MIMO CHANNEL CAPACITY

Size: px
Start display at page:

Download "MIMO CHANNEL CAPACITY"

Transcription

1 MIMO CHANNEL CAPACITY Ochi Laboratory Nguyen Dang Khoa (D1) 1

2 Contents Introduction Review of information theory Fixed MIMO channel Fading MIMO channel Summary and Conclusions 2

3 1. Introduction The use of multiple antennas can provide gain due to Antenna gain More receive antenna more power is harvested Interference gain Interference nulling by beam-forming (array gain) Interference averaging (to zero) due to independent observation Diversity again against fading Receive diversity Transmit diversity Information theoretic model of MIMO channel is consider 3

4 MIMO channel model Assume transmit and receive antennae Called MIMO system Fading radio channels modeled as freq-flat: Fixed Time-varying Know both/either in the transmitter and/or receiver Perfect channel state information (CSI) A priori unknown 4

5 2. Review of information theory Information theory (IT) has its origins in analyzing the limits communication. Information theory answers two fundamental questions in communication theory: What is the ultimate data compression rate? Answer: entropy. What is the ultimate data transmission rate? Answer: channel capacity. 5

6 Basic concepts Assume a discrete valued random variable (RV) X with probability mass function p(x) The average information or entropy of RV X: = log = log ( ) Measure the expected uncertainty in RV X Approximately how much information we learn on average from one instance of the RV X How many bits are needed, on the average, to convey the information obtain in RV X The entropy of a binary variable as a function of the probability = ( ) Note: Because information is measured in bit, the logarithm function here is base-2 Function E(x) is the expected value of variable X 6

7 Basic concepts Joint entropy of RV s X and Y, = log (, ) Measuring how much uncertainty in the two RV X and Y taken together Mutual information: is the relative entropy between the joint distribution and product distribution: Conditional entropy of RV Y given X=x = = Measuring of how much uncertainty remains about the RV Y when know RV X Measuring the mutual independence of two RVs Chain rule:, = + Note: because information is measured in bit, the logarithm function here is base-2 7

8 Channel capacity Information theoretic model of a communication system Shannon proved that reliable (virtual error-free) communication is possible at rates C up to: = max ( ) ( ; ) The distribution ( )that C achieves the maximum is called the optimal input distribution 8

9 Gaussian channel Mutual Information Gaussian Channel Capacity (bit per transmission) - P = is the power constraint [J/symbol] - = is the noise variance 9

10 Gaussian band-limited channel -W W Assume noise power-spectral density is Common model for communication over a radio network or a telephone line Channel Capacity Noise power: 2 = Energy per sample of T second: = There are 2W samples per second W Example: Telephone channel, W=3.3KHz, if = = 40 = 10 = bit per second 10

11 Parallel Gaussian channels Capacity: = 1 2 log 1 + Optimal transmission: ~ 0,,,,, water-filling (do not mention in this presentation) 11

12 3. Fixed MIMO Gaussian channel Signal ( )is transmitted at time interval n from antenna ( = 1,2,,) Signal ( )is received at time interval n from antenna j( = 1,2,,) = h + ( ) Where h ( )is the complex channel gain with h ( ) = 1 12

13 Matrix formulation MIMO channel The signal received at all antennae = + (1) where: = ( ) ( ) = ( ) ( ) h ( ) h ( ) = h ( ) h ( ) = ( ) ( ) 13

14 Noise and power constraint The noise vector = ( ) ( ) With ( )~ (0, ) The transmitted signal satisfied the average power constraint: ( ) = ( ) Since the noise power is normalized to unity, we commonly refer to the power constraint P as the SNR 14

15 Singular value decomposition The MIMO model is a special case of parallel Gaussian channels For every, we can write as = Where, V are unitary matrices and is a diagonal matrix of the singular values of H 15

16 Equivalent channel model =, =, = Since U and V are unitary matrices the channel model = + (1) Equivalent channel model = + ( ) is diagonal matrix of size, we have decomposed the correlated parallel channels into independent parallel channels 16

17 Equivalent channel model Independent parallel Gaussian channels 17

18 Derivation of channel capacity The rank of matrix H is min, The number of positive singular values is rank(h) The capacity of MIMO AWGN channel: ( ) = log1 +, = 18

19 MIMO channel capacity for full-rank channel matrix No CSI at the transmitter (and full-rank H) = logdet + CSI at the transmitter (and full-rank H) = max logdet + Where Q is the covariance matrix of the input vector x satisfying the power constraint - In case of no CSI at the transmitter = 19

20 MIMO channel characteristics Number of antennae vs. capacity of the channel MIMO channel capacity vs. SNR Ref. form gr10.jpg Ref. form 20

21 4. Fading MIMO channels The channels are usually assumed to be ergodic Fading is fast enough and gets all realizations so many time that The sample average equals the theoretical mean The sample covariance equals the theoretical covariance 21

22 Fading channel mode with perfect receiver CSI Assuming that the channel is memoryless (independent channel state for each transmission), the capacity equals the mean of the mutual information = logdet + 22

23 Non-ergodic channels The channels are not always ergodic: fading can be slow that it undergoes only some realizations. this random process becomes non-ergodic In no-ergodic channel, the channel capacity the average maximum mutual information to measure the capacity of this using channel: probability of outage for a given (capacity rate R versus outage ) 23

24 5. Summary and conclusion AWGA MIMO channels are an extension of parallel Gaussian channels Parallel channels: channels on different frequencies The linear capacity increase becomes natural = logdet + 24

25 Fading AWGN MIMO channel Ergodic channels: Channel experiences all its states several times No delay constraints and/or fast fading Capacity equals the average mutual information: = logdet + Capacity increases linearly with = Non-ergodic channels Capacity does not equal the average mutual information Capacity versus outage probability is applied to measure the non-ergodic channels capacity 25

26 Expected value The expected value (or expectation, mathematical expectation, EV, mean, the first moment) of random variable is the weighted average of all possible values that this random variable can take on. For example: Let X represent the outcome of a roll of a six-sided die. More specifically, X will be the number of pips showing on the top face of the die after the toss. The possible values for X are 1, 2, 3, 4, 5, 6, all equally likely (each having the probability of 1/6). The expectation of X is: (1) = = 3.5 (1) Wikipedia: 26

27 Shannon Channel Capacity The capacity of a channel is the maximum, asymptotic (in block length) error-free transmission rate that can be archived. The capacity of a MIMO channel is a complicated function of the channel conditions and transmit/receive processing constraints 27

Capacity Limits of MIMO Channels

Capacity Limits of MIMO Channels Tutorial and 4G Systems Capacity Limits of MIMO Channels Markku Juntti Contents 1. Introduction. Review of information theory 3. Fixed MIMO channels 4. Fading MIMO channels 5. Summary and Conclusions References

More information

Capacity Limits of MIMO Systems

Capacity Limits of MIMO Systems 1 Capacity Limits of MIMO Systems Andrea Goldsmith, Syed Ali Jafar, Nihar Jindal, and Sriram Vishwanath 2 I. INTRODUCTION In this chapter we consider the Shannon capacity limits of single-user and multi-user

More information

8 MIMO II: capacity and multiplexing

8 MIMO II: capacity and multiplexing CHAPTER 8 MIMO II: capacity and multiplexing architectures In this chapter, we will look at the capacity of MIMO fading channels and discuss transceiver architectures that extract the promised multiplexing

More information

Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel

Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002 359 Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel Lizhong Zheng, Student

More information

Multiuser Communications in Wireless Networks

Multiuser Communications in Wireless Networks Multiuser Communications in Wireless Networks Instructor Antti Tölli Centre for Wireless Communications (CWC), University of Oulu Contact e-mail: antti.tolli@ee.oulu.fi, tel. +358445000180 Course period

More information

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network Recent Advances in Electrical Engineering and Electronic Devices Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network Ahmed El-Mahdy and Ahmed Walid Faculty of Information Engineering

More information

MIMO: What shall we do with all these degrees of freedom?

MIMO: What shall we do with all these degrees of freedom? MIMO: What shall we do with all these degrees of freedom? Helmut Bölcskei Communication Technology Laboratory, ETH Zurich June 4, 2003 c H. Bölcskei, Communication Theory Group 1 Attributes of Future Broadband

More information

ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING

ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING Development of a Software Tool for Performance Evaluation of MIMO OFDM Alamouti using a didactical Approach as a Educational and Research support in Wireless Communications JOSE CORDOVA, REBECA ESTRADA

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007 341

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007 341 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007 341 Multinode Cooperative Communications in Wireless Networks Ahmed K. Sadek, Student Member, IEEE, Weifeng Su, Member, IEEE, and K.

More information

On the Degrees of Freedom of time correlated MISO broadcast channel with delayed CSIT

On the Degrees of Freedom of time correlated MISO broadcast channel with delayed CSIT On the Degrees of Freedom of time correlated MISO broadcast channel with delayed CSI Mari Kobayashi, Sheng Yang SUPELEC Gif-sur-Yvette, France {mari.kobayashi, sheng.yang}@supelec.fr David Gesbert, Xinping

More information

PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUMBER OF REFERENCE SYMBOLS

PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUMBER OF REFERENCE SYMBOLS PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUM OF REFERENCE SYMBOLS Benjamin R. Wiederholt The MITRE Corporation Bedford, MA and Mario A. Blanco The MITRE

More information

Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels

Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 49, NO 5, MAY 2003 1073 Diversity Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels Lizhong Zheng, Member, IEEE, David N C Tse, Member, IEEE

More information

Enhancing Wireless Security with Physical Layer Network Cooperation

Enhancing Wireless Security with Physical Layer Network Cooperation Enhancing Wireless Security with Physical Layer Network Cooperation Amitav Mukherjee, Ali Fakoorian, A. Lee Swindlehurst University of California Irvine The Physical Layer Outline Background Game Theory

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1. Shannon s Information Theory 2. Source Coding theorem 3. Channel Coding Theory 4. Information Capacity Theorem 5. Introduction to Error Control Coding Appendix A : Historical

More information

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2 On the Traffic Capacity of Cellular Data Networks T. Bonald 1,2, A. Proutière 1,2 1 France Telecom Division R&D, 38-40 rue du Général Leclerc, 92794 Issy-les-Moulineaux, France {thomas.bonald, alexandre.proutiere}@francetelecom.com

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

I. Wireless Channel Modeling

I. Wireless Channel Modeling I. Wireless Channel Modeling April 29, 2008 Qinghai Yang School of Telecom. Engineering qhyang@xidian.edu.cn Qinghai Yang Wireless Communication Series 1 Contents Free space signal propagation Pass-Loss

More information

THE problems of characterizing the fundamental limits

THE problems of characterizing the fundamental limits Beamforming and Aligned Interference Neutralization Achieve the Degrees of Freedom Region of the 2 2 2 MIMO Interference Network (Invited Paper) Chinmay S. Vaze and Mahesh K. Varanasi Abstract We study

More information

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,

More information

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source

More information

5 Signal Design for Bandlimited Channels

5 Signal Design for Bandlimited Channels 225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g

More information

Full- or Half-Duplex? A Capacity Analysis with Bounded Radio Resources

Full- or Half-Duplex? A Capacity Analysis with Bounded Radio Resources Full- or Half-Duplex? A Capacity Analysis with Bounded Radio Resources Vaneet Aggarwal AT&T Labs - Research, Florham Park, NJ 7932. vaneet@research.att.com Melissa Duarte, Ashutosh Sabharwal Rice University,

More information

5 Capacity of wireless channels

5 Capacity of wireless channels CHAPTER 5 Capacity of wireless channels In the previous two chapters, we studied specific techniques for communication over wireless channels. In particular, Chapter 3 is centered on the point-to-point

More information

Diversity and Degrees of Freedom in Wireless Communications

Diversity and Degrees of Freedom in Wireless Communications 1 Diversity and Degrees of Freedom in Wireless Communications Mahesh Godavarti Altra Broadband Inc., godavarti@altrabroadband.com Alfred O. Hero-III Dept. of EECS, University of Michigan hero@eecs.umich.edu

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 8, AUGUST 2008 3425. 1 If the capacity can be expressed as C(SNR) =d log(snr)+o(log(snr))

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 8, AUGUST 2008 3425. 1 If the capacity can be expressed as C(SNR) =d log(snr)+o(log(snr)) IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 54, NO 8, AUGUST 2008 3425 Interference Alignment and Degrees of Freedom of the K-User Interference Channel Viveck R Cadambe, Student Member, IEEE, and Syed

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

T-79.7001 Postgraduate Course in Theoretical Computer Science T-79.5401 Special Course in Mobility Management: Ad hoc networks (2-10 cr) P V

T-79.7001 Postgraduate Course in Theoretical Computer Science T-79.5401 Special Course in Mobility Management: Ad hoc networks (2-10 cr) P V T-79.7001 Postgraduate Course in Theoretical Computer Science T-79.5401 Special Course in Mobility Management: Ad hoc networks (2-10 cr) P V professor Hannu H. Kari Laboratory for Theoretical Computer

More information

Privacy and Security in the Internet of Things: Theory and Practice. Bob Baxley; bob@bastille.io HitB; 28 May 2015

Privacy and Security in the Internet of Things: Theory and Practice. Bob Baxley; bob@bastille.io HitB; 28 May 2015 Privacy and Security in the Internet of Things: Theory and Practice Bob Baxley; bob@bastille.io HitB; 28 May 2015 Internet of Things (IoT) THE PROBLEM By 2020 50 BILLION DEVICES NO SECURITY! OSI Stack

More information

Ergodic Capacity of Continuous-Time, Frequency-Selective Rayleigh Fading Channels with Correlated Scattering

Ergodic Capacity of Continuous-Time, Frequency-Selective Rayleigh Fading Channels with Correlated Scattering Ergodic Capacity of Continuous-Time, Frequency-Selective Rayleigh Fading Channels with Correlated Scattering IEEE Information Theory Winter School 2009, Loen, Norway Christian Scheunert, Martin Mittelbach,

More information

Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications

Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications The Master Degree in Electrical Engineering/Wireless Communications, is awarded by the Faculty of Graduate Studies

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed

More information

The Degrees of Freedom of Compute-and-Forward

The Degrees of Freedom of Compute-and-Forward The Degrees of Freedom of Compute-and-Forward Urs Niesen Jointly with Phil Whiting Bell Labs, Alcatel-Lucent Problem Setting m 1 Encoder m 2 Encoder K transmitters, messages m 1,...,m K, power constraint

More information

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

More information

Lecture 2 Outline. EE 179, Lecture 2, Handout #3. Information representation. Communication system block diagrams. Analog versus digital systems

Lecture 2 Outline. EE 179, Lecture 2, Handout #3. Information representation. Communication system block diagrams. Analog versus digital systems Lecture 2 Outline EE 179, Lecture 2, Handout #3 Information representation Communication system block diagrams Analog versus digital systems Performance metrics Data rate limits Next lecture: signals and

More information

Capacity of the Multiple Access Channel in Energy Harvesting Wireless Networks

Capacity of the Multiple Access Channel in Energy Harvesting Wireless Networks Capacity of the Multiple Access Channel in Energy Harvesting Wireless Networks R.A. Raghuvir, Dinesh Rajan and M.D. Srinath Department of Electrical Engineering Southern Methodist University Dallas, TX

More information

Interference Alignment and the Degrees of Freedom of Wireless X Networks

Interference Alignment and the Degrees of Freedom of Wireless X Networks Interference Alignment and the Degrees of Freedom of Wireless X Networs Vivec R. Cadambe, Syed A. Jafar Center for Pervasive Communications and Computing Electrical Engineering and Computer Science University

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

Division algebras for coding in multiple antenna channels and wireless networks

Division algebras for coding in multiple antenna channels and wireless networks Division algebras for coding in multiple antenna channels and wireless networks Frédérique Oggier frederique@systems.caltech.edu California Institute of Technology Cornell University, School of Electrical

More information

The Multiple-Input Multiple-Output Systems in Slow and Fast Varying Radio Channels

The Multiple-Input Multiple-Output Systems in Slow and Fast Varying Radio Channels AGH University of Science and Technology Faculty of Electrical Engineering, Automatics, Computer Science and Electronics Ph.D. Thesis Paweł Kułakowski The Multiple-Input Multiple-Output Systems in Slow

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

CDMA Network Planning

CDMA Network Planning CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications

More information

Coding and decoding with convolutional codes. The Viterbi Algor

Coding and decoding with convolutional codes. The Viterbi Algor Coding and decoding with convolutional codes. The Viterbi Algorithm. 8 Block codes: main ideas Principles st point of view: infinite length block code nd point of view: convolutions Some examples Repetition

More information

The CUSUM algorithm a small review. Pierre Granjon

The CUSUM algorithm a small review. Pierre Granjon The CUSUM algorithm a small review Pierre Granjon June, 1 Contents 1 The CUSUM algorithm 1.1 Algorithm............................... 1.1.1 The problem......................... 1.1. The different steps......................

More information

Lezione 6 Communications Blockset

Lezione 6 Communications Blockset Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive

More information

Probability for Estimation (review)

Probability for Estimation (review) Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

High-Rate Codes That Are Linear in Space and Time

High-Rate Codes That Are Linear in Space and Time 1804 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 48, NO 7, JULY 2002 High-Rate Codes That Are Linear in Space and Time Babak Hassibi and Bertrand M Hochwald Abstract Multiple-antenna systems that operate

More information

Adaptive Equalization of binary encoded signals Using LMS Algorithm

Adaptive Equalization of binary encoded signals Using LMS Algorithm SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) volume issue7 Sep Adaptive Equalization of binary encoded signals Using LMS Algorithm Dr.K.Nagi Reddy Professor of ECE,NBKR

More information

Towards a Tight Finite Key Analysis for BB84

Towards a Tight Finite Key Analysis for BB84 The Uncertainty Relation for Smooth Entropies joint work with Charles Ci Wen Lim, Nicolas Gisin and Renato Renner Institute for Theoretical Physics, ETH Zurich Group of Applied Physics, University of Geneva

More information

Component Ordering in Independent Component Analysis Based on Data Power

Component Ordering in Independent Component Analysis Based on Data Power Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals

More information

A Practical Scheme for Wireless Network Operation

A Practical Scheme for Wireless Network Operation A Practical Scheme for Wireless Network Operation Radhika Gowaikar, Amir F. Dana, Babak Hassibi, Michelle Effros June 21, 2004 Abstract In many problems in wireline networks, it is known that achieving

More information

(2) (3) (4) (5) 3 J. M. Whittaker, Interpolatory Function Theory, Cambridge Tracts

(2) (3) (4) (5) 3 J. M. Whittaker, Interpolatory Function Theory, Cambridge Tracts Communication in the Presence of Noise CLAUDE E. SHANNON, MEMBER, IRE Classic Paper A method is developed for representing any communication system geometrically. Messages and the corresponding signals

More information

Principles of Digital Communication

Principles of Digital Communication Principles of Digital Communication Robert G. Gallager January 5, 2008 ii Preface: introduction and objectives The digital communication industry is an enormous and rapidly growing industry, roughly comparable

More information

Signal Detection. Outline. Detection Theory. Example Applications of Detection Theory

Signal Detection. Outline. Detection Theory. Example Applications of Detection Theory Outline Signal Detection M. Sami Fadali Professor of lectrical ngineering University of Nevada, Reno Hypothesis testing. Neyman-Pearson (NP) detector for a known signal in white Gaussian noise (WGN). Matched

More information

NRZ Bandwidth - HF Cutoff vs. SNR

NRZ Bandwidth - HF Cutoff vs. SNR Application Note: HFAN-09.0. Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP

More information

EDA ad hoc B program. CORASMA project COgnitive RAdio for dynamic Spectrum MAnagement Contract N B-781-IAP4-GC

EDA ad hoc B program. CORASMA project COgnitive RAdio for dynamic Spectrum MAnagement Contract N B-781-IAP4-GC EDA ad hoc B program CORASMA project COgnitive RAdio for dynamic Spectrum MAnagement Contract N B-781-IAP4-GC Learning algorithms for power and frequency allocation in clustered ad hoc networks Luca ROSE,

More information

Dealing with large datasets

Dealing with large datasets Dealing with large datasets (by throwing away most of the data) Alan Heavens Institute for Astronomy, University of Edinburgh with Ben Panter, Rob Tweedie, Mark Bastin, Will Hossack, Keith McKellar, Trevor

More information

Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas

Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas Nihar Jindal ECE Department University of Minnesota nihar@umn.edu Jeffrey G. Andrews ECE Department University

More information

Time-frequency segmentation : statistical and local phase analysis

Time-frequency segmentation : statistical and local phase analysis Time-frequency segmentation : statistical and local phase analysis Florian DADOUCHI 1, Cornel IOANA 1, Julien HUILLERY 2, Cédric GERVAISE 1,3, Jérôme I. MARS 1 1 GIPSA-Lab, University of Grenoble 2 Ampère

More information

ELEC3028 Digital Transmission Overview & Information Theory. Example 1

ELEC3028 Digital Transmission Overview & Information Theory. Example 1 Example. A source emits symbols i, i 6, in the BCD format with probabilities P( i ) as given in Table, at a rate R s = 9.6 kbaud (baud=symbol/second). State (i) the information rate and (ii) the data rate

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

Comparison of Network Coding and Non-Network Coding Schemes for Multi-hop Wireless Networks

Comparison of Network Coding and Non-Network Coding Schemes for Multi-hop Wireless Networks Comparison of Network Coding and Non-Network Coding Schemes for Multi-hop Wireless Networks Jia-Qi Jin, Tracey Ho California Institute of Technology Pasadena, CA Email: {jin,tho}@caltech.edu Harish Viswanathan

More information

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not. Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

More information

DSL Spectrum Management

DSL Spectrum Management DSL Spectrum Management Dr. Jianwei Huang Department of Electrical Engineering Princeton University Guest Lecture of ELE539A March 2007 Jianwei Huang (Princeton) DSL Spectrum Management March 2007 1 /

More information

An Overview of Limited Feedback in Wireless Communication Systems

An Overview of Limited Feedback in Wireless Communication Systems An Overview of Limited Feedback in Wireless Communication Systems David J. Love, Member, IEEE, Robert W. Heath Jr, Senior Member, IEEE, Vincent K. N. Lau, Senior Member, IEEE, David Gesbert, Senior Member,

More information

SC-FDMA and LTE Uplink Physical Layer Design

SC-FDMA and LTE Uplink Physical Layer Design Seminar Ausgewählte Kapitel der Nachrichtentechnik, WS 29/21 LTE: Der Mobilfunk der Zukunft SC-FDMA and LTE Uplink Physical Layer Design Burcu Hanta 2. December 29 Abstract The Long Term Evolution (LTE)

More information

Multiuser Wireless Communication Systems

Multiuser Wireless Communication Systems Multiuser Wireless Communication Systems Ashutosh Sabharwal and Behnaam Aazhang Department of Electrical and Computer Engineering Rice University Houston TX 77005 Abstract Wireless cellular systems have

More information

HD Radio FM Transmission System Specifications Rev. F August 24, 2011

HD Radio FM Transmission System Specifications Rev. F August 24, 2011 HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

More information

is the power reference: Specifically, power in db is represented by the following equation, where P0 P db = 10 log 10

is the power reference: Specifically, power in db is represented by the following equation, where P0 P db = 10 log 10 RF Basics - Part 1 This is the first article in the multi-part series on RF Basics. We start the series by reviewing some basic RF concepts: Decibels (db), Antenna Gain, Free-space RF Propagation, RF Attenuation,

More information

Degrees of Freedom in Wireless Networks

Degrees of Freedom in Wireless Networks Degrees of Freedom in Wireless Networks Zhiyu Cheng Department of Electrical and Computer Engineering University of Illinois at Chicago Chicago, IL 60607, USA Email: zcheng3@uic.edu Abstract This paper

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Distributed Detection Systems. Hamidreza Ahmadi

Distributed Detection Systems. Hamidreza Ahmadi Channel Estimation Error in Distributed Detection Systems Hamidreza Ahmadi Outline Detection Theory Neyman-Pearson Method Classical l Distributed ib t Detection ti Fusion and local sensor rules Channel

More information

Evolution in Mobile Radio Networks

Evolution in Mobile Radio Networks Evolution in Mobile Radio Networks Multiple Antenna Systems & Flexible Networks InfoWare 2013, July 24, 2013 1 Nokia Siemens Networks 2013 The thirst for mobile data will continue to grow exponentially

More information

Advanced Signal Processing and Digital Noise Reduction

Advanced Signal Processing and Digital Noise Reduction Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New

More information

Subspace intersection tracking using the Signed URV algorithm

Subspace intersection tracking using the Signed URV algorithm Subspace intersection tracking using the Signed URV algorithm Mu Zhou and Alle-Jan van der Veen TU Delft, The Netherlands 1 Outline Part I: Application 1. AIS ship transponder signal separation 2. Algorithm

More information

Packet Queueing Delay in Wireless Networks with Multiple Base Stations and Cellular Frequency Reuse

Packet Queueing Delay in Wireless Networks with Multiple Base Stations and Cellular Frequency Reuse Packet Queueing Delay in Wireless Networks with Multiple Base Stations and Cellular Frequency Reuse Abstract - Cellular frequency reuse is known to be an efficient method to allow many wireless telephone

More information

Energy Efficiency of Cooperative Jamming Strategies in Secure Wireless Networks

Energy Efficiency of Cooperative Jamming Strategies in Secure Wireless Networks Energy Efficiency of Cooperative Jamming Strategies in Secure Wireless Networks Mostafa Dehghan, Dennis L. Goeckel, Majid Ghaderi, and Zhiguo Ding Department of Electrical and Computer Engineering, University

More information

MIMO Antenna Systems in WinProp

MIMO Antenna Systems in WinProp MIMO Antenna Systems in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0 Feb. 2011

More information

Mobile Wireless Access via MIMO Relays

Mobile Wireless Access via MIMO Relays Mobile Wireless Access via MIMO Relays Tae Hyun Kim and Nitin H. Vaidya Dept. of Electrical and Computer Eng. Coordinated Science Laborartory University of Illinois at Urbana-Champaign, IL 680 Emails:

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

1 Example of Time Series Analysis by SSA 1

1 Example of Time Series Analysis by SSA 1 1 Example of Time Series Analysis by SSA 1 Let us illustrate the 'Caterpillar'-SSA technique [1] by the example of time series analysis. Consider the time series FORT (monthly volumes of fortied wine sales

More information

Ex. 2.1 (Davide Basilio Bartolini)

Ex. 2.1 (Davide Basilio Bartolini) ECE 54: Elements of Information Theory, Fall 00 Homework Solutions Ex.. (Davide Basilio Bartolini) Text Coin Flips. A fair coin is flipped until the first head occurs. Let X denote the number of flips

More information

How To Understand The Theory Of Time Division Duplexing

How To Understand The Theory Of Time Division Duplexing Multiple Access Techniques Dr. Francis LAU Dr. Francis CM Lau, Associate Professor, EIE, PolyU Content Introduction Frequency Division Multiple Access Time Division Multiple Access Code Division Multiple

More information

Application Note Noise Frequently Asked Questions

Application Note Noise Frequently Asked Questions : What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

More information

Predictive Models for Min-Entropy Estimation

Predictive Models for Min-Entropy Estimation Predictive Models for Min-Entropy Estimation John Kelsey Kerry A. McKay Meltem Sönmez Turan National Institute of Standards and Technology meltem.turan@nist.gov September 15, 2015 Overview Cryptographic

More information

Public Switched Telephone System

Public Switched Telephone System Public Switched Telephone System Structure of the Telephone System The Local Loop: Modems, ADSL Structure of the Telephone System (a) Fully-interconnected network. (b) Centralized switch. (c) Two-level

More information

Statistics Graduate Courses

Statistics Graduate Courses Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

More information

User Cooperation Diversity Part I: System Description

User Cooperation Diversity Part I: System Description IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 11, NOVEMBER 2003 1927 User Cooperation Diversity Part I: System Description Andrew Sendonaris, Member, IEEE, Elza Erkip, Member, IEEE, and Behnaam Aazhang,

More information

Performance of Multicast MISO-OFDM Systems

Performance of Multicast MISO-OFDM Systems Performance of Multicast MISO-OFDM Systems Didier Le Ruyet Electronics and Communications Lab CNAM, 292 rue Saint Martin 75141, Paris, France Email: leruyet@cnamfr Berna Özbek Electrical and Electronics

More information

Delayed Channel State Information: Incremental Redundancy with Backtrack Retransmission

Delayed Channel State Information: Incremental Redundancy with Backtrack Retransmission Delayed Channel State Information: Incremental Redundancy with Backtrack Retransmission Petar Popovski Department of Electronic Systems, Aalborg University Email: petarp@es.aau.dk Abstract In many practical

More information

PEST - Beyond Basic Model Calibration. Presented by Jon Traum

PEST - Beyond Basic Model Calibration. Presented by Jon Traum PEST - Beyond Basic Model Calibration Presented by Jon Traum Purpose of Presentation Present advance techniques available in PEST for model calibration High level overview Inspire more people to use PEST!

More information

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport

More information

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error

More information

IN current film media, the increase in areal density has

IN current film media, the increase in areal density has IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 1, JANUARY 2008 193 A New Read Channel Model for Patterned Media Storage Seyhan Karakulak, Paul H. Siegel, Fellow, IEEE, Jack K. Wolf, Life Fellow, IEEE, and

More information

Implementing Digital Wireless Systems. And an FCC update

Implementing Digital Wireless Systems. And an FCC update Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz

More information

Time Series Analysis III

Time Series Analysis III Lecture 12: Time Series Analysis III MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Time Series Analysis III 1 Outline Time Series Analysis III 1 Time Series Analysis III MIT 18.S096 Time Series Analysis

More information