A(t) is the amount function. a(t) is the accumulation function. a(t) = A(t) k at time s ka(t) A(s)



Similar documents
Manual for SOA Exam MLC.

Manual for SOA Exam MLC.

Manual for SOA Exam MLC.

ACTS 4301 FORMULA SUMMARY Lesson 1: Probability Review. Name f(x) F (x) E[X] Var(X) Name f(x) E[X] Var(X) p x (1 p) m x mp mp(1 p)

4. Life Insurance. 4.1 Survival Distribution And Life Tables. Introduction. X, Age-at-death. T (x), time-until-death

Manual for SOA Exam MLC.

Manual for SOA Exam MLC.

Actuarial Science with

Annuities. Lecture: Weeks Lecture: Weeks 9-11 (STT 455) Annuities Fall Valdez 1 / 43

Mathematics of Life Contingencies MATH 3281

Manual for SOA Exam MLC.

Insurance Benefits. Lecture: Weeks 6-8. Lecture: Weeks 6-8 (STT 455) Insurance Benefits Fall Valdez 1 / 36

Chapter 04 - More General Annuities

Premium Calculation. Lecture: Weeks Lecture: Weeks (Math 3630) Annuities Fall Valdez 1 / 32

Actuarial mathematics 2

Manual for SOA Exam MLC.

Manual for SOA Exam MLC.

ACTSC 331 Note : Life Contingency

Manual for SOA Exam MLC.

Statistics 100A Homework 4 Solutions

Math 151. Rumbos Spring Solutions to Assignment #22

AS 2553a Mathematics of finance

Manual for SOA Exam MLC.

Manual for SOA Exam MLC.

Premium Calculation - continued

Math 630 Problem Set 2

SOA EXAM MLC & CAS EXAM 3L STUDY SUPPLEMENT

Mathematics of Life Contingencies. Math W Instructor: Edward Furman Homework 1

TIME VALUE OF MONEY PROBLEMS CHAPTERS THREE TO TEN

Chapter You are given: 1 t. Calculate: f. Pr[ T0

Practice Exam 1. x l x d x

Manual for SOA Exam FM/CAS Exam 2.

Lecture 13: Martingales

2. Annuities. 1. Basic Annuities 1.1 Introduction. Annuity: A series of payments made at equal intervals of time.

TABLE OF CONTENTS. 4. Daniel Markov 1 173

Premium Calculation. Lecture: Weeks Lecture: Weeks (STT 455) Premium Calculation Fall Valdez 1 / 31

Manual for SOA Exam MLC.

Asset and Liability Composition in Participating Life Insurance: The Impact on Shortfall Risk and Shareholder Value

Financial Mathematics for Actuaries. Chapter 2 Annuities


n(n + 1) n = 1 r (iii) infinite geometric series: if r < 1 then 1 + 2r + 3r 2 1 e x = 1 + x + x2 3! + for x < 1 ln(1 + x) = x x2 2 + x3 3

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování

Project Evaluation Roadmap. Capital Budgeting Process. Capital Expenditure. Major Cash Flow Components. Cash Flows... COMM2501 Financial Management

The Actuary s Free Study Guide for. Second Edition G. Stolyarov II,

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS

1. Datsenka Dog Insurance Company has developed the following mortality table for dogs:

Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1. q 30+s 1

Lecture Notes on the Mathematics of Finance

1 Cash-flows, discounting, interest rate models

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given:

Probability Generating Functions

Construction Economics & Finance. Module 3 Lecture-1

**BEGINNING OF EXAMINATION**

b g is the future lifetime random variable.

MATH 3630 Actuarial Mathematics I Class Test 2 Wednesday, 17 November 2010 Time Allowed: 1 hour Total Marks: 100 points

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Manual for SOA Exam FM/CAS Exam 2.

ACTUARIAL NOTATION. i k 1 i k. , (ii) i k 1 d k

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

EDUCATION COMMITTEE OF THE SOCIETY OF ACTUARIES MLC STUDY NOTE SUPPLEMENTARY NOTES FOR ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS VERSION 2.

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k

6 Insurances on Joint Lives

Appendix A. Commutation Functions

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

November 2000 Course 3

PSTN. Gateway. Switch. Supervisor PC. Ethernet LAN. IPCC Express SERVER. CallManager. IP Phone. IP Phone. Cust- DB


Nominal rates of interest and discount


東 海 大 學 資 訊 工 程 研 究 所 碩 士 論 文

Solution. Because you are not doing business in the state of New York, you only need to do the calculations at the end of each policy year.


THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:

All of my instructors showed a true compassion for teaching. This passion helped students enjoy every class. Amanda

Earthquake Hazard Zones: The relative risk of damage to Canadian buildings

Actuarial Mathematics and Life-Table Statistics. Eric V. Slud Mathematics Department University of Maryland, College Park

5. Continuous Random Variables

Section 5.1 Continuous Random Variables: Introduction

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS

Chapter 2 Premiums and Reserves in Multiple Decrement Model

FUTURE LIFE-TABLES BASED ON THE LEE-CARTER METHODOLOGY AND THEIR APPLICATION TO CALCULATING THE PENSION ANNUITIES 1

1. Revision 2. Revision pv 3. - note that there are other equivalent formulae! 1 pv A x A 1 x:n A 1

Endomines - Ilomantsi Gold Project

M/M/1 and M/M/m Queueing Systems

2.5 Life tables, force of mortality and standard life insurance products

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

Further Topics in Actuarial Mathematics: Premium Reserves. Matthew Mikola

Version 3A ACTUARIAL VALUATIONS. Remainder,Income, and Annuity Examples For One Life, Two Lives, and Terms Certain

ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES

SOCIETY OF ACTUARIES EXAM M ACTUARIAL MODELS EXAM M SAMPLE QUESTIONS

Lecture Notes on Actuarial Mathematics

PRESENT VALUE ANALYSIS. Time value of money equal dollar amounts have different values at different points in time.

Probability Distribution for Discrete Random Variables

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA

ISyE 6761 Fall 2012 Homework #2 Solutions

Premium calculation. summer semester 2013/2014. Technical University of Ostrava Faculty of Economics department of Finance

Transcription:

Interest Theory At) is the aount function at) is the accuulation function at) At) A) k at tie s kat) As) at tie t v t, t, is calle the iscount function iscount function at) k at tie s kv t v s at tie t Uner copoun interest v t + i) t i is the annual effective rate of interest + i is the one year interest factor ν is the one year iscount factor is the annual rate of iscount i ν, i ν i + ν, + i ν, iν, ) + i) i ) is the noinal rate of interest copoune ties a year ) is the noinal rate of iscount copoune ties a year ) ) + i + i) ) ) The force of interest is t t lnv t) t ln at) a t) at) t ln At) A t) At) v t e R t s s, at) e R t s s Annuities The cashflow, present an future values of an annuity ue with level payents of one are: Contributions Tie n n ä n i νn an s n i + i)n The cashflow, present an future values of an annuity ieiate with level payents of one: Contributions Tie n

a n i νn an s n i + i)n i i The cashflow an present value of an perpetuity ue with level payents of one are: Contributions Tie ä i The cashflow an present value of a perpetuity ieiate with level payents of one are: Contributions Tie a i i The cashflow an present value of a geoetric annuity ue with first payent of one are: Payents + r + r) + r) n Tie n an Gä) n i,r ä n i r +r The cashflow an present value of a geoetric annuity ieiate with first payent of one are: Payents + r + r) + r) n Tie 3 n Ga) n i,r + r a n i r +r The cashflow an present value of a geoetric perpetuity ue with first payent of one are: an an Payents + r + r) + r) n Tie n Gä) i,r { +i i r if i > r, if i r The cashflow an present value of a geoetric perpetuity ieiate with first payent of one are:

an Payents + r + r) + r) n Tie 3 n { Ga) i,r if i > r i r if i r The cashflow, present an future values of a ue increasing annuity with first payent of one are: Payents 3 n Tie n Iä) n i än i nν n an I s) n i s n i n The cashflow, present an future values of an ieiate increasing annuity with first payent of one are: Payents 3 n Tie 3 n Ia) n i än i nν n an Is) i n i s n i n i The cashflow an present value of an increasing ue perpetuity with first payent of one are: Payents 3 Tie an Iä) i The cashflow an present value of an increasing ieiate perpetuity with first payent of one are: Payents 3 Tie 3 an Ia) i i The cashflow, present an future values of a ecreasing ue annuity with first payent of one are: Payents n n n Tie n Dä) n i n a n i an D s) n i n + i)n s n i The cashflow, present an future values of a ecreasing ieiate annuity with first payent of one are: 3

Payents n n n Tie 3 n Da) n i n a n i an Ds) i n i n + i)n s n i i The cashflow, present an future values of a ue annuity pai ties a year are Contributions Tie in years) ä ) n i νn ) + n an s ) n i + i)n ) The cashflow, present an future values of an ieiate annuity pai ties a year are Contributions Tie in years) + n a ) n i νn an s ) i ) n i + i)n i ) The present value of a continuous annuity with rate Ct) is t Cs)v s s The present value of a continuous annuity with constant unit rate is a n i v t t vn The present value of an annually increasing continuous annuity is Iā) n i [t + ]v t t än i nv n The present value of a continuously increasing annuity is Īā n )n i tv t t ān i nv n The present value of an annually ecreasing continuous annuity is Da) n i [n + t]v t t n a n i The present value of a continuously ecreasing continuous annuity with is Da )n i n t)v t t n a n i n 4

Survival oels The cuulative istribution function of the rv X is F X ) P {X }, R The survival function of the nonnegative rv X is S ) s) Pr{X > }, If h an H) ht) t,, then E[HX)] st)ht) t In particular, E[X] If X is a iscrete rv st) t, E[X p ] E[HX)] st)pt p t, E[inX, a)] Pr{X k}hk) Hk )) In particular, for a positive integer a, E[X] Pr{X k}, E[X ] Pr{X k}k ), E[inX, a)] a st) t a Pr{X k} ) is calle a life age T ) T X is the future lifetie of ) The survival function of T ) is t p s+t), t The cf of T ) is s) tq s) s+t), s) t We have that tq t p, p p, q q, s t q Pr{s < T ) s + t} s p s+t p s p tq +s, +np p np +, n p p p + p +n, P k j n j p n p n p +n n3 p +n +n nk p + P k j n j The force of ortality is µ) µ ln S X) f X) S X ) ) S X ) ep µt) t, t p e R +t µy)y, f T ) t) t p µ + t) e E[X] e :n E[inT ), n)] tp t, e E[T )] tp t, tp t, e e :n + n p e+n t is the least integer greater than or equal to t, t k if k < t k K is the tie interval of eath of a life age K) is the curtate uration of eath of a life age, ie the nuber of coplete years live by this life K T ), K) K, K) T ), e E[K)] kp, E[K)) ] k ) kp, e p + e + ), e :n kp, e e :n + n p e +n, e :+n e : + p e+:n 5

For e Moivre s law: f X ) ω, S X) ω ω, µ), for < ω, ω tp ω t ω, tq t ω, t ω, e ω, VarT )) ω ) Uner constant force of ortality µ:, e ω, VarK)) ω ) S X ) e µ, F X ) e µ, f X ) µe µ, µ) µ, for >, tp Pr{T ) > t} e µ, e :n e µn µ 3 Life tables s + t) s) e µt,, VarT )) µ, e p, e :n p p n ) q q, VarK)) p q l enote the nuber of iniviuals alive at age The nuber of iniviuals which ie between ages an + t is t l l +t The nuber of iniviuals which ie between ages an + is l l + We have that s) l, F X ) l l, µ) l logl ), l tp l +t, t q l l +t l l t l, p l + l, q l l + l l e, e l n +t t, l +t e :n t, e l l l l, n q l +n l +n+ l l +k l, e :n l +k l The epecte nuber of years live between age an age + n by the l survivors at age is n L nl l e:n l +t t, L L l e:, e k L k l, e :n +n k L k l Interpolation l +t tp L unifor istribution of eaths l + tl + l ) tq l +l + eponential interpolation l p t p t log p Balucci assuption t) l +t l + 6 p t+ t)p l + log p q

Uner unifor istribution of eaths: l +t l + tl + l ), t p tq, f T ) t) q, µ +t L l + l +, e e + Uner eponential interpolation: q tq, t, l +t l p t, t p p t, f T t) p t log p, µ +t log p, t Uner Balucci assuption) haronic interpolation: 4 Life insurance t) + t, t p l +t l l + p t + t)p type of insurance payent whole life insurance Z v K n year ter life insurance Z:n vk IK n) n year eferre life insurance n Z v K In < K ) n year pure enowent life insurance Z:n In < K ) n year enowent life insurance Z :n v ink,n) year eferre n year ter life insurance n Z v K I < K + n) Whole life insurance pai at the en of the year: Z v K, A E[Z ] v k k p q +k, A VarZ ) A A, A vq + vp A + v k k p q +k, n year ter life insurance pai at the en of the year: Z:n v K IK n), A :n E[Z:n ] v k k q, A :n VarZ :n ) A :n A :n, A :n vq + vp A +:n v k k q, n year eferre life insurance pai at the en of the year: n Z v K In < K ), n A E[ n Z ] v k k q, n A v k k q, kn+ kn+ Var n Z ) n A n A, n A v n n p q +n + n+ A 7

n year pure enowent life insurance pai at the en of the year: Z :n v n In < K ), A :n E[Z :n ] n E v n np, A :n v n np, VarZ :n ) A :n A :n n year enowent life insurance pai at the en of the year: Z :n v ink,n), A :n n E E[Z :n ] v k k q + v n np, A :n v k k q + v n np, VarZ :n ) A :n A :n n A n E A +n, A A :n + n A A :n + n E A +n, A A :n + n A, A :n A :n + A :n, A :n A :n + A :n, Increasing/ecreasing life insurance pai at the en of the year: IA) kv k k q, IA) :n kv k k q, DA) :n n + k)v k k q Uner e Moivre s oel with terinal age ω, if ω,, n are a positive integers, A a ω i ω, A :n a n ω, A :n v n ω n ω, n A v n a ω n i ω Uner constant force of ortality: A q q + i, A :n e nµ+), n A e nµ+) q q + i, A :n e nµ+) q ) q + i type of insurance whole life insurance payent Z v K n year ter life insurance Z :n v T IT n) n year eferre life insurance n Z v T In < T ) n year pure enowent life insurance Z :n v n In < T ) n year enowent life insurance Z :n v int,n) year eferre n-year ter life insurance n Z v T I T + n) Whole life insurance pai at the tie of eath: Z v T A E[Z ] A E[Z ) ] v t f T t) t, v t f T t) t, VarZ ) A A 8

n year ter life insurance pai at the tie of eath: Z :n v T IT n), A :n E[Z :n ] v t f T t) t, A :n E[Z n :n ] v t f T t) t, VarZ :n ) A :n A :n n year eferre life insurance pai at the tie of eath: n Z v T In < T ), n A E[ n Z ] n v t f T t) t, n A E[ n Z ] v t f T t) t, Var n Z ) n A n A n year enowent life insurance: Z :n v int,n), A :n E[Z :n ] A :n E[Z :n ) ] n v t f T t) t + v n Pr{T > n}, v t f T t) t + v n Pr{T > n}, VarZ :n ) A :n A :n Z Z :n + n Z, A A :n + n A, A A :n + n A, Z :n Z :n + E :n, A :n A :n + A :n, A :n A :n + A :n, n A n E A +n Uner e Moivre s oel with terinal age ω, A a ω i ω, A :n a n i ω, A Uner constant force of ortality: :n e n ω n ω, n A e n a ω n i ω A µ µ +, A :n e nµ+), n A e nµ+) µ µ +, A :n e nµ+) µ ) µ + Continuously increasing whole life insurance: b t t, t, I A ) tv t tp µ +t t by Annually increasing whole life insurance: b t t, t, present value is enote I A ) k k kv t tp µ +t t 9

n year ter continuously increasing whole life insurance: b t t, t n, ) n I A tv t :n tp µ +t t n year ter annually increasing whole life insurance: b t t, t n, I A ) :n k k kv t tp µ +t t Continuously ecreasing life insurance: b t n t, t n, ) n D A n t)v t :n tp µ +t t Annually ecreasing life insurance: b t n t, t n, D A ) :n k k Assuing a unifor istribution of eaths: n + k)v t tp µ +t t A i A, A :n i A :n, n A i n A, A :n i A :n + A :n, A ) i i A, A ) ) :n 5 Life annuities i i ) A :n, n A ) i i ) n A, A ) :n i i ) A :n + A :n ue annuities present value APV whole life Ÿ ä K Z ä A n year eferre life insurance n Ÿ v n ä IK K n > n) n ä n E ä +n n year ter Ÿ :n ä inkn,n) Z :n ä :n A :n ieiate annuities present value APV whole life Y a v Z K a v A n year eferre life insurance n Y v n a K n IK > n + ) n a n E a +n n year ter Y :n a ink,n) v Z :n+ a :n v A :n+ continuous annuities present value APV whole life Y a T Z a A n year eferre life insurance n Y v n a IT T n > n) n a n E a +n n year ter Y :n a int,n) vint,n) a :n A :n

Discrete whole life ue annuity: Ÿ ä K Z, ä A Whole life ieiate annuity: v k kp, VarŸ) k Y a K Ÿ v Z, a v A A A VarY ), a vp ä + vp + a + ) Whole life continuous annuity: Y a Z T, a A n year eferre iscrete ue annuity: n Ÿ v n ä K n IK > n), n ä n year eferre iscrete ieiate annuity: A A, ä + vp ä + v k kp, v t tp t, VarY ) v k kp n E ä +n kn n Y n+ Ÿ, n a n+ ä vp n a + n year eferre continuous annuity: n Y v n a T n IT > n), n a n year ter ue iscrete annuity: n v t tp t n E a +n Ÿ :n ä inkn,n) Z n :n, ä :n v k kp A :n, A :n A :n ) VarŸ:n ), ä :n+ ä :n + n E ä +n:, ä ä :n + n ä ä :n + n E ä +n n year ter iscrete ieiate annuity: k Y :n a ink,n) Ÿ:n+ v Z :n+, a :n ä :n+ v k kp v A :n+ A :n+ A :n+ ) VarY :n ), a n a + a :n n a + n E a +n, A A

n year ter continuous annuity: Y :n a int,n) vint,n) VarY :n ) A :n A :n ) Uner constant force of ortality: ä Z :n, a :n v s sp s A :n,, a :n+ a :n + n E a +n:, a a :n + n a + i vp q + i e, a +µ) vp q vp q + i Annuities pai ties a year For a whole life unity annuity ue to ) pai ties a year: e +µ) e, a +µ) µ + Ÿ ) Z), ä ) ) A) ) k v k k p, VarŸ ) ) A ) A ) ) ) ) For a whole life unity annuity ieiate to ) pai ties a year: Y ) a ) Ÿ ) ä ) VarY ) ) v/ Z ), ) v/ A ) ) A ) A ) ) ) ) v k k p, For a n year unity annuity ue to ) pai ties a year: :n Z) :n, ä ) :n A) :n Ÿ ) ) :n ) VarŸ ) :n ) VarZ) ) ) ) n k v k p, For a n year unity annuity ue to ) pai ties a year: :n Z) :n, ä ) :n A) :n Ÿ ) ) ) n k v k p, VarŸ ) :n ) :n ) VarZ) ) ) For a n year unity annuity ieiate to ) pai ties a year: Y ) :n Ÿ ) :n + Z :n, a ) :n ä) :n + ne

For a n year eferre unity annuity ue to ) pai ties a year: n Ÿ ) Z ä ) :n n Z ) ), n ä ) A :n n A ) ) ä ) :n + n ä ) ä ) :n + ne ä ) +n kn v k k p n E ä ) +n, For a n year eferre unity annuity ieiate to ) pai ties a year: n Y ) a ) n Ÿ ) Z :n, n a ) n E a ) +n n ä ) n E, a ) :n + n a ) a ) :n + ne a ) +n Uner an unifor istribution of eaths within each year: ä ) i A i ) ), a ) 6 Benefit Preius ä ) v/ i Fully iscrete insurance A i ) ), a i A Whole life insurance: L v K P ä K Z P Ÿ Z P Ÿ Z + P ) P, E[L ] A P ä A + P ) P, VarL ) + P ) VarZ ) + P ) A A ) Uner the equivalence principle: P A ä A A ä, VarL ) n year ter insurance: A A A ) A A ä ) L :n Z:n P Ÿ:n Z:n P Z :n,, t P A ä :t P :n P A :n ) A :n ä :n, t P :n P t A :n ) A :n ä :t 3

n year pure enowent: L:n Z:n P Ÿ:n Z:n P Z :n, P:n P A:n ) A :n, t P:n P t A ä :n ) A :n :n ä :t n year enowent: L :n v inn,k) P ä ink,n) Z :n P Ÿ:n Z :n P Z :n VarL :n ) + P ) VarZ :n ) + P ) A :n A :n ) ), + P ) Z :n P, P :n P A :n ) A :n, t P :n P t A :n ) A :n, ä :n ä :t VarL :n ) + P ) :n A :n A ) A :n A :n :n ) A:n A :n A :n ä:n ) n year eferre insurance: Properties: Whole life insurance: n year ter insurance: n Z P Ÿ, P n A ) n A, t P n A ) n A ä ä :t P :n P :n + P :n, n P P :n + P :n A +n Seicontinuous annual benefit preius P P A ) A a, t P t P A ) A a :t n year pure enowent: P :n A :n a :n, t P :n t P A :n ) A :n a :t P :n P A:n ) A :n, t P :n t P A a :n ) A :n :n a :t 4

n year enowent: n year eferre insurance: Whole life insurance: P :n P A :n ) A :n a :n, t P :n t P A :n ) A :n a :t P n A ) n A a :n, t P n A ) n A a :n Fully continuous insurance LA ) v T P a T Z P Y Z Z VarLA )) Z + P ) P, + P ) VarZ ) + P ) A A ), P A ) A A, t P A ) A a A a a :t VarLA )) + P A ) ) A A ) A A A ) A A a ) n year ter insurance: n year pure enowent: L Z :n P Y :n, P A :n ) A :n, t P A a :n ) A :n :n a :t L Z :n P Y :n, P A:n ) A :n, t P A a :n :n ) A :n a :t n year enowent: L Z :n P Y :n Z :n P Z :n VarL) + P ) A :n ) ) A :n, + P ) P Z :n, P A :n ) A :n a :n a :n a :n A :n A :n, VarL) A :n A :n A:n ), t P A :n ) A :n a :t n year eferre insurance: L n Z P Y :n, P n A ) n A a :n 5

n year eferre ue annuity: n year eferre ieiate annuity: n year eferre annuities L n Ÿ P Ÿ:n, P n ä ) n ä ä :n L n Y P Ÿ:n, P n a ) n a ä :n n year eferre continuous annuity fune iscretely: L n Y P Ÿ:n, P n a ) n a ä :n n year eferre continuous annuity fune continuously: L n Y P Y :n, P n a ) n a ä :n 6