Optimization of Reinjection Allocation in Geothermal Fields Using Capacitance-Resistance Models



Similar documents
BS PROGRAM IN PETROLEUM ENGINEERING (VERSION 2010) Course Descriptions

Objectives. Describing Waterflooding. Infill Drilling. Reservoir Life Cycle

Graduate Courses in Petroleum Engineering

Copyright by Fei Cao 2014

Copyright. Morteza Sayarpour

DISCLAIMER: This document does not meet the current format guidelines of. the Graduate School at. The University of Texas at Austin.

Analysis and Calculation Method for Automatic Water Flooding Technology

Enhanced Oil Recovery (EOR) in Tight Oil: Lessons Learned from Pilot Tests in the Bakken

The ever increasing importance of reservoir geomechanics

Search and Discovery Article #40256 (2007) Posted September 5, Abstract

COAL-SEQ PROJECT UPDATE: FIELD STUDIES OF ECBM RECOVERY/CO 2 SEQUESTRATION IN COALSEAMS

Investigation of the Effect of Dynamic Capillary Pressure on Waterflooding in Extra Low Permeability Reservoirs

Comparison Between Gas Injection and Water Flooding, in Aspect of Secondary Recovery in One of Iranian Oil Reservoirs

Step Rate Testing: Determining Fracture Pressure for Injection Wells 2016 UNDERGROUND INJECTION CONTROL CONFERENCE DENVER, CO LEWIS WANDKE, PE

DEPARTMENT OF PETROLEUM ENGINEERING Graduate Program (Version 2002)

Towards an Ontology Driven EOR Decision Support System

4D reservoir simulation workflow for optimizing inflow control device design a case study from a carbonate reservoir in Saudi Arabia

Nautilus Global Schedule 2016

Is Practical Reservoir Simulation an Oxymoron?

EVALUATION OF WELL TESTS USING RADIAL COMPOSITE MODEL AND DIETZ SHAPE FACTOR FOR IRREGULAR DRAINAGE AREA. Hana Baarová 1

RESERVOIR GEOSCIENCE AND ENGINEERING

ARTIFICIAL INTELLIGENCE SELECTION WITH CAPABILITY OF EDITING A NEW PARAMETER FOR EOR SCREENING CRITERIA

Integrated Reservoir Asset Management

Chapter 1 Introduction

Deep Geothermal energy and groundwater in

How To Test A123 Battery Module #5

Well Test Analysis in Practice

Certificate Programs in. Program Requirements

P-83 Lawrence Berkeley National Laboratory High-Resolution Reservoir Characterization Using Seismic, Well, and Dynamic Data

Search and Discovery Article #40356 (2008) Posted October 24, Abstract

Reservoir Simulation

APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY CURVE ON HYPOTHETICAL WELL-X

RPSEA Project Management Plan

AT&T Global Network Client for Windows Product Support Matrix January 29, 2015

Remediation Services & Technology

Geothermal Reservoir Modelling: Uses and Limitations. John O Sullivan, Engineering Science University of Auckland, New Zealand

PRELIMINARY REPORT ON THE NORTHSTAR #1 CLASS II INJECTION WELL AND THE SEISMIC EVENTS IN THE YOUNGSTOWN, OHIO AREA

Waterflooding. A Tried and True Technique for Secondary Oil Recovery. Houston Bar Association Oil, Gas and Mineral Law Section March 26, 2013

Specialist Reservoir Engineering

Recurrent Neural Networks

The material of which a petroleum reservoir. Effects of the Workover Fluid on Wellbore Permeability. t e c h n o l o g y

A Mathematical Model for Online Electrical Characterization of Thermoelectric Generators using the P-I Curves at Different Temperatures

Pattern Recognition and Data-Driven Analytics for Fast and Accurate Replication of Complex Numerical Reservoir Models at the Grid Block Level

Gas Well Deliverability Testing

Case 2:08-cv ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138. Exhibit 8

KOMAR UNIVERSITY OF SCIENCE AND TECHNOLOGY (KUST)

On the Impact of Oil Extraction in North Orange County: Overview of Hydraulic Fracturing

Present status and future development possibilities of Aydın-Denizli Geothermal Province

SPE Life beyond 80 A Look at Conventional WAG Recovery beyond 80% HCPV Injection in CO2 Tertiary Floods David Merchant, Merchant Consulting

In Development. Shale Liquids Production Analysis. Value. Key Deliverables. Principal Investigator: Investment per Sponsor $52K (USD)

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*

Integration of reservoir simulation with time-lapse seismic modelling

Geothermal. . To reduce the CO 2 emissions a lot of effort is put in the development of large scale application of sustainable energy.

ABSTRACT- We developed GEOBASE, a prototype version of a user-friendly, integrated software package for storage, processing

Insert your University Logo

Monterey Shale Potential

Using Metric Space Methods to Analyse Reservoir Uncertainty

72-2 Sasamori, Ukai, Takizawa-mura, Iwate , JAPAN (original affiliation : Japan Metals and Chemicals Co., Ltd.)

An Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices at the Henry Hub

Maximizing volume given a surface area constraint

Special cases in Transportation Problems

Diagnostic Fracture Injection Tests (DFIT ) in Ultra Low Permeability Formations

Analysis of Oil Production Behavior for the Fractured Basement Reservoir Using Hybrid Discrete Fractured Network Approach

Airport Planning and Design. Excel Solver

Assessment of groundwater inflow into a metro tunnel (Ankara)

Industry Environment and Concepts for Forecasting 1

The Second Law of Thermodynamics

CCS Risk Analysis. Vanessa Nuñez Lopez. CEPAC - CSLF Capacity Building Workshop Porto Alegre, Brazil July 30 Aug 3, 2012

Reservoir Characterization and Initialization at Little Mitchell Creek

Society of Petroleum Engineers SPE Global Training Committee Training Course Review Process

Modeling and Simulation Design for Load Testing a Large Space High Accuracy Catalog. Barry S. Graham 46 Test Squadron (Tybrin Corporation)

Climate, Drought, and Change Michael Anderson State Climatologist. Managing Drought Public Policy Institute of California January 12, 2015

Making the Leap from Self- Employed to Employer? What matters capital, labor, or training?

Methodology For Illinois Electric Customers and Sales Forecasts:

Introduction. The following is an outline of the contents of this paper: Definition of Artificial Lift Page 2. How an Oil Well is Produced Page 2

Statistics. Measurement. Scales of Measurement 7/18/2012

Alberta Research Council (ARC) Enhanced Coalbed Methane (ECBM) Recovery Project in Alberta, Canada

How To Calculate The Power Gain Of An Opamp

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate

Renewable Energy from Depleted Oil Fields using Geothermal Energy. Ramsey Kweik Southern Methodist University Geothermal Lab

Geomechanical Effects of Waterflooding

3 rd Party Solar Sales April 2012

PALEOENVIRONMENTS OF THE LAKE BALATON AREA

PAKISTANI PROFESSIONAL DEGREE B.E. (PETROLEUM & Natural GAS) with 1 st Class-1 st Position, 1991 Ph.D in PETROLEUM ENGINEERING, 2008 INSTITUTE:

New York s Upstate Nuclear Power Plants Contribution to the State Economy

Follow links Class Use and other Permissions. For more information, send to:

Thermal Mass Availability for Cooling Data Centers during Power Shutdown

MODELING, SIMULATION AND DESIGN OF CONTROL CIRCUIT FOR FLEXIBLE ENERGY SYSTEM IN MATLAB&SIMULINK

EARTHQUAKE PREDICTION

STATUS REPORT FOR THE SUBMERGED REEF BALL TM ARTIFICIAL REEF SUBMERGED BREAKWATER BEACH STABILIZATION PROJECT FOR THE GRAND CAYMAN MARRIOTT HOTEL

1. Michigan Geological History Presentation (Michigan Natural Resources)

Grade 6 Math Circles. Binary and Beyond

Figure 2-10: Seismic Well Ties for Correlation and Modelling. Table 2-2: Taglu Mapped Seismic Horizons

Covariance and Correlation

CHAPTER ONE INTRODUCTION

APPLICATIONS OF REAL-TIME WELL MONITORING SYSTEMS

STAFF ANALYSIS OF THE WHITE ROSE PRODUCTION VOLUME INCREASE DEVELOPMENT PLAN AMENDMENT APPLICATION

ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY

Transcription:

PROCEEDINGS, Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 24-26, 214 SGP-TR-22 Optimization of Reinjection Allocation in Geothermal s Using Capacitance-Resistance s Serhat Department of Petroleum & Natural Gas Engineering, Middle East Technical University, Ankara - Turkey serhat@metu.edu.tr Keywords: Capacitance resistance model, reinjection allocation, optimization ABSTRACT Reinjection of produced geothermal water for pressure support is a common practice in geothermal field management. The reinjection allocation and location selection of the reinjection wells are challenging subjects for geothermal reservoir engineers. The goal of optimization for this type of problem is usually to find one or more combinations of geothermal reinjection well locations and rates that will maximize the production and the pressure support at minimum cost. A simple capacitance-resistance model (CRM) that characterizes the connectivity between reinjection and production wells can determine an injection scheme that maximizes the sustainability of the geothermal reservoir asset. A CRM model is developed for a geothermal reservoir located in West Anatolia, Turkey. It has been demonstrated that this simple dynamic model provides an excellent match to historic data. The developed model is then used together with a nonlinear optimization algorithm to study several hypothetical scenarios. 1. INTRODUCTION Geothermal reinjection involves injecting energy-depleted fluid back into the geothermal reservoir. It is an integral part of sustainable geothermal projects. Reasons for reinjection include remediation of production induced pressure drawdown, mitigation of subsidence, as well as waste-water disposal for environmental reasons. Reinjection is either applied peripheral to production area in high permeable systems or inside or near the reservoir production zone in somewhat limited permeability reservoirs. Cooling of production wells is one of the problems associated with reinjection that can be prevented or minimized through careful testing and reservoir management practices. Typically, tracer testing combined with reservoir simulation modeling is used predict reinjection induced cooling. Formal optimization strategies normally evaluate hundreds or even thousands of scenarios in the course of searching for the optimal solution to a given management question. This process is extremely time-consuming when numeric simulators of the subsurface are used to predict the efficacy of a scenario. One solution is to use a mathematical proxy or surrogate such as trained artificial neural networks (ANNs) to stand in for the simulator during the course of searches directed by some optimization technique (, 8). Capacitance-resistance modeling of petroleum reservoirs has been used successfully to analyze transient behavior of petroleum reservoirs in the past (Albertoni and Lake, 3; Nguyen et al, 211; Sayarpour et al, 7; Sayarpour, 8; Weber et al, 9; Yousef et al, 6). The capacitance-resistance model derived from a continuity equation is an input-output model concentrated on describing the relationships between injectors and producers by modeling total fluid production from the reservoir. Typically, only observed injection rates and total production rates are required to history match the model and obtain a representation of these relationships. As opposed to numerical simulation models based on finite difference techniques, the capacitance-resistance model does not attempt to divide the reservoir into smaller parts resulting in fewer parameters that are necessary to specify the model. In this study, use of capacitance resistance models is proposed for reinjection allocation in a geothermal reservoir where several potential reinjection well locations have been already identified. First capacitance resistance models are introduced. Then a field example is used to demonstrate the uses and advantages of the proposed methodology. Finally, the capacitance resistance model is used to optimize reinjection using several scenarios. 2. MODEL The foundation of the capacitance resistive models relies on the material balance equation that includes total compressibility effect for a given reservoir control volume. The control volume represented as the drainage volume between an injector-producer pair is shown in Figure 1. The governing equation of the total fluid production for the control volume can be obtained as (Yousef et al., 6); ( ) ( ) ( ) ( ) (1) In this equation q ij (t) represents the part of total production in producer j that is supported by injector i at time t, ij represents the time constant associated with the drainage volume between the injector i and producer j, J ij is the productivity index associated by the partial production q ij (t). Assuming that part of the total field injection may either be lost from the reservoir (not contributing to total fluid production) or be supplemented by injection outside of the control volume (as an aquifer may drive production), one may modify the total injection rate I by the factor f, which leads to the effective injection rate, f I (t), in the material balance. Integrating this equation over discrete time period t, it is possible to obtain q ij (t), if injection rates are constant and bottom-hole pressures in all wells are linearly changing. 1

I i (t) q j (t) f ij (t) ij Fig. 1. Schematic representation of the drainage volume between an injector and a producer used by the model. ( ) ( ) ( ( ) ) (2) Where f ij is connectivity or gain between injector i and producer j. Physically, the connectivity f ij represents the steady-state fraction of water injected in injector i that contributes to production of water in producer j. It is then possible to obtain to get an expression for the total production in producer j by summing up this equation over the injector index i. [ ( ) ( ) ( ( ) )] (3) In the absence of bottom-hole pressure data and if it is assumed that the flowing bottom-hole pressure is constant the following equation can be obtained. [ ( ) ( ) ] (4) The objective function is as follows: ( ) (5) In this equation is the calculated production rate of producer j at the time step k. This equation needs to be solved by a minimization algorithm subject to the material balance constraint that requires solving for all parameters (the connectivity and the time constants) for all producers (n p ) at the same time for a total number of n t historic time periods. (6) The time constant parameter (τ j ) reflects the sensitivity of a producer to the changing injection rates at different injectors. For a small pore volume and compressibility or a large productivity index, time constant is small. Any change in the injection rates will affect the flow rates at producers. On the other hand, for large total compressibility or very low permeability, time constant will be large. In this case producers are not significantly affected by injection changes at the injectors. This model attempts to simulate a dynamic system with parameters that are not time dependent. This will create a problem if the geothermal reservoir parameters (i.e. permeability) are changing via chemical reactions such as dissolution and deposition. One other drawback of the model is temporary or permanent shut-in periods since the model considers every measured rate, regardless of its magnitude, is a physical result of injection elsewhere in the reservoir. If a production well is shut in, calculated connectivity of the corresponding well will be less than what it should be. In other words, water is not injected to the reservoir that would otherwise account for measured production to account for the zero production in given time periods. A similar effect occurs when unusually large or small productions are observed. A small production may reflect partial production due to, for example, mechanical problems. Whatever the reason, the presence of outliers in the measured rate data can strongly influence the resulting model fits. RESULTS & DISCUSSIONS The advantages and the disadvantages of the proposed model are evaluated using data from a field located in Buyuk Menderes Graben, Turkey. The field was discovered in 1967 and nine wells were drilled between 1982 and 1986. After that 5 additional production and 4 additional injection wells were drilled till 8. The static bottom-hole temperatures of these wells change between 23 C and 232 C. There are two reservoirs in the field. The deepest reservoir is composed of Paleozoic aged metamorphics mainly composed of fractured gneiss, karstic marble and schist, whereas the shallow reservoir is composed of Miocene to Pliocene aged sandstones and conglomerates. Pressure falloff and buildup tests provided a range of permeabilitythickness from a moderate 34, md-feet in the vicinity of Well #8 to high level of 58, md-feet in the vicinity of Well #9. Since the reservoir thickness is relatively large (>6 m), this translates into a relatively low bulk permeability with localized high permeability corresponding to fractures. The reservoir is well connected and all of the participating production (Wells #5, #6, #8, #1, #11, #14, #17, and #19), injection (Wells #3, #8, #9, #22, #24, #25, and #26) and monitoring wells (Well #7) are completed in the same reservoir (Fig. 2). (7) 2

6 25 24 9 26 23 22 11 1 4 5 2 3 12 8 1 7 16 14 17 19 Fig. 2. Production and reinjection well locations. The proposed methodology described in the previous section has been applied to production and injection data using an Excel spreadsheet. The data used to demonstrate the use of CRM model consisted of field injection and production data between March 9 and August 21. The nonlinear Generalized Reduced Gradient algorithm optimization function in Excel was used and the results summarized in Table 1 and shown in Figure 3 through Figure 1 were obtained. In all wells a pretty good match was obtained. The CRM model slightly underestimated the production observed in Well #6 (Fig. 4) and Well #14 (Fig. 8). The time constants inferred from the optimization results show that the highest permeability is around Well #14 followed by wells #8, #6, #11, #5, #1, #17, and #19 (Table 1). As discussed in the preceding section, when the time constant of a producer is small any change in the injection rates will affect the flow rate at producers. When the gains calculated by the model are analyzed, it was found that 77.5% of the re-injected water into Well #3 travelled towards Well #6. Although other production wells are located somewhat closer compared to Well #6 (see Fig. 2) it looks like the east - west trending fault is the controlling factor. Similarly Well #8 mainly fed Well #11, #6 and #5 more than the other injectors possibly through a north south fault system. The largest gain (.992) was observed between Well #14 and Well #26 through the major fault passing across the field in east - west direction. Most of the re-injected water that is coming from injectors located in east to south east of the field flowed towards Well #14. Well #8 was used as an injector for 4 months and changed to a producer later on. That s why the corresponding gain is taken as zero. Well #17 and Well #19 seem to receive little or no support from the injectors suggesting that either the test time is not long enough to see the injectors effect or due to high production of Well #14 these wells are getting limited support. Nevertheless, the estimated gains obtained from CRM are consistent with the geology of the field. Table 1. Injector producer connectivity (f ij ) results. Producer / 5 6 8 1 11 14 17 19 Injector τ j (hours) 44747.77 1977.1 1311.2 133927 1198 323.32 278365 62854 3..775.8...145.. 8.269.32 -..417..1. 9.4.465.12..41..1. 22.2.55.53..2.888.. 24.1.417.37...545.. 25.56.464.74..27.199.1. 26.4...3..992.. 35 295 29 285 28 275 27 265 26 255 Figure 3. CRM fit for Well #5. 3

4 39 38 37 36 35 34 33 32 31 Figure 4. CRM fit for Well #6. 15 1 5 Figure 5. CRM fit for Well #8. 41 39 37 35 33 31 29 27 Figure 6. CRM fit for Well #1. 34 32 28 26 24 22 Figure 7. CRM fit for Well #11. 4

8 7 6 5 4 1 Figure 8. CRM fit for Well #14. 4 35 15 1 5 Figure 9. CRM fit for Well #17. 35 15 1 5 Figure 1. CRM fit for Well #19. verification and reinjection allocation scenarios The developed CRM is compared to actual data (i.e. the data that has not been used during model calibration) consisting of 3 years of production and injection data. The injection data is used in CRM together with the time constants and the gains to calculate the production in individual production wells. An excellent agreement has been observed both in well and field production (Fig. 11). Thus, it can be concluded that the characteristics of this geothermal reservoir can be inferred from analyzing production and injection data only. Several scenarios were generated to optimize reinjection allocation in this field. Scenarios were developed in such a way that physical limits of the injection and production wells were considered. In the first scenario, Well #8 and Well #8 were stopped and the reinjection was equally distributed among the wells located in east and south east reinjection wells (Well #23, Well #24, Well #25, and Well #26). In the second scenario, injection from east and south east of the field was considered (no injection from Well #3, Well #8, and Well #9). The third scenario was a variant of 2 nd scenario such that same wells were used for reinjection but Well #25 and Well #26 received the majority of reinjection. In the final scenario, the reinjection in east and south east wells (Well #23, Well #24, Well #25, and Well #26) was reduced (%25) and this amount was distributed equally to Well #3, Well #8, and Well #9. The best result was obtained with Scenario 2 followed by Scenario 1 and Scenario 3. In general, it was observed that increasing the reinjection of high gain injection-production well pairs has a beneficial effect on production. This is probably related to the geology of the field such that the injection wells that are located in the lower half of the field where the east west trending faults control the flow support the production wells more than the others. On the other hand, increasing reinjection from wells that are somewhat closer to the middle of the field has a negative effect on production. 5

2,65 2,45 History Verification Prediction 2, 2,5 1,85 Injection Production 1,65 1,45 Feb-8 Jul-9 Nov-1 Apr-12 Aug-13 Dec-14 May-16 Sep-17 Figure 11. Comparison of actual field production with CRM results. 265 245 2 25 185 Scenario 1 Scenario 2 Scenario 3 Scenario 4 165 145 Feb-8 Jul-9 Nov-1 Apr-12 Aug-13 Dec-14 May-16 Sep-17 Figure 12. Comparison of reinjection allocation scenarios. CONCLUSIONS A simple capacitance-resistance model (CRM) that characterizes the connectivity between reinjection and production wells has been developed for a geothermal reservoir located in West Anatolia, Turkey. It has been shown that this simple dynamic model provides an excellent match to historic data. Several hypothetical scenarios to determine an injection scheme that maximizes the sustainability of the geothermal reservoir asset showed that injection from wells that are located at the lower half of the field where east west trending faults are located is better compared to injection from the center of the field. REFERENCES, S. Optimization of Reinjection in Low Temperature Geothermal Reservoirs Using Neural Network and Kriging Proxies 33 rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 28-3, 8. Albertoni, A., and Lake, L.W. (3). Inferring Connectivity Only From Well-Rate Fluctuations in Waterfloods. SPE Reservoir Evaluation and Engineering Journal, 6 (1): 6-16. Nguyen, A.N., Kim, J.S., Lake, L.W., Edgar, T.F., and Haynes, Byron (211). Integrated Capacitance-Resistive for Reservoir Characterization in Primary and Secondary Recovery. Paper SPE 147344 presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 3 October-2 November. Sayarpour, M., Zuluaga, E., Kabir, C.S., and Lake, L.W. (7). The Use of Capacitance-Resistive s for Rapid Estimation of Waterflood Performance and Optimization. Paper SPE 1181 presented at the SPE Annual Technical Conference and Exhibition, Anaheim, California, 11-14 November. Sayarpour, M. (8). Development and Application of Capacitance-Resistive s in Water/CO2 Floods, Ph.D. Dissertation, The University of Texas at Austin, Austin, Texas. Weber, D., Edgar, T.F., Lake, L.W., Lasdon, L., Kawas, S., and Sayarpour, M. (9). Improvements in Capacitance-Resistive ing and Optimization of Large Scale Reservoirs. Paper SPE 121299 presented at the SPE Western Regional Meeting, San Jose, California, 24-26 March. Yousef, A.A., Gentil, P.H., Jensen, J.L. and Lake, L.W. (6). A Capacitance to Infer Interwell Connectivity from Production and Injection Rate Fluctuations, SPE Reservoir Evaluation & Engineering Journal, 9 (5): 63-646. SPE-1.2118. DOI: 1.2118/95322-PA. 6