also make changes to controllers and troubleshoot process problems. This cloud-based SCADA solution can reduce end-user costs up to 90% over a traditional SCADA system, thanks to the provision of a third-party managed service and the reduction of investment required for IT and SCADA integration, development, hardware, and software. About the Author: Larry Combs is vice president of customer service and support at InduSoft. About InduSoft: Founded in 1997, InduSoft provides a powerful family of industrial software products for developing applications in industrial automation, instrumentation, and embedded systems for all Microsoftsupported operating systems. InduSoft develops tools and technologies that empower people and companies to develop graphical interfaces for embedded PCs, PCs, and mobile devices to highly redundant systems. Today more than 125,000 InduSoft Operator Interface, SCADA, control and data acquisition systems are operating worldwide through direct and partner sales.