DYNAMIC PROGRAMMING APPROACH TO TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE



Similar documents
Constrained Renewable Resource Allocation in Fuzzy Metagraphs via Min- Slack

Finite Dimensional Vector Spaces.

DEVELOPMENT OF MODEL FOR RUNNING DIESEL ENGINE ON RAPESEED OIL FUEL AND ITS BLENDS WITH FOSSIL DIESEL FUEL

REVISTA INVESTIGACIÓN OPERACIONAL VOL., 32, NO. 2, , 2011

Sequences and Series

CCD CHARGE TRANSFER EFFICIENCY (CTE) DERIVED FROM SIGNAL VARIANCE IN FLAT FIELD IMAGES The CVF method

THE EFFECT OF GROUND SETTLEMENTS ON THE AXIAL RESPONSE OF PILES: SOME CLOSED FORM SOLUTIONS CUED/D-SOILS/TR 341 (Aug 2005) By A. Klar and K.

16. Mean Square Estimation

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Important result on the first passage time and its integral functional for a certain diffusion process

Network Analyzer Error Models and Calibration Methods

Power Means Calculus Product Calculus, Harmonic Mean Calculus, and Quadratic Mean Calculus

Chapter 3 Chemical Equations and Stoichiometry

Higher. Exponentials and Logarithms 160

Evaluating Microsoft Hyper-V Live Migration Performance Using IBM System x3650 M3 and IBM N series N5600

Initial inventory levels for a book publishing firm

Matching Execution Histories of Program Versions

Paper Technics Orientation Course in Papermaking 2009:

Problem Set 6 Solutions

Comparing plans is now simple with metal plans. What Does it Mean to Have a 6-Tier Pharmacy Plan? Tie. Individual Health Insurance

Quality and Pricing for Outsourcing Service: Optimal Contract Design

Modern Portfolio Theory (MPT) Statistics

Applying the actuarial control cycle in private health insurance

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis

tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu -

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture

Online Insurance Consumer Targeting and Lifetime Value Evaluation - A Mathematics and Data Mining Approach

AC Circuits Three-Phase Circuits

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

Managing Multiple Outsourcing: Service Quality and Volume Issues

Neural Networks for Process Monitoring, Control and Fault Detection: Application to Tennessee Eastman Plant

Uses for Binary Trees -- Binary Search Trees

Consistency Test on Mass Calibration of Set of Weights in Class E 2 and Lowers

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

Online Load Balancing and Correlated Randomness

A simple algorithm to generate the minimal separators and the maximal cliques of a chordal graph

Architecture of the proposed standard

Average Price Ratios

Masters Mens Physique 45+

Auburn University Style Guide & Identification Standards Manual

Evaluating Direct Marketing Practices On the Internet via the Fuzzy Cognitive Mapping Method

THE well established 80/20 rule for client-server versus

Chapter Eight. f : R R

APPENDIX III THE ENVELOPE PROPERTY

6.7 Network analysis Introduction. References - Network analysis. Topological analysis

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

How To Get A Pension In Chile

QUANTITATIVE METHODS CLASSES WEEK SEVEN

SAN JOSE UNIFIED RETURNING VOLUNTEER DRIVER PACKET

ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS WITH COMPOUND POISSON DEMAND

Batteries in general: Batteries. Anode/cathode in rechargeable batteries. Rechargeable batteries

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

10.5 Future Value and Present Value of a General Annuity Due

Improved PKC Provably Secure against Chosen Cipher text Attack

Question 3: How do you find the relative extrema of a function?

(Analytic Formula for the European Normal Black Scholes Formula)

Authenticated Encryption. Jeremy, Paul, Ken, and Mike

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

english parliament of finland

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Venture Capital Financing : A Theoretical Model

REFINED CALCULATION AND SIMULATION SYSTEM OF LOCAL LARGE DEFORMATION FOR ACCIDENT VEHICLE

ANALYSIS APPROACHES OF SSO BASED ON LDAE MODEL

Change Your History How Can Soccer Knowledge Improve Your Business Processes?

Numerical Methods with MS Excel

Adverse Selection and Moral Hazard in a Model With 2 States of the World

Assessing Software Reliability Using SPC An Order Statistics Approach

Exponential Generating Functions

Measuring the Quality of Credit Scoring Models

Whole Systems Approach to CO 2 Capture, Transport and Storage

Integrated inventory model with controllable lead time involving investment for quality improvement in supply chain system

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks

Approximate Counters for Flash Memory

Curve Fitting and Solution of Equation

NEURAL DATA ENVELOPMENT ANALYSIS: A SIMULATION

MODULE 3. 0, y = 0 for all y

Term Structure of Interest Rates: The Theories

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS

A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).

A Quick Guide to Colleges. Offering Engineering Degrees

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform

On Error Detection with Block Codes

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

WORKERS' COMPENSATION ANALYST, 1774 SENIOR WORKERS' COMPENSATION ANALYST, 1769

Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for High Strength Steel Sheets in Automobile Bodies

STATEMENT OF INSOLVENCY PRACTICE 3.2

Knowledge as a Service

Tax Collection, Transfers, and Corruption: the Russian Federation at the Crossroads 1)

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

Transcription:

DYAMIC PROGRAMMIG APPROACH TO TESTIG RESOURCE ALLOCATIO PROBLEM FOR MODULAR SOFTWARE P.K. Kpur P.C. Jh A.K. Brdh Astrct Tstg phs of softwr gs wth modul tstg. Durg ths prod moduls r tstd dpdtly to rmov mxmum possl umr of fults wth spcfd tm lmt or tstg rsourc udgt. Ths gvs rs to som trstg optmzto prolms, whch r dscussd ths ppr. Two Optmzto modls r proposd for optml llocto of tstg rsourcs mog th moduls of Softwr. I th frst modl, w mxmz th totl fult rmovl, sujct to udgtry Costrt. I th scod modl, ddtol costrt rprstg sprto lvl for fult rmovls for ch modul of th softwr s ddd. Ths modls r solvd usg dymc progrmmg tchqu. Th mthods hv llustrtd through umrcl xmpls. Ky words: Softwr Rllty, o Homogous Posso Procss, Rsourc Allocto, Dymc Progrmmg. Itroducto Growth softwr grg tchology hs ld to producto of softwr for hghly complx stutos occurrg dustry, sctfc rsrch, dfs d dy to dy lf. Cosqutly, th dpdc of mkd o computrs d computrsd systms s crsg dy y dy. Ay flur ths systms c cost hvly trms of moy d/or hum lvs. Though hgh rllty of hrdwr prt of ths systms c gurtd, th sm cot sd for softwr. Thrfor lot of mportc s ttchd to th tstg phs of th softwr dvlopmt procss, whr roud hlf th dvlopmtl rsourcs r usd [8]. Esstlly tstg s procss of xcutg progrm wth th xplct tto of fdg fults d t s ths phs, whch s mdl to mthmtcl modlg. It s lwys dsrl to rmov susttl umr of fults from th softwr. I fct th rllty of softwr s drctly proportol to th umr of fults rmovd. Hc th prolm of mxmzto of softwr rllty s dtcl to Dprtmt of Oprtol Rsrch, Fculty of Mthmtcl Sccs, Uvrsty of Dlh, Dlh 0007, IDIA 7

tht of mxmzto of fult rmovl. At th sm tm tstg rsourc r ot ulmtd, d thy d to judcously usd. I ths ppr w dscuss d solv such mgmt prolm of llocto of tstg rsourcs mog moduls, through Softwr Rllty Growth Modl SRGM. A Softwr Rllty Growth Modl SRGM s rltoshp tw th umr of fults rmovd from softwr d th xcuto tm/cpu tm/cldr tm. Svrl ttmpts hv md to rprst th ctul tstg vromt through SRGMs [,4,5,9]. Ths modls hv usd to prdct th fult cott, rllty d rls tm of softwr. SRGMs hv lso usd to mg th tstg phs. Ag lrg softwr cossts of moduls. Oft ths moduls r dvlopd dpdtly d ch modul my cot dffrt umr of fults d tht of dffrt svrty. Thrfor dstct SRGMs should usd to rprst th tstg procss of ch modul, s tstg for ths moduls r do dpdtly. A SRGM wth tstg ffort [9] hs chos to rprst th fult rmovl procss for th two optmzto prolms dscussd ths ppr. Th frst optmzto modl P mxmzs th totl umr of fults xpctd to rmovd, wh vll tstg rsourc s kow. Th mgmt ormlly sprs for som rllty lvl tht c trsltd trms of umr of fults rmovd. I th scod optmzto modl P w dd costrt P trms of mmum umr of fults sprd to rmovd from ch modul. Dymc progrmmg tchqu s usd to solv ths prolms. Ths s th frst tm tht ths hs do softwr grg, ccordg to our kowldg. Dymc progrmmg pproch, whch s sy to solv d udrstd provds glol optm for ths prolms. Th mthodology dscussd th ppr hs llustrtd through umrcl xmpls. ottos : umr of moduls th Softwr > : Expctd umr of fults th th modul,,, : Proportolty costt for th th modul x t : Currt tstg ffort xpdtur t tstg tm t t d t x w dw for th modul 0, : Th mout of tstg rsourc to lloctd to th th modul d totl tstg rsourc vll. m t : umr of fults rmovd 0,t] th th modul, m vlu fucto of HPP,,, T : Totl tstg tm * : Optml vlu of,,, f : Optml umr of fults rmovd upto th moduls.. corrspodg to th stg Dymc Progrmmg lgorthm 8

o : Asprto lvl of th modul.. umr of fults dsrd to rmovd from th modul p : Th mmum proporto of totl fults to rmovd from th modul.. Mthmtcl Modllg. Rsourc Allocto Prolm Cosdr softwr hvg moduls, whch r g tstd dpdtly for rmovg fults lyg dormt thm. Th durto of modul tstg s oft fxd wh schdulg s do for th whol tstg phs. Hc lmtd rsourcs r vll, tht d to lloctd judcously. If m fults r xpctd to rmovd from th th modul wth ffort, th rsultg tstg rsourc llocto prolm c sttd s follows [5,6]. mx m sujct to, 0,,, P Aov optmzto prolm s th smplst o s t cosdrs th rsourc costrt oly. Ltr ths ppr, w corport ddtol costrts to th sc modl. For solvg P fuctol rltoshp tw fult rmovl d rsourc cosumpto s rqurd, whch s dscussd th followg scto.. SRGM For Moduls A Softwr Rllty Growth Modl xpls th tm dpdt hvor of fult rmovl. As moduls r tstd dpdtly dstct SRGMs would rprst thr rllty growth. Th fluc of tstg ffort c lso cludd th SRGMs [9]. I ths ppr w dscuss th rsourc llocto prolm usg such SRGM for th moduls. Modl Assumptos. Softwr cosst of ft umr of moduls d tstg for ch modul s do dpdtly 9

. A modul s sujct to flurs t rdom tm cusd y fults rmg th softwr. 3. O flur, th fult cusg tht flur s mmdtly rmovd d o w fults r troducd. 4. Fult rmovl phomo s modlld y o Homogous Posso Procss HPP. 5. Th xpctd umr of fults rmovd t, t t to th currt tstg rsourc s proportol to th xpctd rmg umr of fults. Udr ssumpto 5, followg dffrtl quto my sly wrtt for th modul d m t dt m t,,,. x t Solvg quto wth th tl codto tht, t t 0, t 0, m t 0 w gt t m t,,, To dscr th hvour of tstg ffort, thr Expotl or Rylgh fucto hs usd [5,9]. Both c drvd form th ssumpto tht, " th tstg ffort rt s proportol to th tstg rsourc vll". d t c t [ α t ],,, 3 dt whr c t s th tm dpdt rt t whch tstg rsourcs r cosumd, wth rspct to th rmg vll rsourcs. Solvg quto 3 udr th tl codto 0 0 w gt t t α xp c k dk,,, 4 0 Wh c t β, costt β t t α,,, 5 If c t β. t, gvs Rylgh typ curv t β t α,,, 6 I ths ppr w hv chos xpotl fucto 5 to rprst tstg ffort th optmzto prolms. 30

.3 Estmto Of Prmtrs Th tstg ffort dt r gv th form of tstg ffort x k x < x <... < x cosumd tm 0, t ] ;,,..,. Th tstg ffort modl prmtrs α d β c stmtd y th mthod of lst squrs s follows. Mmz [ ˆ ] sujct to ˆ.. th stmtd vlu of tstg ffort s qul to th ctul vlu. Oc th stmts of α d β r kow, th prmtrs of th SRGMs for th moduls c stmtd through Mxmum Lklhood Estmto mthod usg th udrlyg Stochstc Procss, whch s dscrd y o Homogous Posso Procss. Durg stmto, stmtd vlus of α d β r kpt fxd. If th fult rmovl dt for modul s gv th form of cumultv umr of fults rmovd y j tm 0,t j ]. Th lklhood fucto for tht modul s gv s y y [ m ] t j m t j j j m t j m t j L, / y, W y j j y j! 3. Optml Allocto Of Rsourcs From th stmts of prmtrs of SRGMs for moduls, th totl fult cott th softwr s kow. Moduls tstg ms t rmovg mxmum umr of thm, wth vll rsourcs. Hc P c rsttd s Mxmz m Sujct to, 0,, PA PA c solvd usg Dymc Progrmmg Approch. From Bllm's prcpl of optmlty, w c wrt th followg rcursv quto []. 3

{ } { f } f mx f mx,,, 7 0 To dx th moduls, thy c rrgd dscdg ordr of thr vlus of...... Through ths pproch rsourcs r lloctd to th moduls squtlly. But for som vlus of < r o or mor moduls wth hghr dx umr.. hvg lowr dtctlty my ot gt y llocto. W summrz ths rsult th followg smpl thorm. Thorm - If for y,,;, th vlus of,,... r zro d prolm rducs to - stg prolm wth r r r r log, r,,- r r rr 8 whr d / j j j,,, j j j Proof of th thorm s gv ppdx. As rsult of th ov llocto procdur, som moduls my ot tstd t ll. Ths stuto s ot dvsl. Ag mgmt oft sprs to chv crt mmum rllty lvl for th softwr d tht for ch modul of th Softwr.. crt prctgs of th fult cott ch modul of th Softwr s dsrd to rmovd. Hc P ds to sutly modfd to mxmz rmovl of fults th softwr udr rsourc costrt d mmum dsrd lvl of fults to rmovd from ch of th moduls th softwr. Th rsultg tstg rsourc llocto prolm c sttd s follows: mx m sujct to m p,,, 0 3

, 0,,, P P c solvd usg Dymc Progrmmg Approch thr y rducg th dmsolty of th prolm through Lgrg multplr or covrtg to P y susttuto. W frst cosdr th dmsolty rducto Dymc Progrmmg Approch [] s follows. [ α { }] 0 mx mφ, α α sujct to, α 0,, P3 Whr α,, s Lgrg multplr for th costrt corrspodg to th th modul. Th ov prolm c solvd y Dymc Progrmmg pproch whch Kuh-Tuckkr optmlty codtos r otd t ch stg []. At y stg α,, c zro or o-zro dpdg upo ffctvss or ffctvss of costrt rspctvly. Hc ch stg hs two posslts d corrspodg to ch posslty of prcdg stg prst stg hs two posslts. So t y stg, totl umr of css s -. Ifct, ov prolm rducs to tht of fdg optml pth y srchg for optml soluto t ch stg whch oly o opto could chos. Ths procdur dos ot provd closd form soluto. Hc wthout furthr lorto of th ov mthod, th susttuto mthod s doptd for covrtg th prolm P to th prolm P s follows: m mpls 0 0 Hc, 0 log sy,,, Thrfor P c rsttd s, Mxmz m sujct to,,, 0,,, P4 33

Lt Y,,, th P4 c wrtt s th prolm P gv low Y mx m mx sujct to Y sy Y 0,,,,,, P5 0 Th Prolm P5 s smlr to th prolm P d hc usg thorm- th prolm P5 c lso solvd. If for y,,,th Y, Y,..., Y r zros, th prolm P5 rducs to stg prolm d ts soluto s gv s Y log,,,- 9 f 0 Through quto 9 optml llocto of rsourcs to th moduls c clcultd. I th followg scto w umrclly llustrt ths rsults. 4. umrcl Exmpl It s ssumd tht prmtrs d for th th modul,... r lrdy stmtd usg th softwr flur dt. Cosdr softwr hvg 0 moduls whos prmtr stmts r s gv Tl-. Suppos th totl rsourc vll for tstg s 97000. Frst th prolm P s solvd d from th rcurso quto 7 optml llocto of rsourcs * for th moduls r computd. Ths r lstd Tl- log wth th corrspodg xpctd umr of fult rmovd, prctgs of fults rmovd d fults rmg for ch modul. Th totl umr of fults tht c rmovd through ths llocto s 5.. 60.6% of th fult cott s rmovd from th Softwr. It s osrvd 34

tht som moduls modul-9,0 th rmg fults ftr llocto s hgh. Ths c ld to frqut flur durg oprtol phs. Ovously ths wll ot stsfy th dvlopr d h my dsr tht t lst 50% of fult cott from ch of th moduls of th Softwr s rmovd.. p 0.5 for ch 0. Sc fults ch modul r tgrl vlus, rst tgr lrgr th 50% of th fult cott ch modul s tk s lowr lmt tht hs to rmovd. Th w llocto of rsourc log wth xpctd umr of fult rmovd, prctgs of fults rmovd d fults rmg for ch modul ftr solvg th prolm P through th prolm P5 s summrzd Tl-. Th totl umr of fults tht c rmovd through ths llocto s 46.8.. 58.4% of th fult cott s rmovd from th Softwr. I ddto to th ov f t s dsrd tht crt prctg of th totl fults r to rmovd th ddtol tstg rsourcs would rqurd. It s trstg to study ths trdoff d Tl-3 summrzs rsults, whr th rqurd prctg of fults rmovd s 60%. To chv ths, 3000 uts of ddtol tstg ffort s rqurd. Th totl umr of fults tht c rmovd through ths llocto s 50.8.. 60.09% of th fult cott s rmovd from th Softwr. Alyss gv Tls-, d 3 hlp provdg th dvlopr sght to th rsourc llocto d th corrspodg fult rmovl phomo d th ojctv c st ccordgly. Modul * m * % of fults rmovd Tl - % of fults rmg 63 5.33E-05 5435 46.7689 74.4 5.76 3 0.0005 580.7 9.56979 73.6 6.39 3 6 0.00056 459.5 4.3553 7.59 7.4 4 5 5.7E-05 549 34.57 67.7 3.83 5 5 0.0007 6354.5 9.93004 66. 33.8 6 39 5.7E-05 6554 3.8778 6.3 38.77 7 9.94E-05 8857..96 58.53 4.47 8 9 0.00074 34.3 4.03476 44.83 55.7 9 3 5.06E-05 5845.6 5.8866 5.59 74.4 0 8.78E-05 5.9.458 0.4 89.59 Totl 5 97000 5.7 60.6 39.4 35

Modul o * Y * m Y m * % of fults rmovd Tl- % of fults rmg 63 3 3300 7495.5 0. 4 67 33 3 7 3064.6 35.6.6 8 66. 33.79 3 6 3 37.3 67. 0.89 4 64.89 35. 4 5 6 3793 969.7 3.56 30 57.96 4.04 5 5 8 4464.8 440.4 0.5 8 56.7 43.9 6 39 0 565 0 0 0 5.8 48.7 7 7465.7 0 0 5.38 47.6 8 9 5 465.5 0 0 5 55.56 44.44 9 3 4586 0 0 5.7 47.83 0 6 8978. 0 0 6 54.55 45.45 Totl 5 30 8487 83.3 6.8 46 58.48 4.5 Tl-3 Modul o * Y * m Y * m * % of fults rmovd % of fults rmg 63 3 3300 864.7.74 94.6 44 69.43 30.57 3 7 3064.6 474..93 4538.8 9 68.7 3.3 3 6 3 37.3 786.5.048 03.79 4 67.47 3.53 4 5 6 3793 434.5 5.3 797.4 3 6.05 38.95 5 5 8 4464.8 793.6 0.984 557.95 9 59.9 40. 6 39 0 565 0 0 565.5 0 5.3 48.7 7 7465.7 0 0 7465.66 5.38 47.6 8 9 5 465.5 0 0 465.5 5 55.55 44.45 9 3 4586 0 0 4585.7 5.8 47.8 0 6 8978. 0 0 8978. 6 54.55 45.45 Totl 5 30 8487 583 0.8 00000 5 60.09 39.9 36

5. Cocluso I ths ppr w hv dscussd coupl of optmzto prolms occurrg durg modul tstg phs of softwr dvlopmt lf cycl. A dymc progrmmg pproch for fdg th optml soluto hs proposd. Usg smpl rcurso qutos t s show how fult rmovl for ch modul d tht of th softwr c mxmzd, y judcous llocto of rsourcs. It s osrvd tht ftr crt durto of tstg, fult rmovl coms dffcult th ss tht grtr ffort wll rqurd to rmov ch ddtol fult. As th rllty of softwr s of utmost mportc sctfc dcso mkg s rqurd whl dcdg th rsourc udgt. Th trdoff s show scto-4 c usful ths rgrd. Altrtvly f th dvlopr s ot too k o optml soluto ut s stsfd wth ffct soluto, Gol Progrmmg pproch my dsrl tht cs. W r furthr lookg to ths spct. Appdx: Proof of th thorm- W hv followg rcurso qutos gv 7: mx { f } f mx { f },,, 0 Th ov prolm c solvd through forwrd rcurso stgs s follows. Stg-: Lt th w hv mx { f } Stg-: Lt th w hv { } f f mx 0 Susttutg f ov w hv f mx 0 { } 37

38 ow lt, { } F th { } mx 0 F f Th mxm c foud through clculus. d Th suffccy codto c chckd through th scod drvtv codto: 0 d F d Th followg thr stutos c occur. 0 < d 0 d 0 > d If 0 < d, th 0. At 0 0 < d.. < Whch mpls >, othr words th dtctlty modul - s hghr th modul. Smlrly 0 > d mpls d w hv > Hc >, th tstg rsourcs would lloctd to modul - frst s th dtctlty s hghr thr. Flly f 0 d log,.. log,

39 d f.. f Whr,, ow procdg y ducto t c show for th stg, log d f for Th proof s complt. Rfrcs. Gol A.L., Softwr Rllty Modls: Assumptos, lmttos d pplclty, IEEE Trs. O softwr grg, SE-, pp. 4-43, 985.. Hdly, G., olr d Dymc Progrmmg, Addso-Wsly, Rdg Mss, 964. 3. Ichmor, T, Ymd, S. Ad shwk M., Optml llocto polcs for tstg-rsourc sd o Softwr Rllty Growth Modl, Procdgs of th Austrl Jp workshop o stochstc modls grg, tchology d mgmt, pp. 8-89, 993. 4. Kpur P.K. d Grg R.B.; Cost rllty optmum rls polcs for softwr systm wth tstg ffort, OPSEARCH, vol. 7, o., pp. 09-8, 990. 5. Kpur P.K., Grg R.B. d Kumr, S.; Cotrutos to Hrdwr d Softwr Rllty, World Sctfc, Sgpor, 999.

6. Kpur, P.K. d Brdh, A.K., Modllg, llocto d cotrol of rsourcs: trdscplry pproch softwr rllty d mrktg, Oprtos Rsrch, Eds. M. Agrwl d K. S, ros Pulshg Hous, w Dlh 00. 7. Kut P. d Koch H.S., Mgg tst procdurs to chv rll softwr, IEEE Trs. O Rllty, ol. R-3, pp. 99-303, 983. 8. Mus J.D., Io A. Ad Okumoto K, Softwr Rllty- Msurmt, Prdcto d Applcto, Mc Grw Hll, 987. 9. Ymd S. Ad Ohtr H. Ad rhs H., Softwr Rllty Growth Modl wth tstg ffort, IEEE Trs. O Rllty, vol. R-35, pp. 9-3, 986. 40