Discrete-Time Scheduling under Real-Time Constraints



Similar documents
Term Structure of Interest Rates: The Theories

DATA MINING TECHNOLOGY IN PREDICTING THE CULTIVATED LAND DEMAND

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

EuroFGI Workshop on IP QoS and Traffic Control TITOLO. A Receiver Side Approach for Real-Time Monitoring of IP Performance Metrics

Pricing Freight Rate Options

Chapter 4: Thinking Like a Programmer

Jesus Performed Miracles


A Place to Choose Quality, Affordable Health Insurance

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks

Taxes and the present value assessment of economic losses in personal injury litigation: Comment 1

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

An Efficient Load Balancing Algorithm for P2P Systems

PSTN. Gateway. Switch. Supervisor PC. Ethernet LAN. IPCC Express SERVER. CallManager. IP Phone. IP Phone. Cust- DB

Campus Sustainability Assessment and Related Literature

Service Capacity Competition with Peak Arrivals and Delay Sensitive Customers


BASIC DEFINITIONS AND TERMINOLOGY OF SOILS

CHAPTER 4c. ROOTS OF EQUATIONS

Future Trends in Airline Pricing, Yield. March 13, 2013

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform

The Beer-Bouguer-Lambert law. Concepts of extinction (scattering plus absorption) and emission. Schwarzschild s equation.


Lecture 15 Isolated DC-DC converters

Ciascuncorsoincludeunacombinazionedigitescolastiche;duegiorni. interieduemezzegiornateselezionatetraleseguentidestinazioni:

High Availability Cluster System for Local Disaster Recovery with Markov Modeling Approach

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA

Director s Statement

New Basis Functions. Section 8. Complex Fourier Series

Acceptance Page 2. Revision History 3. Introduction 14. Control Categories 15. Scope 15. General Requirements 15

Algebra (Expansion and Factorisation)

Web Content Management System: Page Type Reference Guide

tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu -

Yuriy Alyeksyeyenkov 1

Vehicle Identification Numbering System 00.03

Practice Writing the Letter A


SCO TT G LEA SO N D EM O Z G EB R E-

PC Problems HelpDesk Service Agreement


Finite Dimensional Vector Spaces.

A SOFTWARE RELIABILITY MODEL FOR CLOUD-BASED SOFTWARE REJUVENATION USING DYNAMIC FAULT TREES

Move on! aki a. customers. refer your brand. abildiniz. Would you like be in an interactive communicationrtawith your customers?

Asian Development Bank Institute. ADBI Working Paper Series

Ref No: Version 5.1 Issued: September, 2013

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY

Sun Synchronous Orbits for the Earth Solar Power Satellite System


B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

A Formal Model for Data Flow Diagram Rules

Visa Smart Debit/Credit Certificate Authority Public Keys

JCUT-3030/6090/1212/1218/1325/1530

DHL EXPRESS CANADA E-BILL STANDARD SPECIFICATIONS

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions


Physics 106 Lecture 12. Oscillations II. Recap: SHM using phasors (uniform circular motion) music structural and mechanical engineering waves


Linear Extension Cube Attack on Stream Ciphers Abstract: Keywords: 1. Introduction

INDUSTRIAL TF1: 16 keys with LED 6AV AA00 KEYBOARDS TF2: 20 keys with LED 6AV AB00 6AV NE30-0AX0 6AV DB10 6AV FB12

Section 7.4: Exponential Growth and Decay

Modeling Contract Form: An Examination of Cash Settled Futures. Dwight R. Sanders. and. Mark R. Manfredo *

Many quantities are transduced in a displacement and then in an electric signal (pressure, temperature, acceleration). Prof. B.

Using the Two-Stage Approach to Price Index Aggregation

Multi- item production inventory systems with budget constraints

DATING YOUR GUILD

Samknows Broadband Report

SIF 8035 Informasjonssystemer Våren 2001

Spline. Computer Graphics. B-splines. B-Splines (for basis splines) Generating a curve. Basis Functions. Lecture 14 Curves and Surfaces II

How To Know If You Are A Good Person Or A Bad Person

CEO Björn Ivroth. Oslo, 29 April Q Presentation

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

C e r t ifie d Se c u r e W e b


QUALITY OF DYING AND DEATH QUESTIONNAIRE FOR NURSES VERSION 3.2A

13. a. If the one-year discount factor is.905, what is the one-year interest rate?

Using a Balanced Scorecard to Tie the Results Act to Your Day-to-Day Operational Priorities

Virtual Sensors

Generator stability analysis - Fractional tools application

State Corporate Income Tax-Calculation

The Valuation of Futures Options for Emissions Allowances under the Term Structure of Stochastic Multi-factors

Cruisin with Carina Motorcycle and Car Tour Guide

2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics

Lecture 13: Martingales

Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field

Appendix B Intervention Codes

Trading-Day Adjustment as a Practical Problem


d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o

Self-rescue in quantitative risk analysis

A Note on Approximating. the Normal Distribution Function

Exotic Options Pricing under Stochastic Volatility

Lecture 20: Emitter Follower and Differential Amplifiers


Child Care Resource Kit celebrate relationships!

Work, Energy, Conservation of Energy

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Factoring Polynomials: Factoring by Grouping

Transcription:

Dcr- chdulng undr Ral- onran Eduard rny Yuk Wang Moapha Aboulhad aboraor AO Dép d IRO Unvré d Monréal Dp EE oncorda Unvry Monréal Québc anada Abrac W nroduc a n hod for chdulng undr ral- conran ha uabl for ynchronou y plnaon h npu pcfcaon n h for of ng dagra n hch h occurrnc of gnal ranon or acon ar rlad by lnar conran xprng h aupon on h npu acon h nvronn and h con on h oupu acon Provdd ha h pcfcaon caual gv an algorh for drvng AAP and AAP rlav chdul for h oupu acon W hn prn a n algorh for drnng hhr a gvn clock prod corrc Bad on a chdul and a vald clock prod ranfor h pcfcaon no a dcr rlav chdul uch a chdul rv a h ba for plnng a ynchronou a-achn conrollr Kyord: ng dagra rlav chdulng ral- conran ynchronou a achn Inroducon Hgh-lvl ynh of dgal hardar for ral- applcaon 0 a ll a h ynh of nrfac randucr and conrollr 4 rqur o prfor chdulng of acon and opraon undr xplc ral- conran In opraon h unknon duraon r odld ung unboundd dlay fro h ar of uch an opraon o h ar of any uccor opraon ha dpndd on nar ng conran r ud o rrc h occurrnc of opraon rlav o ach ohr nc lnar conran ay po rrcon on h paraon of h anchor opraon hu akng h pcfcaon unralzabl for all pobl duraon of h anchor opraon h auhor of dfnd h o-calld ll-podn condon of h ng conran of h pcfcaon In nrfac randucr ynh h uaon o o xn lar n ha vn ar conrand by ng onran lnar la and arl 4 7 Hr vn uually rprn gnal ranon or nablng uaon for daa o appar on bu h ynh ha hovr uch n coon h h probl of chdulng undr ral- conran ud n hgh-lvl ynh In h papr dcrb a rlav chdulng hod for pcfcaon nprd by ng dagra a foralzd n 4 5 9 In uary h an dnguhng characrc of our approach ar a follo: - Inad of dalng h opraon ha hav duraon and gnal ranon vn condr only nananou acon h hn can b ud n par o dl h ar and h nd of an opraon or o odl ndvdually o pcfc vn or gnal ranon n h y h approach ha bn qu ffcv n odlng y ung ral- proc algbra - W xplcly dnguh oupu or nrnal acon ho occurrnc undr h conrol of h ynhzd dvc and npu acon ho occurrnc conrolld by h nvronn In boh ca h occurrnc of an acon ay b rrcd by h occurrnc of o prcdng acon npu or oupu W allo lnar la and arl yp of ng conran hovr n h papr condr only lnar conran nc h ar h ourc of noncaualy n D pcfcaon and rqur pcal chnqu for drvng chdul - o provd an for dcrbng ng aupon ha can b ad on h occurrnc of npu acon and h l on h racon of h oupu acon dnguh o knd of ng conran au and co rpcvly h allo o a ha aupon ar ad on h nvronn and hn ak h nforaon no accoun durng ynh aupon-bad raonng; h or ralc han aung ha any duraon of ay an npu opraon pobl - Allong fn aupon conran rqur a gnralzaon of h ll-podn condon of h y of conran W hav rcognzd h n h conx of nrfac pcfcaon and hr copably vrfcaon 5 a a probl of caualy aualy condon allo u o u a or coplx rucur of a pcfcaon han n uch ha h npu and oupu acon can b nrxd a n ng dagra h conrbuon of h prn papr ar: - A hod prnd for drvng a rlav chdul for oupu and nrnal acon rlav o h o-calld rggr acon 5 W can guaran h xnc of h chdul only f h pcfcaon caual

- h ng conran can b gvn n dn h ral hovr hardar plnaon ofn carrd ou ung ynchronou dgn chnqu hr all opraon ar ynchronzd o a coon clock of prod W prn a hod for vrfyng ha a prod vald and hn produc a dcr- rlav chdul for h oupu acon n hch h un h clock ck uch a chdul can b ud n xng ynh hod g 0 h hodology cnrd around h o calld Hrarchcal Annoad Acon Dagra HAAD 7 8 af dagra corrpond o h ng dagra ud a h ba for ynh n h papr h hrarchcal dagra for or coplx bhavor ung copoon opraor ovr laf and ohr hrarchcal dagra h opraor ar nprd by proc algbra paralll h caual rndz-vou councaon concanaon loop dlayd choc and xcpon handlng All dagra can alo b annoad by VHD procdur varabl and prdca For a uful ub of h pcfcaon languag hav dfnd h foral anc and provdd axoazaon 9 ncludng convron o a noral for ha can b ud o ranfor h pcfcaon o a nork of d Auoaa for vrfcaon ung xng ool Furhror h vrfcaon of caualy and copably on laf-lvl dagra can b ffcnly carrd ou ung onran ogc Prograng bad on Rlaonal Inrval Arhc 0 h papr organzd a follo: con nroduc bac concp abou ng dagra caualy and chdulng con 3 dcrb h drnaon of a vald clock prod and h drvaon of a dcr- rlav chdul; alo conan a copl xapl con 4 conclud h prnaon Background Inforaon ng dagra and h caualy propry In h con nroduc o background concp abou ng dagra vn graph of ng dagra and h caualy propry 5 7 Dfnon : hr a global varabl ha ncra onooncally h currn h valu of h varabl Inally h global varabl r o o ral valu τ E { n }b a of vn A -ap varabl aocad h ach vn ; x an ha occur hn h valu of h varabl bco x urrn and ap ak on fn pobly unboundd ral valu Dfnon : E { n } b a of vn c l u rprn h conran l - u on h paraon bn h occurrnc of E W call h ourc and h nk of h conran A conran c l u a prcdnc conran f u l > 0 and a concurrncy conran f u 0 l E n E h of all npu vn and E ou E h of all oupu vn E n E ou E E n E ou Dfnon 3: A ng dagra D E drnd by of vn E and h of conran ovr E A conran c l u uch ha and ar of dffrn drcon u b a prcdnc conran h conran n hav on of o pobl nn I an au conran f h nk an npu vn; ohr a co conran Au conran dl h xpcd or aud bhavor of h nvronn hl h co conran dfn h l on h occurrnc of h oupu vn In ohr ord h dvc plnaon u afy h co conran provdd ha h nvronn af h aupon Dfnon 4: ondr a ng dagra D E h c l u h vn graph EG V Eg of D a drcd ghd graph hr h vrx V E and for ach conran c l u n D hr ar o dg n E g labld by u and labld by -l ; h labl calld h gh of h dg An dg n EG labld by gh rprn h conran ha a o-dd conran n D rprnd by o on-dd conran n EG Exapl : Fgur a ho a D hr E ou { 3 } E n { 4 } h conran l u and 3 l 3 u 3 ar au conran h ohr o ar co conran I corrpondng EG gvn by Fgur b Au o n l u l 4 u 4 -l -l 4 u ou 4 ou u 4 u 34 4 l 3 u 3 -l 3 u 3 -l 34 3 n a Fgur : a apl ng Dagra D 3 b b corrpondng Evn graph

A pah p n EG fro o a qunc of dg k- k k A cycl a pah p h gh of a pah h u of h gh of all dg along h pah h hor pah fro o h pah ho gh h all fro aong all h pah fro o h conran y conn f hr no cycl h ngav gh n EG ohr nconn 3 An vn graph can b chckd alon for conncy hch a nal for of ralzably 3 4 5 I aur ha h conran y ha a oluon and hu an occurrnc can b agnd o vry vn A pond ou n 4 5 7 h noon of conncy of h vn graph of a D nuffcn for conrucng corrc plnaon In fac nconncy a pcal ca of non-caualy W no nroduc caual D 5 7: Dfnon 5: In an EG h axu paraon fro vn o vn dfnd a ax - hr and afy h D conran 9 If ax - < 0 hn vn rcly prcd vn I ll knon ha h axu paraon fro o h hor danc fro o n EG 3 W dcrb nx h xcuon anc of h odl undrlyng a D pcfcaon hy ar bad on h noon of a block of vn Dfnon 6: ondr h vn graph EG of a ng dagra D E {EB } b a paron ovr h vn E EB EB EB EB E n or EB E ou Each EB calld an vn block E { k EB l EB uch ha hr an dg fro k o l or fro l o k } E conan all vn fro EB rlad by a conran o o vn n EB h block EB h prdcor of h block EB dnod by EB prdeb f vn E rcly prcd all vn EB ax - < 0 In h ca h vn n E ar calld h rggr of EB n EB h local conran of EB ar ho conran of ha rla par of vn n EB or rla vn n EB o rggr h paron { EB }u alo afy h follong propry: Propry : For all par of block EB EB { EB } f E hn hr EB prdeb or EB prdeb In a conn h rlaon prd nduc a paral ordr < ovr block An vn block EB nabld hn all rggr vn hav occurrd EB bco nabld a f h la rggr occurrd a An nabld vn block EB fxd hn h occurrnc of all vn ar agnd a valu uch ha h local conran of h block ar afd gvn h occurrnc of h rggr If no uch agnn x hn h block canno b fxd Dfnon 7: A paron { EB }of EG caual ff af Propry and vry vn block can b nabld and fxd A D caual f EG ha a caual paron hor 5 7: A D caual ff for ach par of rggr of ach block h axu paraon bn h rggr a copud ung h local conran of h block rcly grar han h axu paraon of ha par copud ovr h nr EG In h r of h papr au ha all D ar caual h a paron { EB } chdulng of vn undr D conran In h prcdng con nroducd o knd of conran n D: au and co W can chdul only h oupu vn conrolld by h co conran nc h npu vn rlad by h au conran ar conrolld by h nvronn In h con prn chdulng algorh for oupu vn of a caual D o of h concp nroducd hr ar lar a n 0 Dfnon 8: A chdul of a D a funcon ha agn an occurrnc o ach oupu vn uch ha all co conran n h ng dagra ar afd gvn any occurrnc of h npu vn afyng h au conran and h occurrnc of prcdng oupu vn uch an agnn of occurrnc calld a vald agnn W fr dcrb a hod o fx an oupu block aung ha all rggr hav occurrd h copl chdul for a caual D can hn b oband block by block follong any oal ordr drvd fro h paral ordr bn block con ondr a block EB { } h rggr r {r } and l h occurrnc of rggr r b h occurrnc of vn EB a funcon of gvn by h local conran of EB: k k k and k b h hor danc fro r o k and h hor danc fro o r k k a : For any vn EB and a rggr r of EB h follong rlaon hold: - and - hr and ar h gh bn and r For any o vn and n EB and an dg fro o h gh h rlaon and hold 3

Proof: h follo drcly fro h dfnon of h hor pah nc a pah gh and n a conn conran graph u hav 0 no ngav cycl larly for uppo ha < hrfor h hor danc fro r o no bcau h pah undrlyng and h dg fro o for a horr pah - conradcon QED a : In a caual D for all vn EB rggr and h local conran of EB h follong hold: ax { } n{ } hr h occurrnc of rggr r r r r r Proof: r and r b any o rggr of EB and EB h danc of h hor pah fro r o r ung local conran of EB and pang hrough nc h y caual by hor hav - < hch nduc h condon - < h hold for any par r r ; hrfor ax { } n{ } QED r r r r Propoon : For all vn EB and all rggr r r of EB h follong hold: ax { } n{ } r r r r Proof: For any rggr r and vn - r r hnc n{ } W can r r prov h ohr half of h nqualy n a lar fahon Q E D orollary : For all EB n{ } a vald occurrnc agnn o ax{ } r r hr n or ax ud for all bu no xd hn on block n gnral Proof: W nd o prov ha for any rggr r and any par of vn and h follong condon ar afd - and - and - W fr prov nc n{ } hr x rggr r a and R b uch ha r r r r a n{ } a and b b n{ } Bad on h dfnon of and hav r r r r a a b b b b a a and hn - a a - a a a - a and - b b - b b b - b boh by a Hnc provn Nx prov r b an arbrary rggr of EB nc a a n{ } hav r By a ax { } rr r r Hnc - I follo ha - - and - Q E D Dfnon 9: Dno h hor danc fro k o r a - k r k and b h hor danc fro r o a k k r k h nrval ax{ r } n{ r } calld h fabl nrval of dnod by Morovr and ar calld h a-oon-a-pobl AAP and h a-la-a-pobl AAP yp of rlav chdul of h oupu vn rpcvly 3 Dcr- chdul W dcu hr h convron of h dn- D pcfcaon no a of dcr- rlav chdul ha can b plnd ung apld npu ynchronou fn a achn ynchronzd by a clock of prod uch a achn can b ud a h nrfac conrollr bn h nvronn and a ynchronou dvc ha run fro h a clock a h conrollr or a a conrollr n hgh-lvl ynh undr ral- conran f h vn of a D rprn h acvaon and dacvaon of o hgh-lvl opraon Fgur llura a apld npu ynchronou FM W ll gv an algorh o drn hhr a clock prod of h FM vald for plnng h conrollr hn hall prn an algorh for ranlang h ng dagra pcfcaon no chduld vron n dcr hr h un a clock ck 4

ynchronzr Prary npu P I prn a P clock obnaonal crcu clock nx a N Prary oupu P O clock Fgur : A apld npu Moor FM nc n gnral h npu ar no ynchronou h h FM clock hy u b fr ynchronzd W au ha h pl ynchronzr ud conng of a ynchronou aplng rgr ha nroduc a on-cycl dlay h propod oluon can b adapd o h ca hr a or coplx ynchronzr ha nroduc a dlay of k > cycl ud In ordr no o any npu gnal ranon u ak ur ha h clock ha a uffcnly hor prod o apl h npu gnal bn any o concuv chang a dfnd by h au conran of h D For conrollng h oupu gnal n a pcfd by h D alo plac a rgr a h oupu o a o hav br conrol ovr h cobnaonal oupu dlay Du o h rgr any oupu chang u b chduld a la on clock cycl afr dcng h la rggr vn h npu o h FM ar h apld npu valu I an ha npu vn u b drnd by xanng h dffrnc bn concuv apld npu valu Evn hough can hu dc h occurrnc of npu vn canno drn hr xac occurrnc ; hn o nrval drnd by h D and h clock prod In h nx con ho ho o fnd h nrval and ho o drn hhr a gvn clock prod vald 3 lock Prod Drnaon In h hod nroducd n h clock prod pcfd by h dgnr and h ool o vrfy ha h prod conn h h conran Hovr hr no algorh gvn o do ha A lar probl x n 3 hr h ynh of d VHD proc dcud In 8 o drn f vald h a achn of h conrollr u b conrucd fr h coplx ynh ak hu u b carrd ou o fnd ou ha h oluon nfabl In addon h hod canno handl lnar au and co ng conran In our approach h valdy of drnd by analyzng h ng conran only Rcall ha an vn block EB { n } ha a rggr r {r r r } An occurrnc agnn o vn of an vn block a funcon ha drn h valu of ach uch ha all h local conran of h ng dagra ar afd gvn h occurrnc of h rggr of h block o drn ha a nubr a vald clock prod hav o chck hhr hr an occurrnc agnn ha af all h conran h rpc o W hu condr h follong o quon: Drn f a vald clock prod and fnd a dcr- chdul n hch h un of Bad on h oluon o can u a bnary arch o fnd h larg vald Evry ru rggr occurrnc ha an aocad aplng a hch dcd b h aplng of r ho ral occurrnc h ru rggr and h aocad aplng u afy h follong of conran hr r and r ar arbrary rggr > 0 an ngr 0 < 3 Rlaon an ha h aplng of rggr can only happn a ulpl of h clock prod Rlaon a ha h dffrnc bn h aplng and h ral of a rggr n h nrval 0 and Rlaon 3 conran h dffrnc bn o dffrn rggr occurrnc o b n h nrval a gvn n h vn graph Dfnon 0: h of pobl ru rggr aocad h ach aplng { 0 ; } < ax b h la valu uch ha for any 5

ax n b h gra valu afyng n Exapl : ondr h vn graph hon n Fgur 3 and au ha ach vn on a dffrn por r and r b npu vn and O an oupu vn Whou lo of gnraly can au ha h aplng of h npu r 0 3 h aplng of r can b 3 6 or 9 rlav o 0 r - -5 r 7 4 8-5 Fgur 3: Evn Graph of Exapl For 0 and 3 h ru rggr and afy 5 7 fro 3 and 3 < 0 and 0 < 3 fro h aocad ru rggr 03 { 5 7 3 < 0 0 < 3} h ax 03 3 n 03 ax03 - n 03-3 larly for 0 and 6 h ru rggr 06 { 5 7 3 < 0 3 < 6} hrfor ax 06 6 and n 06 3 ax03 0 n03-3 Fnally for 0 and 9 h ru rggr 09 { 5 7 3 < 06 < 9 } yldng ax 09 7 and n 09 6 a hon by h rangl GFE ax03 0 n03 - nc chdulng h occurrnc of any oupu vn EB { n } can b don only n ulpl of rlav o h aplng rggr u o rprn h ynchronzd occurrnc of h oupu h follong u hold for any rggr r { r r r} : k 4 h a ha all h pobl rggr n har h a chdul for h oupu vn; orovr h dffrnc bn h oupu vn and h aplng of h rggr a ulpl of h clock prod I follo fro 4 ha for any o oupu vn and dvbl by h conran can hu b odfd a h gh can b changd o O Fnally h local conran of h block u b afd For any oupu vn and and any rggr r h follong rlaon u b afd: 5 6 Bad on h rul of oupu chdulng Propoon for ach rggr uch ha h pobl occurrnc agnn o an oupu vn u hu b n h nrval ax { r } n{ r } hrfor f o b a vald clock prod hn for ach oupu vn hav ax{ r } n{ r } hr h nrcon of nrval dfnd a ab cd axac nbd If axac > nbd hn ab cd I follo ha hr ax{ r } n{ r } df n n 6

7 } } { ax ax{ }} {ax{ ax r r n } {ax ax r for any ax and } } { n n{ }} {n{ n r r n } {n n r for any n Propoon : Gvn a of aplng }} { { r r r r f for all oupu vn h rlaon 7 afd hn h } { EB a vald AAP occurrnc agnn for h vn n h oupu vn block If 7 do no hold hn hr no occurrnc ha af all h conran Proof: If > hn no valu n h nrval dvbl by hrfor n h ca hr no vald occurrnc agnn for a a ulpl of rlav o h apld occurrnc of h rggr No ha h AAP chdul xprd n clock cycl u b grar or qual o on o ak no accoun h dlay nroducd by h oupu rgr uppo no ha 7 hold W nd o prov ha h } } { { n EB a vald occurrnc agnn for h vn n EB for any rggr r and any par of vn and h follong condon u b afd: ; and Hovr r } {ax ax and hu hr x rggr r uch ha } {ax r and r uch ha ax r hr and ar o non-ngav nubr l han uch ha and can b dvdd by I follo ha : ax ax r r ax ax r r hrfor for an arbrary rggr r n ax ax r r r n Bad on and h follong dducon ay o follo ax ax r r r r On h ohr hand and ar dvbl by < hu W no prov Bad on h follong nqual hold r r ax n r r QED orollary : For o b a vald clock prod condon 7 u b afd for all pobl aplng of h rggr

Exapl 3: ondr agan h vn graph n Fgur 3 W h o drn hhr 3 vald h pobl rggr aplng ar 0; 3 6 and 9 For ach pobl vrfy 7 ung Propoon : 03 o ax{ ax03 ax03 5} ax{- 35}9 03 o3 3 03 o n{n03 4 n03 8 n 3 4 8 0 06 o ax{ ax06 ax06 5} ax{0 65} 06 o3 4 06 o n{n06 4 n06 8 n 3 43 8 nc 3 * 06 o3 > 06 o3 hr no fabl agnn for o: hn h aplng rggr ar 0 6 h ru rggr could b 0 6; hrfor o afy h o conran h oupu ha o b grar han and dvbl by 3 hch Furhror h ru rggr could alo b -5 3 If h oupu h dffrnc bn r and o 45 >4 volang h axu bound of 4 on h paraon bn o and r If chang h conran by rplacng o r - by o r -; r o 8 by r o 0 r o 4 by r o 5 can hn vrfy ha 3 bco a vald clock prod 03 o ax{ ax03 ax03 5} ax{- 35}0 03 o3 4 03 o n{n03 5 n03 0 n 3 5 0 06 o ax{ ax06 ax06 5} ax{0 65} 06 o3 4 o n{n 5 n 0 n 3 53 0 06 06 06 o ax{ax ax 5 ax{0 7 5} 09 o3 4 09 09 09 o n{n 5 n 0 ax{ 56 0} 4 09 09 09 r - -5 r 7 5 0-5 Fgur 4: Modfd vn graph hrfor h agnn o af all h pobl npu aplng O o drn h occurrnc of h vn n an oupu block gvn a vald only nd o kno h axu paraon r and r bn h oupu vn and h rggr hr h axu paraon ar copud ovr h co conran h gh adud o ulpl of h clock prod a Onc h axu and nu paraon ar copud hr no nd o kp h conran bn h oupu vn bcau h occurrnc agnn bad on h axu and nu paraon af all h orgnal ng conran bn h oupu vn provdd ha h npu afy all h aupon and h D caual I follo ha can odfy h vn graph o ha h conran bn h rggr and h oupu vn ar of h for r and r h rulng D hu ha no oupu o oupu conran n h a vn block bu all h vn u b chduld a AAP or a AAP h abov proc uarzd n h follong algorh ha copu h occurrnc chdul for oupu vn n a caual D gvn a vald clock prod Algorh Gvn a vald odfy h conran bn oupu vn and fro o For ach oupu block copu h axu paraon r and r of ach vn h rpc o h rggr a dfnd by h local conran of h block Rplac h conran bn vn and hr rggr by h axu paraon rlav o h rggr Rov all conran bn oupu vn n h a block 8

3 For ach oluon of quaon and 3 vrfy ha condon 7 hold If 7 do hold for all ca can chdul AAP h occurrnc a { EB} Exapl 4: Nx ho a or coplx xapl h D and block rucur hon n fgur 5 W apply h abov algorh o drn f 0 a vald clock prod and f y hn copu h dcr- rlav AAP chdul for h oupu vn 05 50 5 30 5 30 3 o o -5 5 80 35 30 0 60 o3 o4 0 60 5 0-30 30-5 50-5 - 0 3 o o 80 0 30 30-0 -0 60-0 o3-0 60 Fgur 5: Block rucur of xapl 4 Fgur 6: Modfd graph oupu parad by ulpl of clock prod Accordng o p odfy h conran bn oupu vn o h ulpl of 0 and oban h vn graph of Fgur 6 In h nx p calcula h hor danc bn h oupu vn and h rggr and hn odfy h conran o h oupu vn Fgur 7 gv h n odfd D h block rucur no hon n h D hovr h a a n Fgur 5 0 5 5 30 5 30 5 30 5 30 o 5 60 o3 5 60 o 0 60 o4 6 50 35 o4 Fgur 7: Modfd D afr p of h algorh Whn 0 hav o pobl aplng for h npu vn and hch ar 0 0 and 0 hrfor hav ax00 0 n00-0 ax00 0 n00-0 ax00 0 n00-5 ax00 5 and n00 0 h chdul of h oupu vn o o and o 3 ar drnd a follo No ha h conran for o and o ar xacly h a hrfor only nd o calcula on of chdul o ax{ax o ax o } ax{0 50 5} 5 3 0 60 0 0 00 00 0 0 o n{n00 o n00 o } n{ 0 30 0 30} 0 W can fnd h ohr valu n a lar ay: 00 o 3 5 00 o 3 50 00 o 0 00 o 5 00 o 3 3 0 00 o 3 55 hrfor h AAP chdul : 0 3 0 or 3 W nx condr h 0 block h only on vn 3 Gvn 0 or h aplng of 3 3 3 4 4 3 5 or 6 Ung AAP chdulng hav 4 oncluon In h papr a n ay for chdulng vn undr ral- conran and for h ynh of nrfac conrollr bad on ng dagra pcfcaon a dcrbd h hod allo o drn a vald clock prod and uabl for ynchronou y plnaon An algorh for drvng AAP and AAP rlav chdul 9

for h oupu acon a prnd for caual pcfcaon Expcd applcaon of h hod rang fro hgh-lvl ynh o h ynh of apld-npu ynchronou nrfac conrollr Rfrnc M McFarland A Parkr R apoano "h hgh-lvl ynh of dgal y" Proc of h IEEE No Fbruary 990 G Borrllo R H Kaz "ynhzng randucr fro nrfac pcfcaon" VI 87 Norh Holland 403-48 988 3 J Brzozok Gahlngr and F Mavadda "onncy and afably of Wavfor ng pcfcaon" Nork Vol pp 9-07 99 4 G Borrllo "Foralzd ng Dagra" Proc Euro-DA 9 pp 37-377 99 5 nk "Exndd ng Dagra a a pcfcaon languag" Proc Euro-DA 94 pp8-33 994 6 R chlor "A provr for VHD-bad hardar dgn" Proc IFIP HD 95 995 7 K McMllan and D Dll "Algorh for nrfac ng vrfcaon" Proc IEEE ID 99 8 E Walkup G Borrllo "Inrfac ng Vrfcaon h Applcaon o ynh" Proc DA 94 994 9 Yn A Ih A aavan W Wolf "Effcn Algorh for nrfac ng vrfcaon" Euro-DA 994 0 G D Mchl ynh and Opzaon of Dgal rcu McGra-Hll Inc N York 994 W Gra Grob nk and W dann "ng dagra a a pcfcaon languag for nrfac crcu and hr ranforaon no ynchronou FM" BENEFI-DMM 95 pp80-35 p 995 W dann "An approach o ul-paradg conrollr ynh fro ng dagra pcfcaon" Euro- DA 9 99 3 P Gubrl W Ronl "Inrfac pcfcaon and ynh for VHD Proc" Euro-DA 993 4 K Khordoc E rny "Modlng cll procng hardar h acon dagra" Proc IA 94 994 5 K Khordoc E rny anc and Vrfcaon of ng Dagra h nar ng onran accpd o AM ranacon on Dgn Auoaon of Elcronc y ODAE May 997 5 p 6 P Mochlr H Aann F Pllandn "Hgh-vl Modlng ung Exndd ng Dagra" Proc Euro- VHD '93 Haburg FRG p 993 pp 494-499 7 K Khordoc Acon Dagra: A Mhodology for h pcfcaon and Vrfcaon of Ral- y PhD h Dp of Elcrcal and opur Engnrng McGll Unvry March 996 8 W-D dann "Inroducng lock ycl" Rpor OPRODEUPA995 Unvry of Paau Nov995 9 B Brkan Gandrabur E rny Algbra of ouncang ng har for Dcrbng and Vrfyng Hardar Inrfac Proc IFIP onf on opur Hardar Dcr anguag HD 97 997 0 P Groda E rny WJ Oldr olvng nar Mn and Max onran y Ung P bad on Rlaonal Inrval Arhc J on hor op cnc 73 Fb97 P Groda E rny Inrfac ng Vrfcaon h Dlay orrlaon Ung onran ogc Prograng ED& 97 D Ku G D Mchl Rlav chdulng undr ng onran: Algorh for Hgh-vl ynh of Dgal rcu IEEE ran AD I 6 Jun 99 pp 696-78 Acknoldgn: h ork a parally uppord by an Mcron Gran No 4M 0