SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT THE HERTZSPRUNG RUSSELL DIAGRAM



Similar documents
Using Photometric Data to Derive an HR Diagram for a Star Cluster

THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk

Student Exploration: H-R Diagram

1 Introduction. Name: 1.1 Spectral Classification of Stars. PHYS-1050 Hertzsprung-Russell Diagram Solutions Spring 2013

Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri

HR Diagram Student Guide

Lesson Plan G2 The Stars

Spectral Classification of Stars

UNIT V. Earth and Space. Earth and the Solar System

Stellar Evolution: a Journey through the H-R Diagram

Lecture 6: distribution of stars in. elliptical galaxies

COOKBOOK. for. Aristarchos Transient Spectrometer (ATS)

Astronomy 112: The Physics of Stars. Class 1 Notes: Observing Stars

Be Stars. By Carla Morton

Light. What is light?

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

PLAGIARISM. Types of Plagiarism considered here: Type I: Copy & Paste Type II: Word Switch Type III: Style Type IV: Metaphor Type V Idea

Main sequence stars. Haris Ðapo. Antalya Lecture 3. 1 Akdeniz University, Antalya

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

The Size & Shape of the Galaxy

Name Class Date. true

Planning Observations

Evolution of Close Binary Systems

White Dwarf Properties and the Degenerate Electron Gas

Beginning of the Universe Classwork 6 th Grade PSI Science

Mass limit on Nemesis

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

Explain the Big Bang Theory and give two pieces of evidence which support it.

Direct Detections of Young Stars in Nearby Ellipticals

Origins of the Cosmos Summer Pre-course assessment

Lecture 14. Introduction to the Sun

Science Standard 4 Earth in Space Grade Level Expectations

A Dialogue Box. dialogue box.

Artificial Satellites Earth & Sky

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

First Discoveries. Asteroids

Physics 1010: The Physics of Everyday Life. TODAY Black Body Radiation, Greenhouse Effect

So What All Is Out There, Anyway?

SSO Transmission Grating Spectrograph (TGS) User s Guide

TELESCOPE AS TIME MACHINE

Some Basic Principles from Astronomy

8. The evolution of stars a more detailed picture

Astronomy Notes for Educators

Motions of the Earth. Stuff everyone should know

Getting Started emacs.cshrc & :+/usr/local/classes/astr1030/astron/ source.cshrc cd /usr/local/classes/astr1030 idl .compile ccdlab2 ccdlab2 exit

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY

Study Guide: Solar System

Class 2 Solar System Characteristics Formation Exosolar Planets

The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete.

The Milky Way Galaxy is Heading for a Major Cosmic Collision

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Astro 102 Test 5 Review Spring See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14

Detecting and measuring faint point sources with a CCD

Big bang, red shift and doppler effect

Montana State University Physics 312 Lab Manual

Observing the Universe

2 Absorbing Solar Energy

A i A i. µ(ion) = Z i X i

Stellar Evolution. The Basic Scheme

The Sun: Our nearest star

Which month has larger and smaller day time?

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY l0595. l. Course #:PHYSC NAME OF ORIGINATOR /REVISOR: PAUL ROBINSON

Science Focus 9 Space Exploration Topic Test

Activity: Multiwavelength Bingo

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Test Natural Sciences 102, Professors Rieke --- VERSION B March 3, 2010

Modeling Galaxy Formation

Polarization of Light

Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above?

Chapter 1: Our Place in the Universe Pearson Education Inc., publishing as Addison-Wesley

The sun and planets. On this picture, the sizes of the sun and 8 planets are to scale. Their positions relative to each other are not to scale.

Douglas Adams The Hitchhikers Guide to the Galaxy

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

SIERRA COLLEGE OBSERVATIONAL ASTRONOMY LABORATORY EXERCISE NUMBER III.F.a. TITLE: ASTEROID ASTROMETRY: BLINK IDENTIFICATION

Chapter 2: Solar Radiation and Seasons

THE SOLAR SYSTEM - EXERCISES 1

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Elliptical Galaxies. Old view: ellipticals are boring, simple systems

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

Measurement with Ratios

The Messier Objects As A Tool in Teaching Astronomy

Class #14/15 14/16 October 2008

Astronomy & Physics Resources for Middle & High School Teachers

Calibration of the MASS time constant by simulation

Howard Eskildsen often uploads some of his wonderful and exquisite solar

Simple Linear Regression Inference

Climate and Weather. This document explains where we obtain weather and climate data and how we incorporate it into metrics:

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

and the VO-Science Francisco Jiménez Esteban Suffolk University

How Do Galeries Form?

Data Mining: Algorithms and Applications Matrix Math Review

Symmetric Stretch: allows molecule to move through space

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

Dwarf Elliptical andFP capture the Planets

The Gaia Archive. Center Forum, Heidelberg, June 10-11, Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data

Transcription:

PROJECT 4 THE HERTZSPRUNG RUSSELL DIGRM Objective: The aim is to measure accurately the B and V magnitudes of several stars in the cluster, and plot them on a Colour Magnitude Diagram. The students will be asked to identify the Main Sequence of the stars in the cluster and measure their temperature and mass. Observations: This exercise requires the acquisition of two images, in B and V filters, of an open cluster. Theory topics: Open clusters, HR diagram, colour colour diagram, stellar evolution, spectral type and luminosity class of stars. nalysis: Create an HR diagram (colour colour plot) of an open cluster. Determine the position of different type of stars in the diagram and their physical properties.

Contents: The Hertzsprung Russell Diagram Open Clusters 1. Definition 2. Interpretation 2.1. Main Sequence 2.2. Giants & Supergiants 2.3. White dwarfs 3. Construction. Open Clusters The Hertzsprung Russell Diagram Open Clusters 1. Definition The Hertzsprung Russell Diagram or HR diagram gets its name from the two astronomers that first produced it. In the early 1900's, Ejnar Herstzprung and Henry Norris Russell independently made the discovery that the luminosity of a star is related to its surface temperature. Luminosity is a measure of how much energy a star gives off. So, essentially, the HR diagram graphed how much energy a star gives off as a function of the star's temperature. From the teaching project 3 you know that the colour of a star is related to the temperature of that star. You may also know that the spectral classification also gives an indication of the temperature of the star. The current system of naming spectral class was adopted in 1910 and consists of a letter and a number from 0 to 9, for example the spectral class of the Sun is G2. The letters used are in decreasing order of temperature O B F G K M Class Temperature Star colour O 30,000 60,000 K Bluish ("blue") B 10,000 30,000 K Bluish white ("blue white")

7,500 10,000 K White with bluish tinge ("white") F 6,000 7,500 K White ("yellow white") G 5,000 6,000 K Light yellow ("yellow") K 3,500 5,000 K Light orange ("orange") M 2,000 3,500 K Reddish orange ("red") Thus, the horizontal axis in a HR diagram can be effective temperature, colour indices or spectral class, while the vertical axis can be luminosity with respect to that of the Sun or the absolute magnitude M V. Fig. 1. The Hertzsprung Russell diagram. From the ustralia Telescope outreach and education site.

When luminosity is plotted as a function of the temperature for a large number of stars, stars do not fall randomly on the graph; rather they are confined to specific regions. This tells you that there is some physical relationship between the luminosity and temperature of a star. From the figure, one sees that most stars fall along a diagonal strip from high temperature, high luminosity stars to low temperature, low luminosity stars. These are the main sequence stars. Our Sun is one of them. There are a few stars that are not in this diagonal strip. There are some low temperature, high luminosity stars these are called giants and supergiants. The reason they are so luminous while being relatively cool is because they are so big (50 times more massive than our Sun). nother group of stars are in the high temperature, low luminosity corner of the diagram. Since these stars are hot, but not very luminous, they must be very small, so they're called white dwarfs. Exercise 1: Find out the position in the HR diagram and the nature of the following stars: ntares, Proxima Centauri Rigel, Betelgeuse, ldebaran, the Sun. The Sun: G2v (G2 Main Sequence star) Betelgeuse: M2Ib (M2 Supergiant star) Rigel: B8Ia (B8 Bright Supergiant star) Sirius: 1v (1 Main Sequence star) ldebaran: K5III (K5 Giant star) 2. Interpretation 2. 1. Main Sequence Most nearby stars (85%), including the Sun, lie along a diagonal band in the H R diagram called the Main Sequence. Ranges of stellar properties: L=10 2 to 10 6 L sun T=3000 to >50,0000 K R=0.1 to 10 R sun

The Mass Luminosity relation For main sequence stars, the luminosity increases with the mass with the approximate power law: The expression uses luminosities and masses compared to those of the Sun. s shown in the figure, the brightness of Main Sequence stars varies proportional to some power of their masses. For most of the range of stellar masses, the proportionality is as the 3.5 power of the mass. Fig. 2. Mass Luminosity relation for Main Sequence stars. Exercise 2: Sirius is about twice as massive as the Sun. How much brighter is it with respect to the Sun? In the HR diagram, where will you find the least massive stars? and the most massive stars? If I double the mass of a main sequence star, the luminosity increases by a factor 2 3.5 ~ 11.3. So, Sirius is more than 10 times brighter than our Sun. The luminosity of a star is thus a very strong function of its mass. Using the Mass Luminosity relation, we infer that the least massive stars are at the lower right hand part of the Main Sequence and that the most massive stars are at the upper left hand part of the Main Sequence. The Sun, a G2V star sits around the middle of the Main Sequence.

The fact that the luminosity is such a strong function of the mass of the star, has great implications for how long stars live on the Main Sequence. Massive stars have very short lifetimes compared to the Sun (which has a lifetime on the order or 10 billion years or so). star's lifetime on the main sequence is how long it takes to use up the hydrogen in its core. The luminosity (L) of a star is a measure of how rapidly it is using up its hydrogen. The mass (M) of a star is a measure of how much fuel it has. The time it takes to use up the fuel is proportional to its amount of fuel (M) divided by the rate of fuel consumption (L), M t L where, t = lifetime (in units of the Sun's lifetime) M = mass (in units of the Sun's mass) L = luminosity (in units of the Sun's luminosity) Since L ~ M 3.5 t ~ M/L ~ M/M 3.5 ~ 1/M 2.5 t 1 M 2.5 Exercise 3: Estimate the lifetime of a star with M=0.2 Msun and M=50Msun. ssume that the Sun has a lifetime of the order of 10 billion years. t = 1 / (0.2) 2.5 t sun = 56 t sun = 560 billion years t=1/50 2.5 t sun = 0.0006 billion years Similar calculations can be done for stars of other masses. Very hot and luminous stars (of spectral type O and `B') have short lifetimes; if you see an O or B main sequence star you know it must be much younger than the Sun. However, cool and dim stars (of spectral type K or M) have long lifetimes; if you see a K or M main sequence star it might be older than the Sun. The Luminosity Radius Temperature relation th "The Luminosity of a star is proportional to its Effective Temperature to the 4 power and its Radius squared." L = 4πR σt 2 * 4 * σ is the Boltzmann's constant.

Exercise 4: Two stars have the same size (R =R B ), but star B is 2 times hotter than star (T B =2T ). Which star is brighter? How much brighter? For star : For star B: L B = 2 4 4πR σt 2 4πR (2 4 L = σ T ) = 16L Therefore: Star B is 2 4 or 16x brighter than Star. *If two stars are the same size, the hotter star is brighter* Exercise 5: Two stars have the same effective temperature, (T =T B ), but star B is 2 times bigger than star (R B =2R ). Which star is brighter? How much brighter? For star : For star B: L B = 2 4 4πR σt 2 4π (2R) L = σt = 4L 4 Therefore, Star B is 2 2 or 4x brighter than Star. *If two stars have the same effective temperature, the larger star is brighter* 2. 2. Giants & Supergiants There are also two bands of stars in the H R diagram that are brighter than Main Sequence stars with the same effective temperatures. The Luminosity Radius Temperature relation tells us that the stars in these bands must therefore be larger in radius than Main Sequence stars. There are two groups of giant stars: Giants: Large but cool stars with a wide range of luminosities: R = 10 to 100 R sun L = 10 3 to 10 5 L sun Supergiants: The very largest stars, arranged along the top of the H R diagram with a wide range of effective temperatures but relatively narrow range of luminosities: R > 10 3 R sun L = 10 5 to 10 6 L sun

2. 3. White Dwarfs There are also a few very hot but also very faint stars that occupy the lower left hand corner of the H R Diagram. These are stars that are much fainter than Main Sequence stars of the same temperature. The Luminosity Radius Temperature relation tells us that these stars must therefore be smaller in radius than Main Sequence stars. How small? Using the Luminosity Radius Temperature relation, we can make a prediction: R ~ 0.01 R sun This is about the size of the Earth! These stars are called White Dwarfs. "White" because they tend to be very hot ("white hot") and "Dwarfs" because they are so tiny. 3. Construction. Open Clusters Exercise 6: Create a colour magnitude diagram of an open cluster. The objective of this project is to learn how to produce colour magnitude diagrams of star clusters using CCD images obtained with the CCD system at our observatory. The technique involves getting images of the cluster through two filters, B and V in our case, reducing the data and plotting V versus (B V). In some circumstances, such as when plotting stars in a specific open or globular cluster, apparent magnitude m, or V, rather than absolute magnitude may be used in the Y axis of the HR diagram. This is valid as all the stars in the cluster are effectively at the same distance away from us hence any differences in apparent magnitude are due to actual difference in luminosity or M. Diagrams where V is plotted against colour index, B V, are also known as colour magnitude diagrams. In order to avoid the complication of using absolute photometry and be less weatherdependent we will select clusters with secondary standards, that is, constant stars with reliable values of the B and V magnitudes. s these "secondary standards" will be in the same image, all stars are observed at the same airmass, hence, the derivation of the atmospheric extinction can be omitted. The transformation of the instrumental magnitudes into absolute magnitudes is simplified, as the product of the extinction coefficient times the airmass is a constant, that will be absorbed by the coefficients in the

transformation equations. The final magnitudes are used to create an H R diagram by representing V as a function of the colour index B V. 1. Calculate a mean bias frame and subtract the bias from the B and V images. 2. Flat fielding: Take all the flat field images taken with the same filter, add them together and divide the sum by the mean value of the sum. This will give an averaged flat field whose mean is unity. Divide the images by the scaled flat field image. 3. Obtain the instrumental magnitudes of at least 70 stars. Note that long exposure times will probably overexpose the brightest stars, so you will have to take another pair of short exposures that does not overexpose them. 4. Transform to the standard system. This will involve finding published values of V and B for some of the stars in your cluster and also a finding chart so that the stars with published values can be identified on your images. There is a great resource to help with this on the web: http://www.univie.ac.at/webda/welcome.html http://www.univie.ac.at/webda/cgi bin/ocl_page.cgi?dirname=ngc7654 This site has collected almost all the available data on open clusters and you can call up a plot showing the cluster you have measured. You can scale this plot to show the stars you see in your image, and then, by just clicking on a particular star, get its published values of V and (B V) provided data on that star exists. ll you need is two stars, but you will want to make sure they have a large difference in colour. If one has standard stars in the science images you can skip the atmospheric corrections, and go right to the transformation equations. This means determining a transformation constant t 0 such that: For the standard stars: For the program stars: t 0 = m std m inst m = t 0 + m inst 5. Plot up the H R diagram using your data transformed to the standard V, (B V) system. 6. Compare your results to published H R diagrams. Your diagram of M52 should be similar to the one shown below.

Fig. 3. H R diagram of M52 taken from the WEBD database.