Automatic X-ray Crack Inspection for Aircraft Wing Fastener Holes



Similar documents
The promise of ultrasonic phased arrays and the role of modeling in specifying systems

Emerging NDE Technology for Aging Aircraft Large Area Scanning To Small High Resolution Systems Maintenance Planning Tools

BARE PCB INSPECTION BY MEAN OF ECT TECHNIQUE WITH SPIN-VALVE GMR SENSOR

Ultrasonic Technique and Device for Residual Stress Measurement

PIPELINE INSPECTION UTILIZING ULTRASOUND TECHNOLOGY: ON THE ISSUE OF RESOLUTION By, M. Beller, NDT Systems & Services AG, Stutensee, Germany

WAVELET ANALYSIS BASED ULTRASONIC NONDESTRUCTIVE TESTING OF POLYMER BONDED EXPLOSIVE

Ultrasonic Wave Propagation Review

Lecture 14. Point Spread Function (PSF)

Phased-Array ROWA-SPA: High-performance testing machine for combined, 100-percent automated testing of square and round bars

Cutting Edge Digital Radiography Technology in Daily NDT Use

Encoded Phased Array Bridge Pin Inspection

Optimization of Digital Industrial Radiography (DIR) Techniques for Specific Applications: An IAEA Coordinated Research Project

Health Care for Pipelines From Cradle to Grave

Real-time 3D Scanning System for Pavement Distortion Inspection

p h a s e d - a r r a y t e c h n o l o g i e s w w w. m 2 m - n d t. c o m M2M today c o n t a c m 2 m - n d t. c o m

Reliable Flaw Detection. Fast Inspection Times. High quality non-destructive testing services tailored for all your needs.

9. Force Measurement with a Strain gage Bridge

Scanning Acoustic Microscopy Training

Comparing Digital and Analogue X-ray Inspection for BGA, Flip Chip and CSP Analysis

NON-DESTRUCTIVE TESTING OF PIPELINES. L. Annila. Abstract

proper way. Therefore operator training and certification is key in every inspection program to ensure compliance and improve quality and integrity.

NDT 2010 Conference Topics

NON DESTRUCTIVE TESTING & ASNT WELD INSPECTION & AWS

US A United States Patent [19] [ill Patent Number: 5,847,562 Fulton et al. [45] Date of Patent: Dec. 8, Experimental data

An Quantitative Evaluation of the Canadian Forces New Radiology Inspection Systems for the Detection of Water Ingress in CF188 Flight Control Surfaces

Synthetic Sensing: Proximity / Distance Sensors

TURBINE ENGINE LIFE MANAGEMENT App. N AIAA AIRCRAFT ENGINE DESIGN

OR Technology. Non Destructive Testing (RT) Strong Workmate for

DESIGN OF AIRCRAFT STRUCTURES UNDER SPECIAL CONSIDERATION OF NDT H. Assler, J. Telgkamp Airbus Deutschland GmbH, Hamburg, Germany

Handbook on the Ultrasonic Examination. Austenitic Welds

Checklist for the Qualification of Digital Detector Array Systems

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

An Investigationof Non Destructive Testing of Pressure Vessel

INNOVATIVE ELECTROMAGNETIC SENSORS

Possibilities and Limits of Digital Industrial Radiology: - The new high contrast sensitivity technique - Examples and system theoretical analysis

Spot Weld Analysis with Two-Dimensional Ultrasonic Arrays

2. THE TEORRETICAL OF GROUND PENETRATING RADAR:

Structural Integrity and NDE Reliability II

RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound

11. NONDESTRUCTIVE TESTING

How To Use Trackeye

INSPECTION of a high-density bare printed circuit board

Robot Perception Continued

Adding Heart to Your Technology

REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING

Technical Notes NDT 001 Specific Requirements for Non- Destructive Testing Laboratories

Poker Vision: Playing Cards and Chips Identification based on Image Processing

Welding of Plastics. Amit Mukund Joshi. (B.E Mechanical, A.M.I.Prod.E)

Process Compensated Resonant Testing

Realtime FFT processing in Rohde & Schwarz receivers

Introduction to Standards and Nondestructive Testing of Industrial Materials

Dental Radiography Core Subject. Digital Radiography

DESIGN AND EVALUATION OF PROBE WITH THREE DEGREE- OF-FREEDOM FOR NON-DESTRUCTIVE TEST USING THREE- DIMENSIONAL FINITE ELEMENT METHOD

Office Address: NC2204D, University of Colorado Denver, Denver, CO Office: (303) Address:

ABSTRACT INTRODUCTION

Industrial Vision Days 2012 Making Cameras Smarter: FPGA Based Image Pre-processing Unleashed

PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY

Qualification of In-service Inspections of NPP Primary Circuit Components

INTERFERENCE OF SOUND WAVES

ECE 533 Project Report Ashish Dhawan Aditi R. Ganesan

FDTD Analysis of Site Free Space VSWR in Test Site Used for Disturbance Measurement above 1 GHz

ELECTRONIC TAP HAMMER FOR COMPOSITE DAMAGE ASSESSMENT

Ultrasonic Guided Waves Evaluation of Trials for Pipeline Inspection

Automatic Detection of PCB Defects

3D SCANNERTM. 3D Scanning Comes Full Circle. s u n. Your Most Valuable QA and Dosimetry Tools A / B / C. The 3D SCANNER Advantage

Reach Higher with Inspection Academy GE s Inspection Technologies Global Knowledge Center.

powered by ingenuity Corrosion Logging Well Integrity Measurement

HIGH PERFORMANCE MOBILE SURGICAL C-ARM KMC-950

Beamforming and hardware design for a multichannel front-end integrated circuit for real-time 3D catheter-based ultrasonic imaging.

Detector transparent with Color Inserts. FAA 500 TR P Trim Ring transparent with Color Inserts. FCA 500 / FCA 500 E Detector Bases

DAMAGE ASSESSMENT IN COMPOSITE MATERIALS WITH NEW THERMAL METHODS

Analecta Vol. 8, No. 2 ISSN

GPR Polarization Simulation with 3D HO FDTD

VECTORAL IMAGING THE NEW DIRECTION IN AUTOMATED OPTICAL INSPECTION

NON-DESTRUCTIVE TESTING OF DUPLEX STAINLESS STEEL

LarsLap model C for cutting, milling grinding and lapping seats and flanges on globe, safety and control valves

Intelligent Measurement and Diagnostic Techniques for Non-destructive Inspections

Various Technics of Liquids and Solids Level Measurements. (Part 3)

INTERFERENCE OF SOUND WAVES

Experimental Study on Non Destructive Testing Techniques (NDTT)

APPLICATION OF ULTRASONIC IMAGING TECHNIQUE AS STRUCTURAL HEALTH MONITORING TOOL FOR ASSESSMENT OF DEFECTS IN GLASS FIBER COMPOSITE STRUCTURES

AN INNOVATIVE & CUTTING-EDGE DIGITAL RADIOGRAPHY SYSTEM

J. P. Oakley and R. T. Shann. Department of Electrical Engineering University of Manchester Manchester M13 9PL U.K. Abstract

Product Information. QUADRA-CHEK 3000 Evaluation Electronics For Metrological Applications

Application of Welding Standards in Hong Kong. S. K. Babu Laboratory Manager - Foundation Techniques Ltd

NDT to Identify Concrete Bridge Deck Deterioration

Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture.

Circle Object Recognition Based on Monocular Vision for Home Security Robot

Inductive Sensors Single or Dual Loop Detectors Type LD with teach-in

Measuring Line Edge Roughness: Fluctuations in Uncertainty

Mechanical Characterization of the Damage Process in a Structural Adhesive Joint by Acoustic Emission

Characterization of Three Algorithms for Detecting Surface Flatness Defects from Dense Point Clouds

THE CONTROL OF A ROBOT END-EFFECTOR USING PHOTOGRAMMETRY

INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS

ADVANCED NDT TECHNIQUES FOR PLASTIC PIPELINE INSPECTION

High-Speed Thin Client Technology for Mobile Environment: Mobile RVEC

Information about the T9 beam line and experimental facilities

PERFORM-X DIGITAL X-RAY SYSTEM PERFORM-X. with ceiling mounted tube support PERFORM-X

Transcription:

2nd International Symposium on NDT in Aerospace 2010 - Mo.5.A.4 Automatic X-ray Crack Inspection for Aircraft Wing Fastener Holes J. XU *, T. LIU *, X.M. YIN *, B. S. WONG **, Syahrom B. HASSAN ** * Precision Measurement group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075; ** School of Mechanical and Aerospace Engineering, Nanyang Technological University Singapore 639798 Abstract. This paper presents an automatic X-ray image processing system for fastener hole radial and circular crack detection. A robot guided X-ray imaging system equipped with a digital detector is employed to take high resolution reference images of fastener holes of various shapes, thicknesses and in different locations of an aircraft wing. Learning module of the system is activated to train the system with knowledge of hole shapes, segmentation thresholds, grey level distributions of holes and backgrounds as well as hole pitches. Based on this knowledge, the system is able to segment fastener holes of unknown incoming images with localized thresholds, maximizing the shape similarity of the detected holes. Blob analysis is then applied to derive hole gravity and boundary chain code. From the gravity point of each hole, radial and circular scanning lines (arcs) are calculated to find subpixel transitions (edges, which are potentially crack pixels) in the neighborhood of the hole. Transition (edge) polarity and width are used to filter out unwanted disturbances. Finally crack filtering helps removing noise and highlighting the genuine cracks. The effectiveness of the system is demonstrated by processing real aircraft wing images. We are able to achieve a processing speed of 300ms per 1024 x 1024 X-ray image ( Intel Dual Core PC 2.0GHz). 1. Introduction Aircrafts are fabricated from a lightweight aluminum alloy that allows for an optimum balance of flight properties and cargo capacity. Aircraft wings, when subjected to the stresses of normal operation, fatigue damage can occur in high stress locations around fasteners. Crack growth, if left undetected, can lead to catastrophic failure. The inspection of aging aircraft for fastener hole cracks has been a time-consuming but essential task for the military services and commercial airlines alike. In order to identify the presence of cracks before they reach critical lengths, aircraft operators have updated their inspection techniques. While visual inspection is an important part of the detection process, many cracks in their initiation are too small to see visually, may be hidden beneath the head of the rivet, or may initiate in the inner layer of the lap joint and cannot be seen from outside of the aircraft. To assist with the detection of these small and hidden cracks, non-destructive inspection (NDI) methods are used. Some of the more common NDI methods used in aircraft crack detection are eddy current, ultrasound and digital radiography. Recent advances in magnetic sensor technology made the electromagnetic nondestructive evaluation method able to address crack detection issue. To detect deeply buried flaws, a low frequency electromagnetic field must be induced in the specimen under test. Traditional eddy current testing methods based on excitation-detection coils is License: http://creativecommons.org/licenses/by/3.0/ 1

fundamentally limited by the poor sensitivity of the detection coils at low frequencies. Both anisotropic magnetoresistive sensors (AMR) and giant magnetoresistive sensors (GMR) have been successfully used in prior work for detecting deep cracks under installed fasteners [1][2]. The use of phased array ultrasonic [3][4] crack detection is another option. Ultrasonic phased array transducers are made of multiple crystals that are electronically pulsed in a sequence using a specified delay between pulses to create electronic scanning, beam steering, and focusing capability. Ultrasonic phased array inspection is gaining wide acceptance and has many advantages over conventional A-scan inspection. These advantages include the ability to perform scanning with no mechanical movement, the ability to perform angular (sectorial) scans and dynamic focusing without setup alteration, two-dimensional visualization of results, and similar portability to A-scan equipment. Ultrasonic phased array inspection results can be difficult to understand due to the complexity of angular ultrasound compounded by multiple transducer element excitation. Computational simulation can be used to predict the feasibility [5]. Digital radiography has emerged as a leading technology for aircraft crack inspection. It offers many advantages over conventional film-based radiography [6][7]. Digital Radiography enhances productivity as it records a ready to process image in short time and eliminates the need for any chemical processing required as in the case of using a film. In our previous work [8], we proposed methods and procedures to identify suitable x- ray sources and digital detectors to meet the high sensitivity required to inspect an aircraft. Different sensors and x-ray tubes were evaluated by using a set of a wire IQI penetrameter, aluminium specimens with 6mm thickness and a 2T hole penetrameter. We recommended amorphous silicon flat panels to be the most suitable detector for the aircraft inspection applications. In this paper we propose an automatic X-ray image processing system for fastener hole radial and circular crack detection. Learning is performed to acquire from multiple aircraft wing X-ray images a sequence of fastener hole segmentation thresholds, hole sizes and shapes. Then, a so called smart threshold is applied based on learnt knowledge to optimize the finding of fasteners for any incoming wing image. Radial and circular scanning around fastener holes is performed to find subpixel crack locations. For post processing, three crack filters are applied to remove noise in crack images. The rest of the paper is organized as follows: in section 2, the hardware used for the on- wing X-ray inspection, a robot guided X-ray imaging system equipped with a digital detector, is described. In section 3, the proposed fastener hole crack detection software is described in detail. Experimental results with real field trial images are given in section 4. Finally in section 5 conclusions and future work are provided. 2. A Robot Guided X-Ray System for Aircraft Wing Imaging Currently, the detection of deeply buried flaws is carried out by using either eddy current techniques or ultrasound methods. The drawback of ultrasound and Eddy current methods is that they are difficult to apply to areas hidden within aircraft wing structure. For automatic fastener hole crack detection, we proposed a robot guided digital X-ray imaging system (Fig. 1). A large raster scanning manipulator system has been developed to automatically move an x-ray tube and a digital sensor along the wing of the aircraft. Radiographs are taken as the system moves and a large montage of the whole wing area can be built up gradually. The movement is programmed from a database drawing of the wing. 2

Fig. 1 A robot guided scanning manipulator positioned over an aircraft wing and digital radiographs 3. Automatic Image Processing for Fastener Hole Crack Detection Fig. 2 illustrates the process flow of the proposed automatic image processing for fastener hole crack detection system. To equip the system with learning capability for various fasteners and imaging contrasts, the system has a learning module which allows user to learn manually a sequence of X-ray images. Knowledge about the segmentation thresholds, hole sizes and shapes are acquired and stored. For any unknown incoming wing image, fastener hole segmentation module will apply a localized smart threshold for each individual hole to determine its location and boundary. After that, radial and circular scanning lines (arcs) are calculated to find subpixel transitions (edges, which are potentially crack pixels) in the neighborhood of the hole. Transition polarity and width are used to filter out unwanted disturbances. Finally crack filtering helps removing noise and highlighting the genuine cracks. Fig. 2 Process flow of the proposed automatic image processing for fastener hole crack detection 3

3.1 Knowledge Acquisition for Different Fastener Holes As shown in Fig. 3, X-ray 2D scanning of an aircraft wing can generate images containing various objects in the background, such as wires, piping, screws and other structures. It is essential for an automatic algorithm to distinguish fastener holes and locate them from background disturbances. To do this, a learning module is incorporated to train the software with knowledge of what a fastener hole is and what is not. The learning module allows user to load multiple images with different types of fasteners. User can either select manually a number of thresholds to evaluate the binarization results and identify the best one, or activate a semi-automatic process which uses Otzu s auto-threshold within a predefined adjustment percentage, say +/-25% to perform auto binarization. Note that the global threshold selected for each image is for a rough search of fastener holes. A localized threshold will be determined in segmentation module to fine tune the binarization result for each hole. The following knowledge about fastener holes will be acquired for segmentation module: A set of possible thresholds t,i 1..N Max hole number which is used to reject binarizations with too many objects Hole shape in Fourier Descriptor for shape matching later on Background pixel grey-level distribution outside holes; this will be used for filtering out the false alarm pixels. The distribution is represented by an average value of all pixels surrounding the hole and a statistical deviation. Max and min hole areas and max and min hole extends in X and Y directions A learning dada structure is used to record up to 100 different thresholds, 100 fastener shapes, and other attributes. Fig. 3 X-ray 2D scanning of an aircraft wing: images contain many objects and structures which make fastener hole detection difficult 3.2 Localized Smart Threshold for Fastener Hole Localization Let gx, y be an X-ray image pixel at location x, y with intensity within [0, 255], binarization using a learnt threshold t can be formulated as b x, y 1 gx, y t (1) 0 otherwise where i 1,2, N. Applying object analysis algorithm to a binary image, a number of blobs ω can be detected O Ω ω (2) whereby blob ω meets the following requirements 4

Its shape has been defined in learning result, e.g. there exists a learnt shape a such that a b <T where b represents Fourier descriptor of the first 5 coefficients of the to be inspected shape and T is a predefined threshold, and Its X and Y extends are within the max X and Y extends, and Its area is between min and the max learnt areas, and M is within the max learnt hole number The aim of the smart threshold based fastener hole detection is to find a best global t such that from the binary image b x, y a max number of fastener hole like blobs can be found, or M is maximized. After determination of the preferred global threshold t and M blobs ω, a localized threshold can be found for each blob ω by calculating Otzu s dynamic threshold within a small neighborhood of the blob. Blob gravity points and boundary chain codes are derived for crack scanning explained in the next section. Fig. 4 illustrates the process of the smart threshold detection of fastener holes. Fig. 4 Smart threshold for fastener hole segmentation: the origianl X-ray image is binarized using different learnt thresholds and shape based matchings are performed to sort out binary image with the max number of fastener holes. A localized fine binarization is performed to get the optimized hole positions and boundaries. 3.3 Radial and Circular Crack Detection and Filtering Radial and Circular Cracks: there are two kinds of cracks near a fastener hole to be detected: radial cracks which developed themselves from hole boundary and streching outwards in the radial direction, and circular cracks which propogate outside the hole along the circular direction (Fig. 5, the 1 st and the 2 nd pictures). Subpixel edge detection algorithm is used to detect these two cracks by inspecting an abrupt changes in grey level values. For a radial crack, as shown in the 3 rd picture of Fig. 5, multiple scan lines perpendicular to the radial direction are employed for edge detection. User is able to define the length of a scan line and the scan depth in radial direction. For circular cracks, radial scan (as shown in the 5

4th picture of Fig. 5) can be used. Again, the scan line length and incremental angle can be defined by users. Fig. 5 Radial (1st picture from the left) and circular cracks (2nd picture) and their detection using scan lines perpendicular to the radial direction (3 rd picture) and using radial scans (4 th picture) Subpixel Crack Detection Algorithm: When a crack detection scan line cuts across a crack perpendicular to the crack propogation direction, its grey level profile typically has the form displayed in Fig. 6a. Subpixel edge detection alorithm can be deployed to determine the crack position and width. We use an energy balanced approach to calculate subpixel edge location in a digital curve, a proprietary high speed subpixel edge detection method. As shown in Fig. 6a, for a rising edge, edge start and end points can be determined from each scan line using a minimum contrast constraint. Then, a model based double resolution is performed to interpolate edge region (Fig. 6b) before an energy balanced subpixel edge detection function is applied to derive subpixel edge position (Fig. 6c): ts (3) where A,A are areas of edge profile defined in Fig. 6c. For rising edge, we define the edge polarity as minus. Similarly we can calculate a descending edge (plus edge). (a) (b) (c) Fig. 6 Subpixel crack detection by determining transitions in a rising and falling edge: (a) edge start and end point and subpixel transition t; (b) double resolution to gain more accuracy; (c) calculate A1 and A2 for subpixel position t calculation Filtering for Noise Reduction: Many a time, when X-ray images are noisy, not only the cracks, but also noise are detected by the edge detection algorithm mentioned earlier. To reduce the noise, a few constraints are introduced: Edge pair polarity check: crack should process a edge polarity from plus to minus (e.g. profile transitions are from black pixels to white and then back to black) Background consistency check: this option allows user to compare the background grey level deviation with the learnt background. Only backgrounds with similar grey level distributions are potential cracks Max crack width check: crack width detected should be less than a predefined value derived during learning Another technique used in increasing the SNR of edge profile is a so called adaptive linesum function which traces the edge propogation and performs edge directional 6

integration to enhance SNR before applying subpixel edge detection algorithm. In this way an improvement in SNR by a factor of 10 or above can be achieved. 4. Experimental Results We now describe the details of our method used in real X-ray images to verify the validity of the proposed approach. We use two groups of images: the first group is on-wing acquired images. Since there are no cracks detected even with human eyes for the images in the first group, we use a second group of real crack images from aluminum samples. Fig. 7 shows two smart threshold processing results using different learnt knowledge. The result in Fig. 7a is achieved by learning three hole patterns while Fig. 7b is achieved by learning only two patterns. (a) (b) Fig. 7 (a) Fastener hole detection by learning three fastener patterns; (b) Fastener hole detection by learning two fastener patterns. The red circle covering each hole indicates the crack search area, which can be defined by user Fig. 8 shows the crack detection results with and without noise filtering. As can be seen from Fig. 8a, noise pixels are falsely detected as cracks around hole boundary and other areas, especially when user selects a big crack search area. After applying background consistency and edge polarity check, the noise is removed (Fig. 8b). (a) (b) Fig. 8 (a) Crack detection without filtering: some red dots indicating detected cracks are found near hole boundary; (b) Crack detection with edge polarity and background grey level consistency filters 7

In Fig. 9, we apply the crack detection to a low SNR crack image. Linesum function with 35 integrations is used to reduce the noise level. As can be seen from the image, one real crack is detected, but there are some noise displayed in the crack map. (a) (b) Fig. 9 (a) original crack image; (b) Crack detection with only one crack detected; Using a lower contrast constraint to get the other two cracks will produce very noisy result 5. Conclusions and Future Works A crack detection software system developed for aircraft wing fastener hole inspection from digitized radiographic image has been presented. We used a learning module to train the system on fastener shapes and segmentation threshold and then used a smart threshold to locate the fastener holes. Subpixel edge detection algorithm is applied subsequently to detect all potential cracks both in radial direction as well as in circular direction. Finally a few crack filtering mechanisms are implemented to remove the noise and output the crack map. The future works include the enhancement of crack detection sensitivity and the development of a crack model based detection algorithm. References [1] Lebrun, B., Jayet, Y. and Baboux, J.C., 1995, Pulsed eddy current application to the detection of deep cracks, Materials Evaluation, Vol. 53, No. 11, pp. 1296-1300. [2] Avrin, W.F.,, Eddy-current measurements with magnetoresistive sensors: third-layer flaw detection in a wingsplice structure 25 mm thick, Proceedings of SPIE, Vol. 3994, 2000, pp. 29-36. [3] Roth, D.J., Tokars, R.P., Martin, R.E., Rauser, R.W., Aldrin, J.C., and Schumacher, E.J., Ultrasonic Phased Array Inspection Simulations of Welded Components at NASA, Materials Evaluation, vol. 67, no. 1, January 2009. [4] Mahaut S., Chatillon S., Kerbrat E., Porré J., Calmon P., and Roy O., New features for phased array techniques inspections: simulation and experiments, 16th World Conf on Non Destructive Testing, Montréal, 2004. [5] Aldrin, J.C. and Knopp, J.S., Modeling and Simulation for Nondestructive Testing With Applications to Aerospace Structures, Materials Evaluation vol. 66. no. 1 pp. 53 59 (2008). [6] Halmshaw R., Industrial radiology: theory and practice, second edition, Chapman and Hall, UK, 1995. [7] Ewert, U., Zscherpel, U., Bavendiek, K., Replacement of Film Radiography by Digital Techniques and Enhancement of Image Quality Online NDT Journal, vol 12. No.6, 2007. [8] Xin Wang, B. Stephen Wong, Chen Guan Tui, Kai Peng Khoo, Frederic Foo, Real-time Radiographic Non-destructive Inspection for Aircraft Maintenance, 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China 8