Introduction to Detection Theory



Similar documents
Signal Detection. Outline. Detection Theory. Example Applications of Detection Theory

The CUSUM algorithm a small review. Pierre Granjon

Lecture 8: Signal Detection and Noise Assumption

CHAPTER 2 Estimating Probabilities

Interpreting Kullback-Leibler Divergence with the Neyman-Pearson Lemma

Message-passing sequential detection of multiple change points in networks

False Discovery Rates

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY

1 Maximum likelihood estimation

Lecture 9: Bayesian hypothesis testing

33. STATISTICS. 33. Statistics 1

Introduction to Probability

Principle of Data Reduction

UNIVERSITY OF MINNESOTA. Alejandro Ribeiro

Optimal Stopping in Software Testing

. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

Inference of Probability Distributions for Trust and Security applications

Bayesian probability theory

Linear Classification. Volker Tresp Summer 2015

Statistical Machine Learning

CPC/CPA Hybrid Bidding in a Second Price Auction

Introduction to General and Generalized Linear Models

A New Interpretation of Information Rate

A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University

Multivariate Analysis of Variance (MANOVA): I. Theory

Lecture 3: Linear methods for classification

Comparison of Network Coding and Non-Network Coding Schemes for Multi-hop Wireless Networks

1 Prior Probability and Posterior Probability

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski.

LOGNORMAL MODEL FOR STOCK PRICES

Basics of Floating-Point Quantization

How To Check For Differences In The One Way Anova

ALOHA Performs Delay-Optimum Power Control

The Basics of Graphical Models

On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information

Basics of Statistical Machine Learning

Recursive Estimation

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

Distributed Detection Systems. Hamidreza Ahmadi

Stochastic Inventory Control

Nonparametric adaptive age replacement with a one-cycle criterion

THE CENTRAL LIMIT THEOREM TORONTO

Statistics in Retail Finance. Chapter 6: Behavioural models

A Statistical Framework for Operational Infrasound Monitoring

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania

Signal Detection C H A P T E R SIGNAL DETECTION AS HYPOTHESIS TESTING

Monte Carlo testing with Big Data

Radar Systems Engineering Lecture 6 Detection of Signals in Noise

A direct approach to false discovery rates

CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE

Three-Stage Phase II Clinical Trials

Optimal Performance for Detection Systems in Wireless Passive Sensor Networks

Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel

Important Probability Distributions OPRE 6301

Chapter 6: Point Estimation. Fall Probability & Statistics

2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)

On Adaboost and Optimal Betting Strategies

Notes on Factoring. MA 206 Kurt Bryan

Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Uncertainty quantification for the family-wise error rate in multivariate copula models

Non Parametric Inference

Maximum Likelihood Estimation

Penalized regression: Introduction

Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network

Adaptive Online Gradient Descent

The Bonferonni and Šidák Corrections for Multiple Comparisons

arxiv: v1 [math.pr] 5 Dec 2011

MIMO CHANNEL CAPACITY

Practice problems for Homework 11 - Point Estimation

On Decentralized Detection with Partial Information Sharing among Sensors

Probabilistic Methods for Time-Series Analysis

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York

STATISTICA Formula Guide: Logistic Regression. Table of Contents

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IN most approaches to binary classification, classifiers are

Offline sorting buffers on Line

On the Interaction and Competition among Internet Service Providers

Discrete Structures for Computer Science

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

Chapter 4: Statistical Hypothesis Testing

Constrained Bayes and Empirical Bayes Estimator Applications in Insurance Pricing

E3: PROBABILITY AND STATISTICS lecture notes

OPRE 6201 : 2. Simplex Method

Sums of Independent Random Variables

Statistics in Astronomy

Gambling and Data Compression

The Goldberg Rao Algorithm for the Maximum Flow Problem

Sequences and Series

Random variables, probability distributions, binomial random variable

Exact Nonparametric Tests for Comparing Means - A Personal Summary

Betting rules and information theory

Decision Theory Rational prospecting

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

e.g. arrival of a customer to a service station or breakdown of a component in some system.

Transcription:

Introduction to Detection Theory Reading: Ch. 3 in Kay-II. Notes by Prof. Don Johnson on detection theory, see http://www.ece.rice.edu/~dhj/courses/elec531/notes5.pdf. Ch. 10 in Wasserman. EE 527, Detection and Estimation Theory, # 5 1

Introduction to Detection Theory (cont.) We wish to make a decision on a signal of interest using noisy measurements. Statistical tools enable systematic solutions and optimal design. Application areas include: Communications, Radar and sonar, Nondestructive evaluation (NDE) of materials, Biomedicine, etc. EE 527, Detection and Estimation Theory, # 5 2

Example: Radar Detection. We wish to decide on the presence or absence of a target. EE 527, Detection and Estimation Theory, # 5 3

Introduction to Detection Theory We assume a parametric measurement model p(x θ) [or p(x ; θ), which is the notation that we sometimes use in the classical setting]. In point estimation theory, we estimated the parameter θ Θ given the data x. Suppose now that we choose Θ 0 and Θ 1 that form a partition of the parameter space Θ: Θ 0 Θ 1 = Θ, Θ 0 Θ 1 =. In detection theory, we wish to identify which hypothesis is true (i.e. make the appropriate decision): H 0 : θ Θ 0, null hypothesis H 1 : θ Θ 1, alternative hypothesis. Terminology: If θ can only take two values, Θ = {θ 0, θ 1 }, Θ 0 = {θ 0 }, Θ 1 = {θ 1 } we say that the hypotheses are simple. Otherwise, we say that they are composite. Composite Hypothesis Example: H 0 : θ = 0 versus H 1 : θ (0, ). EE 527, Detection and Estimation Theory, # 5 4

The Decision Rule We wish to design a decision rule (function) φ(x) : X (0, 1): φ(x) = { 1, decide H1, 0, decide H 0. which partitions the data space X [i.e. the support of p(x θ)] into two regions: Rule φ(x): X 0 = {x : φ(x) = 0}, X 1 = {x : φ(x) = 1}. Let us define probabilities of false alarm and miss: P FA = E x θ [φ(x) θ] = p(x θ) dx for θ in Θ 0 X 1 P M = E x θ [1 φ(x) θ] = 1 p(x θ) dx X 1 = p(x θ) dx for θ in Θ 1. X 0 Then, the probability of detection (correctly deciding H 1 ) is P D = 1 P M = E x θ [φ(x) θ] = X 1 p(x θ) dx for θ in Θ 1. EE 527, Detection and Estimation Theory, # 5 5

Note: P FA and P D /P M are generally functions of the parameter θ (where θ Θ 0 when computing P FA and θ Θ 1 when computing P D /P M ). More Terminology. Statisticians use the following terminology: False alarm Type I error Miss Type II error Probability of detection Power Probability of false alarm Significance level. EE 527, Detection and Estimation Theory, # 5 6

Bayesian Decision-theoretic Detection Theory Recall (a slightly generalized version of) the posterior expected loss: ρ(action x) = L(θ, action) p(θ x) dθ Θ that we introduced in handout # 4 when we discussed Bayesian decision theory. Let us now apply this theory to our easy example discussed here: hypothesis testing, where our action space consists of only two choices. We first assign a loss table: decision rule φ true state Θ 1 Θ 0 x X 1 L(1 1) = 0 L(1 0) x X 0 L(0 1) L(0 0) = 0 with the loss function described by the quantities L(declared true): L(1 0) quantifies loss due to a false alarm, L(0 1) quantifies loss due to a miss, L(1 1) and L(0 0) (losses due to correct decisions) typically set to zero in real life. Here, we adopt zero losses for correct decisions. EE 527, Detection and Estimation Theory, # 5 7

Now, our posterior expected loss takes two values: ρ 0 (x) = L(0 1) p(θ x) dθ Θ 1 + L(0 0) p(θ x) dθ } {{ } Θ 0 0 = L(0 1) p(θ x) dθ Θ 1 L(0 1) is constant = L(0 1) p(θ x) dθ Θ } 1 {{ } P [θ Θ 1 x] and, similarly, ρ 1 (x) = L(1 0) p(θ x) dθ Θ 0 L(1 0) is constant = L(1 0) p(θ x) dθ. Θ } 0 {{ } P [θ Θ 0 x] We define the Bayes decision rule as the rule that minimizes the posterior expected loss; this rule corresponds to choosing the data-space partitioning as follows: X 1 = {x : ρ 1 (x) ρ 0 (x)} EE 527, Detection and Estimation Theory, # 5 8

or P [θ Θ 1 x] { }} { { p(θ x) dθ } Θ X 1 = x : 1 L(1 0) L(0 1) p(θ x) dθ Θ } 0 {{ } P [θ Θ 0 x] or, equivalently, upon applying the Bayes rule: X 1 = { x : Θ 1 p(x θ) π(θ) dθ Θ 0 p(x θ) π(θ) dθ 0-1 loss: For L(1 0) = L(0 1) = 1, we have (1) } L(1 0) L(0 1). (2) decision rule φ true state Θ 1 Θ 0 x X 1 L(1 1) = 0 L(1 0) = 1 x X 0 L(0 1) = 1 L(0 0) = 0 yielding the following Bayes decision rule, called the maximum a posteriori (MAP) rule: X 1 = { x : P [θ Θ 1 x] P [θ Θ 0 x] 1 } or, equivalently, upon applying the Bayes rule: { } Θ X 1 = x : 1 p(x θ) π(θ) dθ Θ 0 p(x θ) π(θ) dθ 1. (4) (3) EE 527, Detection and Estimation Theory, # 5 9

Simple hypotheses. Let us specialize (1) to the case of simple hypotheses (Θ 0 = {θ 0 }, Θ 1 = {θ 1 }): X 1 = { x : p(θ 1 x) p(θ 0 x) } {{ } posterior-odds ratio } L(1 0) L(0 1). (5) We can rewrite (5) using the Bayes rule: X 1 = { x : p(x θ 1 ) p(x θ 0 ) } {{ } likelihood ratio } π 0 L(1 0) π 1 L(0 1) (6) where π 0 = π(θ 0 ), π 1 = π(θ 1 ) = 1 π 0 describe the prior probability mass function (pmf) of the binary random variable θ (recall that θ {θ 0, θ 1 }). Hence, for binary simple hypotheses, the prior pmf of θ is the Bernoulli pmf. EE 527, Detection and Estimation Theory, # 5 10

Preposterior (Bayes) Risk The preposterior (Bayes) risk for rule φ(x) is E x,θ [loss] = X 1 + X 0 L(1 0) p(x θ)π(θ) dθ dx Θ 0 Θ 1 L(0 1) p(x θ)π(θ) dθ dx. How do we choose the rule φ(x) that minimizes the preposterior EE 527, Detection and Estimation Theory, # 5 11

risk? L(1 0) p(x θ)π(θ) dθ dx X 1 Θ 0 + L(0 1) p(x θ)π(θ) dθ dx X 0 Θ 1 = L(1 0) p(x θ)π(θ) dθ dx X 1 Θ 0 L(0 1) p(x θ)π(θ) dθ dx X 1 Θ 1 + L(0 1) p(x θ)π(θ) dθ dx X 0 Θ 1 + L(0 1) p(x θ)π(θ) dθ dx X 1 Θ 1 = const } {{ } not dependent on φ(x) { + L(1 0) p(x θ)π(θ) dθ X 1 Θ 0 } L(0 1) p(x θ)π(θ) dθ dx Θ 1 implying that X 1 should be chosen as { } X 1 : L(1 0) p(x θ)π(θ) dθ L(0 1) p(x θ)π(θ) < 0 Θ 0 Θ 1 EE 527, Detection and Estimation Theory, # 5 12

which, as expected, is the same as (2), since minimizing the posterior expected loss minimizing the preposterior risk for every x as showed earlier in handout # 4. 0-1 loss: For the 0-1 loss, i.e. L(1 0) = L(0 1) = 1, the preposterior (Bayes) risk for rule φ(x) is E x,θ [loss] = X 1 + X 0 p(x θ)π(θ) dθ dx Θ 0 Θ 1 p(x θ)π(θ) dθ dx (7) which is simply the average error probability, with averaging performed over the joint probability density or mass function (pdf/pmf) or the data x and parameters θ. EE 527, Detection and Estimation Theory, # 5 13

Bayesian Decision-theoretic Detection for Simple Hypotheses The Bayes decision rule for simple hypotheses is (6): Λ(x) } {{ } likelihood ratio = p(x θ 1) p(x θ 0 ) H 1 π 0 L(1 0) π 1 L(0 1) τ (8) see also Ch. 3.7 in Kay-II. (Recall that Λ(x) is the sufficient statistic for the detection problem, see p. 37 in handout # 1.) Equivalently, log Λ(x) = log[p(x θ 1 )] log[p(x θ 0 )] H 1 log τ τ. Minimum Average Error Probability Detection: In the familiar 0-1 loss case where L(1 0) = L(0 1) = 1, we know that the preposterior (Bayes) risk is equal to the average error probability, see (7). This average error probability greatly EE 527, Detection and Estimation Theory, # 5 14

simplifies in the simple hypothesis testing case: av. error probability = L(1 0) p(x θ } {{ } 0 )π 0 dx X 1 1 + L(0 1) p(x θ } {{ } 1 )π 1 dx X 0 1 = π 0 p(x θ 0 ) dx +π 1 p(x θ 1 ) dx X } 1 X {{ } } 0 {{ } P FA P M where, as before, the averaging is performed over the joint pdf/pmf of the data x and parameters θ, and π 0 = π(θ 0 ), π 1 = π(θ 1 ) = 1 π 0 (the Bernoulli pmf). In this case, our Bayes decision rule simplifies to the MAP rule (as expected, see (5) and Ch. 3.6 in Kay-II): p(θ 1 x) p(θ 0 x) } {{ } posterior-odds ratio or, equivalently, upon applying the Bayes rule: p(x θ 1 ) p(x θ 0 ) } {{ } likelihood ratio H 1 1 (9) H 1 π 0 π 1. (10) EE 527, Detection and Estimation Theory, # 5 15

which is the same as (4), upon substituting the Bernoulli pmf as the prior pmf for θ and (8), upon substituting L(1 0) = L(0 1) = 1. EE 527, Detection and Estimation Theory, # 5 16

Bayesian Decision-theoretic Detection Theory: Handling Nuisance Parameters We apply the same approach as before integrate the nuisance parameters (ϕ, say) out! Therefore, (1) still holds for testing H 0 : θ Θ 0 versus H 1 : θ Θ 1 but p θ x (θ x) is computed as follows: p θ x (θ x) = p θ,ϕ x (θ, ϕ x) dϕ and, therefore, Θ 1 Θ 0 p(θ x) { }} { p θ,ϕ x (θ, ϕ x) dϕ dθ p θ,ϕ x (θ, ϕ x) dϕ } {{ } p(θ x) dθ H 1 L(1 0) L(0 1) (11) EE 527, Detection and Estimation Theory, # 5 17

or, equivalently, upon applying the Bayes rule: Θ 1 px θ,ϕ (x θ, ϕ) π θ,ϕ (θ, ϕ) dϕ dθ Θ 0 px θ,ϕ (x θ, ϕ) π θ,ϕ (θ, ϕ) dϕ dθ H 1 L(1 0) L(0 1). (12) Now, if θ and ϕ are independent a priori, i.e. π θ,ϕ (θ, ϕ) = π θ (θ) π ϕ (ϕ) (13) then (12) can be rewritten as Θ 1 π θ (θ) Θ 0 π θ (θ) p(x θ) { }} { p x θ,ϕ (x θ, ϕ) π ϕ (ϕ) dϕ dθ p x θ,ϕ (x θ, ϕ) π ϕ (ϕ) } {{ } p(x θ) dϕ dθ H 1 L(1 0) L(0 1). (14) Simple hypotheses and independent priors for θ and ϕ: Let us specialize (11) to the simple hypotheses (Θ 0 = {θ 0 }, Θ 1 = {θ 1 }): pθ,ϕ x (θ 1, ϕ x) dϕ pθ,ϕ x (θ 0, ϕ x) dϕ H 1 L(1 0) L(0 1). (15) Now, if θ and ϕ are independent a priori, i.e. (13) holds, then EE 527, Detection and Estimation Theory, # 5 18

we can rewrite (14) [or (15) using the Bayes rule]: px θ,ϕ (x θ 1, ϕ) π ϕ (ϕ) dϕ px θ,ϕ (x θ 0, ϕ) π ϕ (ϕ) dϕ } {{ } integrated likelihood ratio = same as (6) { }} { p(x θ 1 ) H 1 π 0 L(1 0) p(x θ 0 ) π 1 L(0 1) (16) where π 0 = π θ (θ 0 ), π 1 = π θ (θ 1 ) = 1 π 0. EE 527, Detection and Estimation Theory, # 5 19

Chernoff Bound on Average Error Probability for Simple Hypotheses Recall that minimizing the average error probability av. error probability = X 1 + X 0 p(x θ)π(θ) dθ dx Θ 0 Θ 1 p(x θ)π(θ) dθ dx leads to the MAP decision rule: X 1 = { x : Θ 0 p(x θ) π(θ) dθ } p(x θ) π(θ) dθ < 0. Θ 1 In many applications, we may not be able to obtain a simple closed-form expression for the minimum average error EE 527, Detection and Estimation Theory, # 5 20

probability, but we can bound it as follows: min av. error probability = X1 p(x θ)π(θ) dθ dx Θ 0 + p(x θ)π(θ) dθ dx Θ 1 X 0 using the def. of X 1 = X }{{} data space { } min p(x θ)π(θ) dθ, p(x θ)π(θ) dθ) dx Θ 0 Θ 1 = X X [ = q 0 (x) = q { }} { 1 (x) ] λ [ { }} { ] 1 λ p(x θ)π(θ) dθ p(x θ)π(θ) dθ dx Θ 0 Θ 1 [q 0 (x)] λ [q 1 (x)] 1 λ dx which is the Chernoff bound on the minimum average error probability. Here, we have used the fact that min{a, b} a λ b 1 λ, for 0 λ 1, a, b 0. When x = x 1 x 2. x N EE 527, Detection and Estimation Theory, # 5 21

with x 1, x 2,... x N conditionally independent, identically distributed (i.i.d.) given θ and simple hypotheses (i.e. Θ 0 = {θ 0 }, Θ 1 = {θ 1 }) then N q 0 (x) = p(x θ 0 ) π 0 = π 0 p(x n θ 0 ) yielding n=1 N q 1 (x) = p(x θ 1 ) π 1 = π 1 p(x n θ 1 ) n=1 Chernoff bound for N conditionally i.i.d. measurements (given θ) and simple hyp. [ N ] λ N 1 λ = π 0 p(x n θ 0 ) [π 1 p(x n θ 1 )] dx n=1 = π λ 0 π 1 λ 1 = π λ 0 π 1 λ 1 N n=1 n=1 { [p(x n θ 0 )] λ [p(x n θ 1 )] 1 λ dx n } { [p(x 1 θ 0 )] λ [p(x 1 θ 1 )] 1 λ dx 1 } N EE 527, Detection and Estimation Theory, # 5 22

or, in other words, 1 N log(min av. error probability) log(πλ 0 π1 1 λ ) + log [p(x 1 θ 0 )] λ [p(x 1 θ 1 )] 1 λ dx 1, λ [0, 1]. If π 0 = π 1 = 1/2 (which is almost always the case of interest when evaluating average error probabilities), we can say that, as N, min av. error probability for N cond. i.i.d. measurements (given θ) and simple hypotheses ( { f(n) exp N min log [p(x 1 θ 0 )] λ [p(x 1 θ 1 )] 1 λ} ) λ [0,1] } {{ } Chernoff information for a single observation where f(n) is a slowly-varying function compared with the exponential term: lim N log f(n) N = 0. Note that the Chernoff information in the exponent term of the above expression quantifies the asymptotic behavior of the minimum average error probability. We now give a useful result, taken from EE 527, Detection and Estimation Theory, # 5 23

K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed., San Diego, CA: Academic Press, 1990 for evaluating a class of Chernoff bounds. Lemma 1. Consider p 1 (x) = N (µ 1, Σ 1 ) and p 2 (x) = N (µ 2, Σ 2 ). Then [p 1 (x)] λ [p 2 (x)] 1 λ dx = exp[ g(λ)] where g(λ) = λ (1 λ) 2 (µ 2 µ 1 ) T [λ Σ 1 + (1 λ) Σ 2 ] 1 (µ 2 µ 1 ) [ λ + 1 2 log Σ1 + (1 λ) Σ 2 ] Σ 1 λ Σ 2 1 λ. EE 527, Detection and Estimation Theory, # 5 24

Probabilities of False Alarm (P FA ) and Detection (P D ) for Simple Hypotheses 0.2 PDF under H 0 PDF under H 1 Probability Density Function 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 P FA P D τ 0 0 5 10 15 20 25 Test Statistic Comments: Λ(x) { }} { P FA = P [ test } statistic {{ > τ} θ = θ 0 ] X X 1 P D = P [test statistic > τ } {{ } X X 0 θ = θ 1 ]. (i) As the region X 1 shrinks (i.e. τ ), both of the above probabilities shrink towards zero. EE 527, Detection and Estimation Theory, # 5 25

(ii) As the region X 1 grows (i.e. τ 0), both of these probabilities grow towards unity. (iii) Observations (i) and (ii) do not imply equality between P FA and P D ; in most cases, as R 1 grows, P D grows more rapidly than P FA (i.e. we better be right more often than we are wrong). (iv) However, the perfect case where our rule is always right and never wrong (P D = 1 and P FA = 0) cannot occur when the conditional pdfs/pmfs p(x θ 0 ) and p(x θ 1 ) overlap. (v) Thus, to increase the detection probability P D, we must also allow for the false-alarm probability P FA to increase. This behavior represents the fundamental tradeoff in hypothesis testing and detection theory and motivates us to introduce a (classical) approach to testing simple hypotheses, pioneered by Neyman and Pearson (to be discussed next). EE 527, Detection and Estimation Theory, # 5 26

Neyman-Pearson Test for Simple Hypotheses Setup: Parametric data models p(x ; θ 0 ), p(x ; θ 1 ), Simple hypothesis testing: H 0 : θ = θ 0 versus H 1 : θ = θ 1. No prior pdf/pmf on θ is available. Goal: Design a test that maximizes the probability of detection P D = P [X X 1 ; θ = θ 0 ] (equivalently, minimizes the miss probability P M ) under the constraint P FA = P [X X 1 ; θ = θ 0 ] = α α. Here, we consider simple hypotheses; classical version of testing composite hypotheses is much more complicated. The Bayesian version of testing composite hypotheses is trivial (as EE 527, Detection and Estimation Theory, # 5 27

is everything else Bayesian, at least conceptually) and we have already seen it. Solution. We apply the Lagrange-multiplier approach: maximize L = P D + λ (P FA α ) [ ] = p(x ; θ 1 ) dx + λ p(x; θ 0 ) dx α X 1 X 1 = [p(x ; θ 1 ) λ p(x ; θ 0 )] dx λ α. X 1 To maximize L, set X 1 = {x : p(x ; θ 1 ) λ p(x ; θ 0 ) > 0} = { x : p(x ; θ 1) p(x ; θ 0 ) > λ }. Again, we find the likelihood ratio: Recall our constraint: Λ(x) = p(x ; θ 1) p(x ; θ 0 ). X 1 p(x ; θ 0 ) dx = P FA = α α. EE 527, Detection and Estimation Theory, # 5 28

If we increase λ, P FA and P D go down. Similarly, if we decrease λ, P FA and P D go up. Hence, to maximize P D, choose λ so that P FA is as big as possible under the constraint. Two useful ways for determining the threshold that achieves a specified false-alarm rate: Find λ that satisfies or, x : Λ(x)>λ p(x ; θ 0 ) dx = P FA = α expressing in terms of the pdf/pmf of Λ(x) under H 0 : λ p Λ;θ0 (l ; θ 0 ) dl = α. or, perhaps, in terms of a monotonic function of Λ(x), say T (x) = monotonic function(λ(x)). Warning: We have been implicitly assuming that P FA is a continuous function of λ. Some (not insightful) technical adjustments are needed if this is not the case. A way of handling nuisance parameters: We can utilize the integrated (marginal) likelihood ratio (16) under the Neyman- Pearson setup as well. EE 527, Detection and Estimation Theory, # 5 29

Chernoff-Stein Lemma for Bounding the Miss Probability in Neyman-Pearson Tests of Simple Hypotheses Recall the definition of the Kullback-Leibler (K-L) distance D(p q) from one pmf (p) to another (p): D(p q) = k p k log p k q k. The complete proof of this lemma for the discrete (pmf) case is given in Additional Reading: T.M. Cover and J.A. Thomas, Elements of Information Theory. Second ed., New York: Wiley, 2006. EE 527, Detection and Estimation Theory, # 5 30

Setup for the Chernoff-Stein Lemma Assume that x 1, x 2,..., x N are conditionally i.i.d. given θ. We adopt the Neyman-Pearson framework, i.e. obtain a decision threshold to achieve a fixed P FA. Let us study the asymptotic P M = 1 P D as the number of observations N gets large. To keep P FA constant as N increases, we need to make our decision threshold (γ, say) vary with N, i.e. Now, the miss probability is γ = γ N (P FA ) ) P M = P M (γ) = P M (γ N (P FA ). EE 527, Detection and Estimation Theory, # 5 31

Chernoff-Stein Lemma The Chernoff-Stein lemma says: lim P FA 0 lim N 1 N log P M = ( ) D p(x n θ 0 ) p(x n θ 1 ) } {{ } K-L distance for a single observation where the K-L distance between p(x n θ 0 ) and p(x n θ 1 ) ( ) D p(x n θ 0 ) p(x n θ 1 ) discrete (pmf) case = x n p(x n θ 0 ) log [ = E p(xn θ 0 ) log p(x n θ 1 ) ] p(x n θ 0 ) [ p(xn θ 1 ) ] p(x n θ 0 ) does not depend on the observation index n, since x n conditionally i.i.d. given θ. are Equivalently, we can state that [ N + P M f(n) exp N D ( p(x n θ 0 ) p(x n θ 1 ) )] as P FA 0 and N, where f(n) is a slowly-varying function compared with the exponential term (when P FA 0 and N ). EE 527, Detection and Estimation Theory, # 5 32

Detection for Simple Hypotheses: Example Known positive DC level in additive white Gaussian noise (AWGN), Example 3.2 in Kay-II. Consider where H 0 : x[n] = w[n], n = 1, 2,..., N versus H 1 : x[n] = A + w[n], n = 1, 2,..., N A > 0 is a known constant, w[n] is zero-mean white Gaussian noise with known variance σ 2, i.e. w[n] N (0, σ 2 ). The above hypothesis-testing formulation is EE-like: noise versus signal plus noise. It is similar to the on-off keying scheme in communications, which gives us an idea to rephrase it so that it fits our formulation on p. 4 (for which we have developed all the theory so far). Here is such an EE 527, Detection and Estimation Theory, # 5 33

alternative formulation: consider a family of pdfs p(x ; a) = 1 [ (2πσ2 ) exp N 1 2 σ 2 N (x[n] a) 2] (17) n=1 and the following (equivalent) hypotheses: H 0 : a = 0 (off) versus H 1 : a = A (on). Then, the likelihood ratio is Λ(x) = p(x ; a = A) p(x ; a = 0) = 1/(2πσ2 ) N/2 exp[ 1 N 2σ 2 n=1 (x[n] A)2 ] 1/(2πσ 2 ) N/2 exp( 1 N. 2σ 2 n=1 x[n]2 ) Now, take the logarithm and, after simple manipulations, reduce our likelihood-ratio test to comparing T (x) = x = 1 N N x[n] n=1 with a threshold γ. [Here, T (x) is a monotonic function of Λ(x).] If T (x) > γ accept H 1 (i.e. reject H 0 ), otherwise accept EE 527, Detection and Estimation Theory, # 5 34

H 0 (well, not exactly, we will talk more about this decision on p. 59). The choice of γ depends on the approach that we take. For the Bayes decision rule, γ is a function of π 0 and π 1. For the Neyman-Pearson test, γ is chosen to achieve (control) a desired P FA. Bayesian decision-theoretic detection for 0-1 loss (corresponding to minimizing the average error EE 527, Detection and Estimation Theory, # 5 35

probability): log Λ(x) = 1 2 σ 2 1 2 σ 2 2 A ( N n=1 N (x[n] A) 2 + 1 2 σ 2 n=1 N (x[n] x[n] } {{ } 0 n=1 ( N n=1 ) x[n] N n=1 (x[n]) 2 H ( 1 π0 ) log π 1 +A) (x[n] + x[n] A) H ( 1 π0 ) log π 1 ) x[n] A 2 N H ( 1 2 σ 2 π0 ) log π 1 AN 2 H 1 σ2 A log ( π0 π 1 ) σ2 since A > 0 and, finally, x H 1 N A log(π 0/π 1 ) + A } {{ 2} γ which, for the practically most interesting case of equiprobable hypotheses π 0 = π 1 = 1 2 (18) simplifies to x H 1 A 2 }{{} γ known as the maximum-likelihood test (i.e. the Bayes decision rule for 0-1 loss and a priori equiprobable hypotheses is defined as the maximum-likelihood test). This maximum-likelihood detector does not require the knowledge of the noise variance EE 527, Detection and Estimation Theory, # 5 36

σ 2 to declare its decision. However, the knowledge of σ 2 is key to assessing the detection performance. Interestingly, these observations will carry over to a few maximum-likelihood tests that we will derive in the future. Assuming (18), we now derive the minimum average error probability. First, note that X a = 0 N (0, σ 2 /N) and X a = A N (A, σ 2 /N). Then min av. error prob. = 1 2 P [X > A } {{ 2 a = 0] } +1 P FA = 1 2 P [ + 1 2 P [ X σ2 /N } {{ } standard normal random var. X A σ2 /N } {{ } standard normal random var. = 1 2 ( N A Q ) } {{ 4 σ 2 } standard normal complementary cdf > A/2 σ2 /N ; a = 0 ] < A/2 A σ2 /N ; a = A ] ( N A + 1 2 Φ 2) } {{ 4 σ 2 } standard normal cdf 2 P [X < A } {{ 2 a = A] } P M ( = Q 1 2 N A 2 σ 2 ) EE 527, Detection and Estimation Theory, # 5 37

since Φ( x) = Q(x). The minimum probability of error decreases monotonically with N A 2 /σ 2, which is known as the deflection coefficient. In this case, the Chernoff information is equal to A2 (see Lemma 1): 8 σ 2 { min log λ [0,1] [ λ (1 λ) = min λ [0,1] 2 } [N (0, σ 2 /N)] } {{ } λ [N (A, σ 2 /N)] } {{ } 1 λ dx p 0 (x) p 1 (x) A2 σ 2 ] = A2 8 σ 2 and, therefore, we expect the following asymptotic behavior: min av. error probability N + ) f(n) exp ( N A2 8 σ 2 (19) where f(n) varies slowly with N when N is large, compared with the exponential term: lim N log f(n) N = 0. Indeed, in our example, ( N A Q 2 ) N + 4 σ 2 1 N A 2 2π 4 σ } 2 {{ } f(n) ( exp N ) A2 8 σ 2 EE 527, Detection and Estimation Theory, # 5 38

where we have used the asymptotic formula Q(x) x + 1 x 2π exp( x2 /2) (20) given e.g. in equation (2.4) of Kay-II. EE 527, Detection and Estimation Theory, # 5 39

Known DC Level in AWGN: Neyman-Pearson Approach We now derive the Neyman-Pearson test for detecting a known DC level in AWGN. Recall that our likelihood-ratio test compares with a threshold γ. T (x) = x = 1 N N 1 n=0 x[n] If T (x) > γ, decide H 1 (i.e. reject H 0 ), otherwise decide H 0 (see also the discussion on p. 59). Performance evaluation: Assuming (17), we have T (x) a N (a, σ 2 /N). Therefore, T (X) a = 0 N (0, σ 2 /N), implying ( γ ) P FA = P [T (X) > γ ; a = 0] = Q σ2 /N EE 527, Detection and Estimation Theory, # 5 40

and we obtain the decision threshold as follows: γ = σ 2 N Q 1 (P FA ). Now, T (X) a = A N (A, σ 2 /N), implying ( γ A ) P D = P (T (X) > γ a = A) = Q σ2 /N ( ) = Q Q 1 A (P FA ) 2 σ 2 /N ( ) = Q Q 1 (P FA ) NA2 /σ } {{ } 2. = SNR = d 2 Given the false-alarm probability P FA, the detection probability P D depends only on the deflection coefficient: d 2 = NA2 σ 2 = {E [T (X) a = A] E [T (X) a = 0]}2 var[t (X a = 0)] which is also (a reasonable definition for) the signal-to-noise ratio (SNR). EE 527, Detection and Estimation Theory, # 5 41

Receiver Operating Characteristics (ROC) Comments: P D = Q ( Q 1 (P FA ) d ). As we raise the threshold γ, P FA goes down but so does P D. ROC should be above the 45 line otherwise we can do better by flipping a coin. Performance improves with d 2. EE 527, Detection and Estimation Theory, # 5 42

Typical Ways of Depicting the Detection Performance Under the Neyman-Pearson Setup To analyze the performance of a Neyman-Pearson detector, we examine two relationships: Between P D and P FA, for a given SNR, called the operating characteristics (ROC). receiver Between P D and SNR, for a given P FA. Here are examples of the two: see Figs. 3.8 and 3.5 in Kay-II, respectively. EE 527, Detection and Estimation Theory, # 5 43

Asymptotic (as N and P FA 0) P D and P M for a Known DC Level in AWGN We apply the Chernoff-Stein lemma, for which we need to compute the following K-L distance: log where ( ) D p(x n a = 0) p(x n a = A) { = E p(xn a=0) log [ p(xn a = A) ]} p(x n a = 0) p(x n a = 0) = N (0, σ 2 ) [ p(xn a = A) ] = (x n A) 2 p(x n a = 0) 2 σ 2 + x2 n 2 σ 2 = 1 2σ 2 (2 A x n A 2 ). Therefore, ( ) D p(x n θ 0 ) p(x n θ 1 ) = A2 2 σ 2 and the Chernoff-Stein lemma predicts the following behavior of the detection probability as N and P FA 0: ( ) P D 1 f(n) exp N A2 } {{ 2 σ 2 } P M EE 527, Detection and Estimation Theory, # 5 44

where f(n) is a slowly-varying function of N compared with the exponential term. In this case, the exact expression for P M (P D ) is available and consistent with the Chernoff-Stein lemma: P M = 1 Q (Q 1 (P FA ) ) NA 2 /σ 2 ) = Q( NA2 /σ 2 Q 1 (P FA ) N + = = 1 [ NA 2 /σ 2 Q 1 (P FA )] 2π { exp [ } NA 2 /σ 2 Q 1 (P FA )] 2 /2 1 [ NA 2 /σ 2 Q 1 (P FA )] 2π { exp NA 2 /(2σ 2 ) [Q 1 (P FA )] 2 /2 +Q 1 (P FA ) } NA 2 /σ 2 1 [ NA 2 /σ 2 Q 1 (P FA )] 2π { exp [Q 1 (P FA )] 2 /2 + Q 1 (P FA ) } NA 2 /σ 2 exp[ NA 2 /(2σ 2 )] } {{ } as predicted by the Chernoff-Stein lemma (21) where we have used the asymptotic formula (20). When P FA EE 527, Detection and Estimation Theory, # 5 45

is small and N is large, the first two (green) terms in the above expression make a slowly-varying function f(n) of N. Note that the exponential term in (21) does not depend on the false-alarm probability P FA (or, equivalently, on the choice of the decision threshold). The Chernoff-Stein lemma asserts that this is not a coincidence. Comment. For detecting a known DC level in AWGN: The slope of the exponential-decay term of P M is A 2 /(2σ 2 ) which is different from (larger than, in this case) the slope of the exponential decay of the minimum average error probability: A 2 /(8σ 2 ). EE 527, Detection and Estimation Theory, # 5 46

Decentralized Neyman-Pearson Detection for Simple Hypotheses Consider a sensor-network scenario depicted by Assumption: Observations made at N spatially distributed sensors (nodes) follow the same marginal probabilistic model: H i : x n p(x n θ i ) where n = 1, 2,..., N and i {0, 1} for binary hypotheses. Each node n makes a hard local decision d n based on its local observation x n and sends it to the headquarters (fusion center), which collects all the local decisions and makes the final global EE 527, Detection and Estimation Theory, # 5 47

decision about H 0 or H 1. This structure is clearly suboptimal it is easy to construct a better decision strategy in which each node sends its (quantized, in practice) likelihood ratio to the fusion center, rather than the decision only. However, such a strategy would have a higher communication (energy) cost. We now go back to the decentralized detection problem. Suppose that each node n makes a local decision d n {0, 1}, n = 1, 2,..., N and transmits it to the fusion center. Then, the fusion center makes the global decision based on the likelihood ratio formed from the d n s. The simplest fusion scheme is based on the assumption that the d n s are conditionally independent given θ (which may not always be reasonable, but leads to an easy solution). We can now write p(d n θ 1 ) = P d n D,n (1 P D,n ) 1 d n } {{ } Bernoulli pmf where P D,n Similarly, is the nth sensor s local detection probability. p(d n θ 0 ) = P d n FA,n (1 P FA,n ) 1 d n } {{ } Bernoulli pmf where P FA,n is the nth sensor s local detection false-alarm EE 527, Detection and Estimation Theory, # 5 48

probability. Now, log Λ(d) = = N log n=1 N log n=1 [ p(dn θ 1 ) ] p(d n θ 0 [ P d n D,n (1 P D,n ) 1 d n P d n FA,n (1 P FA,n ) 1 d n ] H1 log τ. To further simplify the exposition, we assume that all sensors have identical performance: P D,n = P D, P FA,n = P FA. Define the number of sensors having d n = 1: u 1 = N n=1 d n Then, the log-likelihood ratio becomes log Λ(d) = u 1 log ( PD P FA ) + (N u 1 ) log ( 1 PD 1 P FA ) H1 log τ or u 1 log [ PD (1 P FA ) ] H1 ( 1 PFA ) log τ + N log. (22) P FA (1 P D ) 1 P D EE 527, Detection and Estimation Theory, # 5 49

Clearly, each node s local decision d n P D > P FA, which implies is meaningful only if P D (1 P FA ) P FA (1 P D ) > 1 the logarithm of which is therefore positive, and the decision rule (22) further simplifies to u 1 H 1 τ. The Neyman-Person performance analysis of this detector is easy: the random variable U 1 is binomial given θ (i.e. conditional on the hypothesis) and, therefore, P [U 1 = u 1 ] = ( ) N p u 1 (1 p) N u 1 u 1 where p = P FA under H 0 and p = P D under H 1. Hence, the global false-alarm probability is P FA,global = P [U 1 > τ θ 0 ] = N u 1 = τ ( N u 1 ) P u 1 FA (1 P FA ) N u 1. Clearly, P FA,global will be a discontinuous function of τ and therefore, we should choose our P FA,global specification from EE 527, Detection and Estimation Theory, # 5 50

the available discrete choices. But, if none of the candidate choices is acceptable, this means that our current system does not satisfy the requirements and a remedial action is needed, e.g. increasing the quantity (N) or improving the quality of sensors (through changing P D and P FA ), or both. EE 527, Detection and Estimation Theory, # 5 51

Testing Multiple Hypotheses Suppose now that we choose Θ 0, Θ 1,..., Θ M 1 that form a partition of the parameter space Θ: Θ 0 Θ 1 Θ M 1 = Θ, Θ i Θ j = i j. We wish to distinguish among M > 2 hypotheses, i.e. identify which hypothesis is true: H 0 : θ Θ 0 versus H 1 : θ Θ 1 versus. versus H M 1 : θ Θ M 1 and, consequently, our action space consists of M choices. We design a decision rule φ : X (0, 1,..., M 1): φ(x) = 0, decide H 0, 1,. decide H 1, M 1, decide H M 1 where φ partitions the data space X [i.e. the support of p(x θ)] into M regions: Rule φ: X 0 = {x : φ(x) = 0},..., X M 1 = {x : φ(x) = M 1}. EE 527, Detection and Estimation Theory, # 5 52

We specify the loss function using L(i m), where, typically, the losses due to correct decisions are set to zero: L(i i) = 0, i = 0, 1,..., M 1. Here, we adopt zero losses for correct decisions. posterior expected loss takes M values: Now, our ρ m (x) = = M 1 i=0 M 1 i=0 Θ i L(m i) p(θ x) dθ L(m i) Θ i p(θ x) dθ, m = 0, 1,..., M 1. Then, the Bayes decision rule φ is defined via the following data-space partitioning: X m = {x : ρ m (x) = min ρ l(x)}, m = 0, 1,..., M 1 0 l M 1 or, equivalently, upon applying the Bayes rule X m = = { M 1 } x : m = arg min L(l i) p(x θ) π(θ) dθ 0 l M 1 i=0 Θ i { M 1 x : m = arg min L(l i) 0 l M 1 i=0 Θ i p(x θ) π(θ) dθ }. EE 527, Detection and Estimation Theory, # 5 53

The preposterior (Bayes) risk for rule φ(x) is E x,θ [loss] = = M 1 m=0 M 1 m=0 M 1 i=0 X m X m Θ i L(m i) p(x θ)π(θ) dθ dx M 1 L(m i) p(x θ)π(θ) dθ i=0 Θ } {{ i } h m (θ) dx. Then, for an arbitrary h m (x), [ M 1 m=0 ] h m (x) dx X m [ M 1 m=0 X m ] h m (x) dx 0 which verifies that the Bayes decision rule φ minimizes the preposterior (Bayes) risk. EE 527, Detection and Estimation Theory, # 5 54