Aminohydroxylation of Olefins: Development and Applications



Similar documents
Wittig Reaction - Phosphorous Ylides

Metal catalysed asymmetric epoxidation of olefins

Cleavage of Cyclobutanols and Cyclobutanones

Short Peptide Synthesis

Allyl Metals. oxidative addition. transmet. + M(n) η 1 -allyl. n = 0, 1. base. X η 3 -allyl. Nuc. insertion. insertion. M(n+2)X MgX + MX2 MX 2

SYNTHETIC STUDIES ON TULEARIN MACROLIDES. M.Montserrat Martínez, Luis A. Sarandeses, José Pérez Sestelo

A Perspective on Professor Scott Eric Denmark: The Man, The Myth, The Chemist O

Kurs: Metallorganische Reagenzien. Cericammoniumnitrate (CAN)

Avg / 25 Stnd. Dev. 8.2

Chapter 3: Protecting Groups

Stegane natural products

Mitsunobu Reaction ( )

FIVE-MEMBERED RING FORMATION Membered Rings. Intramolecular S N 2 Reaction

EXPERIMENT 5: DIPEPTIDE RESEARCH PROJECT

David W. C. MacMillan Career-in-Review. Sujun Wei BreslowGroup Columbia University September 28, 2007

California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30

ammonium salt (acidic)

Chapter 5 Classification of Organic Compounds by Solubility

T3P Propane Phosphonic Acid Anhydride

2. Couple the two protected amino acids.

Page Which hydrocarbon is a member of the alkane series? (1) 1. Which is the structural formula of methane? (1) (2) (2) (3) (3) (4) (4)

The D-glucosamine-derived recoverable catalyst for Mizoroki-Heck reactions under solvent-free conditions

A Grignard reagent formed would deprotonate H of the ethyl alcohol OH.

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

Hamari Chemicals, Ltd.

pk a Values for Selected Compounds

Guide to Solving Sophomore Organic Synthesis Problems

Organometallics Study Seminar Chapter 13: Metal-Ligand Multiple Bonds

Survival Organic Chemistry Part I: Molecular Models

Stille, Suzuki, and Sonogashira Couplings Cross-Coupling reactions: catalyst R-X + R'-M

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond

Prof. Dr. Burkhard König, Institut für Organische Chemie, Uni Regensburg 1. Enolate Chemistry

Properties of Silicon

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

- Alder Endo Rule: In order to maximize secondary orbital interactions, the endo TS is favored in the D-A rxn. Tetrahedron 1983, 39, 2095 X X.

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS

1. COUPLING REAGENTS : Structure and acronyms

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde

IR Applied to Isomer Analysis

5.5 Vicinal Proton-Proton Coupling 3 J HH

Metal Catalyzed Redox Reactions

Carboxylic Acid Derivatives and Nitriles

Activation of Carbon-Hydrogen Bonds at Transition Metal Centers!

Chapter 4 Lecture Notes

Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'R"N, 4 o (salt) RR'R"R'"N + R = alkyl or aryl

Mass Spec - Fragmentation

Asymmetric Epoxidation of Pentadienols

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

UNIVERSITY OF PÉCS. Palladium-catalysed aminocarbonylation reactions of iodoarenes and iodoalkenes. Attila Takács

Properties of a molecule. Absolute configuration, Cahn-Ingold Prelog. Planar, axial, topological chirality and chirality at atoms other than carbon

Peptides: Synthesis and Biological Interest

Chapter 13 Carboxylic Acids, Esters, Amines, and Amides. Carboxylic Acids. Names and Sources of Some Carboxylic Acids. IUPAC Names

Nucleophilic Substitution and Elimination

Stoichiometry and Aqueous Reactions (Chapter 4)

Structure, Mechanism and Reactivity of Hantzsch Esters

Quality. Now Certified to ISO 9001:2008

Chapter 12 Organic Compounds with Oxygen and Sulfur

Chapter 22 Carbonyl Alpha-Substitution Reactions

CH 102 Practice Exam 2 PCC-Sylvania

pka's of Inorganic and Oxo-Acids

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

An improved procedure for the synthesis of vinylphosphonate-linked nucleic acids

ALKENES AND ALKYNES REACTIONS

ALCOHOLS: Properties & Preparation

REACTIONS OF AROMATIC COMPOUNDS

ALKENES AND ALKYNES REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO:

Suggested solutions for Chapter 3

methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example

Figure 8. Example of simple benzene naming with chlorine and NO 2 as substituents.

Molecule Projections

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

Chemistry Notes for class 12 Chapter 13 Amines

Applications of Organic Solvent Nanofiltration in the Process Development of Active Pharmaceutical Ingredients. Dominic Ormerod

Aldehydes can react with alcohols to form hemiacetals Nucleophilic substitution at C=O with loss of carbonyl oxygen

Conjugation is broken completely by the introduction of saturated (sp3) carbon:

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS

By Thomas K. Wray. They divide peroxidizable organic compounds into eight classes: Aldehydes. Ethers and acetals Dienes and vinyl acetylenes

23.7 ALKYLATION AND ACYLATION REACTIONS OF AMINES

Studies directed on the synthesis of Vancomycin and related cyclic peptides

Working with Hazardous Chemicals

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

and its application in the synthesis of Nilotinib intermediate

CHEM 203 Exam 1. KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Supplementary Information. Primary amino acid lithium salt as a catalyst for asymmetric Michael addition of isobutyraldehyde with β-nitroalkenes.

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

2. Rank the following three compounds in decreasing order of basicity. O NHCCH 3 NH 2

1. What is the hybridization of the indicated atom in the following molecule?

Chemistry B11 Chapter 4 Chemical reactions

Alcohols. Characterized by OH group Name: add ol. to name of hydrocarbon. Methanol. Butanol. Sterno. Alcohols burn in air. A mixture of ethanol +

Aquagent. Pyridine-free volumetric Karl Fischer reagents

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds

Chemistry 1110 Organic Chemistry IUPAC Nomenclature

SUMMARY OF ALKENE REACTIONS

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

Lecture 15: Enzymes & Kinetics Mechanisms

Asymmetric Formation of Quaternary Carbon Centers Catalyzed by Novel Chiral 2,5-Dialkyl-7-phenyl-7-phosphabicyclo- [2.2.1]heptanes

Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391)

Electrophilic Addition Reactions

Chapter 6 An Overview of Organic Reactions

Transcription:

Aminohydroxylation of lefins: Development and Applications by Manish awat Michigan State University Jan 17 th, 2001

utline 1. Aminohydroxylation of olefins a. t-butyl amine as source b. Chloramine-T as source c. -Argentocarbamates as source 2. Asymmetric aminohydroxylation (AA) of olefins a. Chloramine-T/M as source b. -Sodiocarbamates as source c. -Chloro--sodio trimethylsilylethoxycarbamates as source d. -Bromo--lithio carbamides as source 3. egioselectivity in AA reaction 4. AA on some useful substrates 5. Synthetic applications 6. Conclusion

Dihydroxylation of lefins Pyridine s + s 1 2 3 M s 4 H 2 H H 5

Dihydroxylation of olefins M + 1 2 M 1 2 H 1 H 2 analogue of transition metal oxo compound ' M M Aminohydroxylation of olefins M ' + 1 2 M ' 1 2 'H 1 H 2

1975 t-butylamine as Source for Aminohydroxylation s H 2 s 1 2 2 s CH 2 Cl 2 1 + 1 3 (1 eq.) CH 2 Cl 2 4 s 2 LAH, Et 2 1 s 2 7 LAH, Et 2 1 H H 6 2 + 1 H H 5 2 Sharpless, K. B.; Patrick, D. W.; Truesdale, L. K.; Biller, S. A. J. Am. Chem. Soc. 1975, 97, 2305-2307.

H t-butylamine as itrogen Source for Aminohydroxylation lefin Amino alcohol Solvent % yield % yield Amino alcohol Diol 1- Decene ( ) 62 6 7 Pyridine 78 1 HtBu CH 2 Cl 2 Me tbuh H Me CH 2 Cl 2 Pyridine 0 38 78 45 E-5- Decene HtBu ( ) 3 ( ) 3 CH 2 Cl 2 Pyridine > 20 50 (threo) > 95 < 3 H Z-5- Decene HtBu ( ) 3 ( ) 3 H CH 2 Cl 2 Pyridine 0 53 25 42 C - bond is formed at the least substituted carbon Diol formation is more prominent in the sterically hindered system Pyridine increases aminoalcohol:diol ratio and rate of the reaction trans-lefins give better results than cis olefins Sharpless, K. B.; Patrick, D. W.; Truesdale, L. K.; Biller, S. A. J. Am. Chem. Soc. 1975, 97, 2305-2307.

Solvent Effect on Aminohydroxylation eaction 1. s, solvent H H H + H A 2. LAH B C Solvent CH 2 Cl 2 % yield (B) % yield (C) 37 trace t-buh THF Pyridine 52 64 92 < 1 < 1 < 1 The rate of reaction and yield increase with the increase in coordination ability of the solvent. Sharpless, K. B.; Patrick, D. W.; Truesdale, L. K.; Biller, S. A. J. Am. Chem. Soc. 1975, 97, 2305-2307.

Proposed Mechanism of Aminohydroxylation of lefins +L s s s -L [2+2] cycloaddition L L 1 2 3 H H LAH s L 5 4

Two major limitations: Stoichiometric amount of smium reagent tert-butyl group is difficult to remove from the product Catalytic dihydroxylation reaction s s acl s H 2 H Catalytic aminohydroxylation reaction s ' s ' a ' Cl s ' ' H H 2 H 'H

1976 Trihydrate of Chloramine-T as Source s 1 TsCla 3H 2 Ts s 2 TsCla 3H 2 + 1% s 4 t-buh, 60 o C H TsH = CH 3 (CH 2 ) 3 In some cases Cl - inhibit the rate of reaction: Ag 3 addition ase transfer catalysis (1:1 benzene/h 2 + Et 3 BzCl) cis lefins give good yields along with trans olefins. Sharpless, K. B.; Chong, A.., shima, K. J. rg. Chem. 1976, 41, 177-179.

Proposed Mechanism of Catalytic Aminohydroxylation s 1 - a + Ts Cl s - Ts Cl H 2 Ts s Ts 6 H TsH acl s Ts 2 s 3 Ts acl Cl Ts s Ts 5 s a Ts Cl Ts 4

1978 -Chloro--Argento Carbamates as Source t-bucl, ah Bn Bn H 2 MeH 1 2 a + - Cl Ag Ag + 3 - Bn CH 3 C Cl 3 H Ag + 0.01 mmol s 4 + - Bn 4.5 mmol H 2 H Cl 3 4 CH 3 C Bn 5 59 % yield Benzyloxycarbonyl group is relatively easily removable protecting group cis lefins give good yields along with trans olefins Herranz, E.; Biller, S. A.; Sharpless, K. B. J. rg. Chem. 1978, 100, 3596-3598.

Effect of Excess Metallic Salt and Et 4 Ac in Aminohydroxylation of lefins ( ) 3 ( ) 3 BnC()Cla s 4, CH 3 C H ( ) 3 ( ) 3 HCbz 1 2 eagent atio xn time (h) eactivity BnC()Cla + Ag 3 1.5 : 1.5 80 BnC()Cla + Ag 3 1.5 : 3.0 60 BnC()Cla + Ag 3 + Et 4 Ac 1.5 : 1.5 : 1 18 ICEASE BnC()Cla + Hg( 3 ) 2 1.5 : 0.75 24 BnC()Cla + Hg( 3 ) 2 1.5 : 1.5 12 BnC()Cla + Hg( 3 ) 2 + Et 4 Ac 1.5 : 0.75 : 1 8 Herranz, E.; Sharpless, K. B. J. rg. Chem. 1979, 45, 2710-2713.

Chiral Ligands for Asymmetric Aminohydroxylation (AA) 1980 Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263-4265. (l)-2-(2-menthyl pyridine) Et Ac H Me Dihydroquinidine acetate Et H Ac Me Dihydroquinine acetate 1996 Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 451-453. H Et Et H Me Me Et H Et H Me (DHQD) 2 PHAL (DHQ) 2 PHAL

Chloramine-T as Source for AA C 2 CH 3 3eq. S _ a + Cl HS 2 p-tol C 2 CH 3 H C 2 CH 3 =, CH 3, C 2 CH 3 (DHQ) 2 PHAL (5%) K 2 s 2 (H) 4 (4%) CH 3 C/H 2 (1:1) rt, 3 h H 74-81% ee 52-65% yield HS 2 p-tol Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 451-453.

Chloramine-M as Source for AA H 3 C S H 2 t-bucl, ah MeH H 3 C 1 2 S a + Cl HS 2 CH 3 C 2 CH 3 3 eq. 2 C 2 CH 3 (DHQ) 2 PHAL (5%) K 2 s 2 (H) 4 (4%) nprh/h 2 (1:1) rt, 3 h H A 95% ee, 65% yield H C 2 CH 3 HS 2 CH 3 B A/B 9:1 All the hydroxysulfonamides obtained from Chloramine-M are crystalline solids Methanesulfonamide is soluble in water Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 2810-2812.

Chloramine-T/M as Source for AA Z=p-tol-S 2 - Substrate Product %ee Yield HZ C 2 Me C 2 Me 81 64% a H Z=Me-S 2 - %ee Yield 95 65% b Me 2 C C 2 Me Me 2 C HZ C 2 Me H 77 65% 95 76% HZ H 62 52% 75 71% a) egioselectivity 5:1, b) egioselectivity 9:1. Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 451-453 and 2810-2812.

-Halo Carbamate as Source for AA H 2 t-bucl, ah nprh 1 2 a + Cl HCbz 2 H (DHQ) 2 PHAL (5 mol%) 3 K 2 s 2 (H) 4 (4 mol%) 4 nprh/h 2 (1:1) 60% yield Cbz = BnC() 90% ee Benzyloxycarbonyl is a relatively easily removable protecting group. Styrene type olefins give good results along with other olefins.. Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 2810-2812.

Halocarbamate as Source for AA a + Cl H C 2 CH C 2 CH 3 3 (DHQ) 2 PHAL (5 mol% ) K 2 s 2 (H) 4 (4 mol%) nprh/h 2 (1:1) = Bn, Et H Major Isomer H H C 2 CH 3 %ee Yield Et 99 78% Bn 94 65% Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 2810-2812.

-Halo-t-butylcarbamate as Source for AA Bn t-bu _ a + Cl K 2 s 2 (H) 4 (4 mol%) Bn (DHQ) 2 PHAL (5 mol%) n-prh/h 2 (1:1) 20 o C, 1h. Ht-Boc H + Bn Low Yield H Ht-Boc + Bn H Substantial amount H t-bu _a + Bn K 2 s 2 (H) 4 (4 mol%) (DHQ) 2 PHAL (6 mol%) Bn n-prh/h 2 (2:1) 0 o C, 1h. Cl Ht-Boc H For t-boc protected vicinal aminoalcohol formation: nprh/h 2 (2:1) ratio is lower than usual (1:1) Lower temperature (0 o C) Ligand concentration is higher A + Bn 68% yield 87:13 (A/B) 99%ee (A) H B Ht-Boc K. L. eddy, Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 1207-1217.

HMe3Si -Chloro--Sodio-2-Trimethyl Silyl Carbamate (Teoc) as Source Me 3 Si Cabonyldiimidazole aq. H 3, benzene H 2 t-bucl, ah, nprh Me 3 Si _ a + Cl Me 3 Si -a + Cl HTeoc H + H HTeoc K 2 s 2 (H) 4 nprh/ H 2 (1:1) (DHQ) 2 PHAL A 76% yield 97% ee 86:14 A/B B Trimethyl silyl carbamate is easily removable protecting group good regioselectivity, enantioselectivity styrene type olefins gives good yields eddy, K. L.; Dress, K..; Sharpless, K. B. Tetrahedron Lett.,1998, 39, 3667-3670.

Primary Amides as Source for AA of lefin ' H 2 DBI CH 2 Cl 2 ' HBr ipr + ' = Pr, ClCH 2, CH 2, X, HBr K 2 s 2 (H) 4 (4.4 mol%) (DHQ) 2 PHAL (4.0 mol%) ' H LiH (1.3 eq.) ipr t-buh/h 2 (2:3) H 0 o C-10 o C 38-94% yield 77-95% ee 2.0:1-23:1 regioselectivity Demko, P. Z.; Bartsch, M.; Sharpless, K. B. rg. Lett. 2000, 2, 2221-2223.

Steric, Electronic and Aromatic Substituent Effect on the egioselectivity 2 AcaBr 1 (DHQD) 2 PHAL (5%) K 2 s 2 (H) 4 (4%) t-buh/h 2 (2:3) HAc 2 + 2 1 1 A H H B HAc Entry 1 2 3 4 5 6 1 = H Et H Me H Me 2 = Si t-bu() 2 Et Me A/B >20:1 2:1 15.2:1 1.4:1 1.2:1 1:3.2 Han, H.; Cho, C.; Janda, K. D. Chem. Eur. J. 1999, 5, 1565-1569.

Steric and Aromatic Substituent Effect on the egioselectivity 1 2 AcaBr (DHQD) 2 PHAL (5%) K 2 s 2 (H) 4 (4%) t-buh/h 2 (2:3) 1 HAc A H 2 + 1 H 2 HAc B Entry 1 2 3 4 1 = TBDPS t-butyl TBDPS TBDPS 2 = p-methoxybenzoyl 2-naphthoyl (2-naphthyl)methyl B/A 11.9:1 14.2:1 20:1 3:1 Han, H.; Cho, C.; Janda, K. D. Chem. Eur. J. 1999, 5, 1565-1569.

1 Steric, Electronic and Aromatic Substituent Effect on the egioselectivity HAc H AcaBr 2 1 1 2 (DHQD) 2 PHAL (5%) 2 + K 2 s 2 (H) 4 (4%) H HAc t-buh/h 2 (2:3) A B Entry 1 2 3 4 5 6 1 = benzyl p-methoxybenzoyl (2-naphthyl)- methyl t-butyl TBDPS TBDPS 2 = ethyl p-methoxybenzyl (2-naphthyl)- methyl A/B 20:1.0 2.4:1.0 4.3:1.0 1.0:1.5 1.0:6.0 1.0:17.0 Han, H.; Cho, C.; Janda, K. D. Chem. Eur. J. 1999, 5, 1565-1569.

eversal of egioselection in the AA of Cinnamates by AQ and PHAL Ligands HCbz H C 2 CH 3 CbzCla (3 eq.) C 2 CH 3 C 2 CH 3 (DHQ) 2 PHAL (5%) K 2 s 2 (H) 4 (4%) n-prh/h 2 (1:1) rt, 3 h H A 7:1 A/B HCbz B 94% ee 65% yield HCbz C 2 CH 3 CbzCla (3 eq.) C 2 CH 3 H C 2 CH 3 = H, F, Cl, Br, Me Me. (DHQ) 2 AQ (4%) K 2 s 2 (H) 4 (4%) n-prh/h 2 (1:1) rt, 3 h H A 1:3-4 A/B HCbz B 89-95% ee 51-67% yield Tao, B.; Schlingloff, G; Sharpless, K. B. Tetrahedron lett. 1998, 39, 2507-2510

Et H Me Et H Me (DHQ) 2 AQ Et H Me Et H Me (DHQ) 2 PHAL

eversal of egioselection in the AA of Cinnamates of Aryl Ester Substrate Ar CBzCla (3 eq.) (DHQ) 2 AQ (5%) K 2 s 2 (H) 4 (4%) n-prh/h 2 (1:1) rt CbzH H A Ar HCbz Ar H B Entry 1 2 3 4 5 6 7 8 9 Ar: = H Me Me Br Cl F C 2 I A/B Yield % ee % 1:1 1:4 1:5 1:7 1:5 1:3 1:1.4 51 53 55 60 58 59 50 - - 10 16 30 87 89 96 3 - - Morgan, A. J.; Masse, C. E.; Panek, J. S. rg. Lett. 1999, 1, 1949-1952.

AA of Silyl Enol Ether TMS s 4, Chloramine-T t-buh/h 2, 1:1 HTs =CH 3, t-butyl (DHQD) 2 CLB (DHQD) 2 PY 72-92% ee 35-40% yield ukhan, P.; Sudalai, A. Tetrahedron: Asymmetry 1998, 9, 1001-1005. AA of Unsaturated osphonates =, P Et Et 3 eq. 'Cl a 5% (DHQ) 2 PHAL 4% K 2 s 2 (H) 4 1:1 CH 3 C/H 2 'H H P Et Et 32-53% yield 93-98% ee a) MsCl, TEA CH 2 Cl 2, -10 o C b) K 2 C 3, DMF Thomas, A. A.; Sharpless, K. B. J. rg. Chem. 1999, 64, 8379-8385. P C 2 Et Et Et

AA of Vinyl Furan H HCbz Furanyl glycine aminoacid CbzCla 1 mol% s 4 1.2 mol% (DHQ) 2 PHAL aq. t-buh steps H HCbz steps H HCbz 42% yield 86% ee steps H H H H H Aza sugars H H HCbz Serine Aminoacid 'Doherty, G. A.; Bushey, M. L.; Haukaas, M. H. J. rg. Chem. 1999, 64, 2984-2985.

Use of AA in the Synthesis of di--tbdms B[a]P DE-1 da c Diastereoisomers TBDMS TBDMS TBDMS H H TBDMS H H H H H H TBDMS cis opening TBDMS cis opening H 2 H H H H B[a]P DE-1 diastereoisomers Pilcher, A. S., Yagi, H.; Jerina, D. M. J. Am. Chem.Soc. 1998, 120, 3520-3521.

Conventional Method H H BA, base ah, TMSCl 1 2 H H TMS TMS 3 1. TMS 3 2. TBAF H H 2 H 2, 10% Pd/C H 3 3 H H H 6 da-f H + H H 4 H 5 90% yield trans opened cis opened H H da H 8 TBS TBS = da di--tbdms B[a]P DE-1 da c Pilcher, A. S; Yagi, H.; Jerina, D. M. J. Am. Chem. Soc. 1998, 120, 3520-3521.

AA Approach towards di--tbdms B[a]P DE-1 da c Diastereoisomers TBDMS H 2 TBDMS 1 t-bucl, nprh ah, 25 o C TBDMS Cl - a+ TBDMS 2 H 10% (DHQD) 2 PHAL H 8% K 2 s 2 (H) 4 3 H 2 -propanol, 3h, rt. 2 TBDMS TBDMS H H TBDMS + TBDMS H H H H A 85% yield 1:1 A/B H H B Pilcher, A. S., Yagi, H.; Jerina, D. M. J. Am. Chem.Soc. 1998, 120, 3520-3521.

Use of AA in Synthesis of (+)-Lactacystin H 2 C 1 Me 7 6 H 5 H 9 S 3 HAc Me 2 C H xazoline (+)-Lactacystin Isolated from a streptomyces bacterial strain in 1991 Potent activities against arthritis, ischemia and asthma. Panek, J. S.; Masse, C. E. Angew. Chem. Int. Ed. 1999, 38, 1093-1095.

Panek's Approach towards xazoline Me 2 C xazoline Br K 2 s 2 (H) 4 (4 mol%) (DHQ) 2 -AQ (5 mol%) H HCbz CbzCla, nprh/h 2 H Br rt, 4h, 60% 87% ee, 7:1 regioselectivity 1. Ti(iPr) 4 / MeH, rt. 2. H 2, 10% Pd/C, MeH 100%, 2 steps C(Me) 3 p-tsh/dme reflux, 4h 85% H 2 Me Panek, J. S.; Masse, C. E. Angew. Chem. Int. Ed. 1999, 38, 1093-1095.

Use of AA in the Synthesis of Azepine Core of (-) Balanol H H C 2 H H H H H Isolated from the fungus Verticillium balanoides in 1993. Potent inhibitor of human protein kinase C (PKC) Panek, J. S.; Masse, C. E. rg. Lett. 2000, 2, 2571-2573.

etrosynthetic Analysis of (-) Balanol H H Cl H H (-)-Balanol (1) Ar=p-bromophenyl H C 2H Ar H AA H 2 H H 2 H 2 Hexahydroazepine fragment Cyclization eduction H H 2 H (2S,3)-Hydroxylysine Panek, J. S.; Masse, C. E. rg. Lett. 2000, 2, 2571-2573.

Synthesis of Azepine Fragment of (-) Balanol Cl H DMS/(CCl) 2 Et 3, -78 o C Cl H (Et) 2 P ah/ TH,F 0 o C 90% Br 5 Cl H H 2 6 a 3, DMF rt, 2 days Br K 2 s 2 (H) 4 (4 mol%) (DHQD) 2 -AQ (5 mol%) Cbz-aCl, nprh/h 2 rt, 53% yield 82% ee > 20:1 regioselectivity Cl 4 Br Br H 3 H 2 7 Panek, J. S.; Masse, C. E. rg. Lett. 2000, 2, 2571-2573.

Synthesis of Azepine Fragment of (-)-Balanol 3 H H 2 Br 1. H 2,10% Pd/C, MeH 2. i. LiH, THF/H 2 (1:1) ii. 1 HCl 98%, 2 steps H 2 H H H 2 i. HMDS/ xylene reflux ii. 2-propanol H BH 3 THF H H H 2 THF, reflux, 18h 50%, 2 steps Azepine fragment H H 2 Panek, J. S.; Masse, C. E. rg. Lett. 2000, 2, 2571-2573.

Use of AA in Synthesis of Cyclohexyl norstatin, a key Component of Tripeptide KI 1314 H H H H C 2 ipr H 2 H C 2 H KI - 1314 Cyclohexyl norstatin Isolated in 1988 Potent renin inhibitor and hence potential agent of antihypertensive therapy Upadjua, T. T.; Sudalai, A. Tetrahedron:Asymmetry 1997, 21, 3685-3689.

Synthesis of Cyclohexyl norstatin H CH BH 3 DMS, THF (Et) 2 P()CH 2 C 2 Et C 2 Et ah, 30% H 2 2 H 2 C 2 H H Cyclohexyl norstatin ah, Benzene 6 HCl s 4 (DHQ) 2 PHAL Chloramine-T t-buh/h 2 (1:1) 10h, rt HTs H C 2 Et Upadjua, T. T.; Sudalai, A. Tetrahedron:Asymmetry 1997, 21, 3685-3689.

Use of AA in the Synthesis of Taxol Side Chain H H H H H Taxol side chain Paclitaxel Bruncko, M.; Schingloff, G.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1997, 36, 1483-1486.

Use of AA in the Synthesis of Taxol Side Chain ipr AcHBr (1.1 eq.) LiH (1.07 eq.) K 2 s 2 (H) 4 (DHQ) 2 PHAL HAc H ipr 10% HCl 100 o C, 4h H 2 H H 68% yield 99% ee Et H Me Et H Me H BzCl, 2 ah H 2 (DHQ) 2 PHAL H H 65% Taxol side chain Bruncko, M.; Schingloff, G.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1997, 36, 1483-1486.

Conclusions Using AA, alkenes can be converted to enantiomerically enriched -protected amino alcohols. a, b-unsaturated esters, styrenes, vinylarenes and cyclohexenes are good substrates for AA. sources with smaller substituent give higher yields and better enantioselectivity. Steric, electronic, and aromatic substituent effects can be used to influence the regiochemistry in AA. (DHQ) 2 PHAL and (DHQ) 2 AQ ligands give opposite regioselectivity.