Analysis of ground movements induced by diaphragm wall installation



Similar documents
Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

Ingeniería y Georiesgos Ingeniería Geotécnica Car 19 a Nº of 204 ; TEL : igr@ingeoriesgos.com

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc.

Module 7 (Lecture 24 to 28) RETAINING WALLS

Soil Classification Through Penetration Tests

Site Investigation. Some unsung heroes of Civil Engineering. buried right under your feet. 4. Need good knowledge of the soil conditions

Equivalent CPT Method for Calculating Shallow Foundation Settlements in the Piedmont Residual Soils Based on the DMT Constrained Modulus Approach.

Strength Determination of "Tooth-Paste" Like Sand and Gravel Washing Fines Using DMT

ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY

STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS?

Sample Project with SlurryTBM according to Anagnostou and Kovári

Soil behaviour type from the CPT: an update

Soft Soil Overconsolidation and CPTU Dissipation Test

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file

Cone Penetration Testing in Geotechnical Practice. Tom Lunne Peter K. Robertson John J.M. Powell

BUTE Department of Construction Management and Technology

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains

Geotechnical Testing Methods II

SHAFT CONSTRUCTION IN TORONTO USING SLURRY WALLS

EN Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland

Design of diaphragm and sheet pile walls. D-Sheet Piling. User Manual

Construction sites are dewatered for the following purposes:

CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION

Soil Behavior Type using the DMT

Numerical Simulation of CPT Tip Resistance in Layered Soil

Tremie Concrete CM 420 CM 420 CM 420 CM 420. Temporary Structures. Tremie Concrete

TECHNICAL SPECIFICATIONS CEMENT-BENTONITE SLURRY TRENCH CUTOFF WALL

Program COLANY Stone Columns Settlement Analysis. User Manual

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels

NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY

Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers

CE 366 SETTLEMENT (Problems & Solutions)

APPENDIX A PRESSUREMETER TEST INTERPRETATION

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives

Construction Dewatering and Ground Freezing

ENCE 4610 Foundation Analysis and Design

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design

Proceedings 2005 Rapid Excavation & Tunneling Conference, Seattle

Figure A-1. Figure A-2. continued on next page... HPM-1. Grout Reservoir. Neat Cement Grout (Very Flowable) Extension Displacement Plate

A case study of large screw pile groups behaviour

Pile test at the Shard London Bridge

DIMENSIONING TUNNEL SUPPORT BY DESIGN METHODOLOGY

Outline MICROPILES SUBJECT TO LATERAL LOADING. Dr. Jesús Gómez, P.E.

TBM CROSSING OF STATIONS

Assessment of stress history in glacial soils on the basis of cone penetration tests

Numerical study of rate effects in cone penetration test

Methods of Soft Ground Improvement

Using Combination of SPT, DMT and CPT to Estimate Geotechnical Model for a Special Project in Turkey

PART TWO GEOSYNTHETIC SOIL REINFORCEMENT. Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone

2. THE TEORRETICAL OF GROUND PENETRATING RADAR:

load on the soil. For this article s examples, load bearing values given by the following table will be assumed.

CHAPTER: 6 FLOW OF WATER THROUGH SOILS

A CASE STUDY: DESIGN AND CONSTRUCTION OF FOUNDATION AND BRACED EXCAVATION AT A RECLAIMED SITE AT WATERFRONT

Ground improvement using the vibro-stone column technique

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September ISSN

Open Access Numerical Analysis on Mutual Influences in Urban Subway Double-Hole Parallel Tunneling

Product Systems AQUAFIN-IC CEMENTITIOUS CRYSTALLINE PENETRATING WATERPROOFING. Waterproofing Specification

Soil Mechanics. Soil Mechanics

9.00 THE USE OF HUNTER LAND DRAINAGE PERFORATED PIPES. Hunter Underground Systems

A Ground Improvement Update from TerraSystems

Technical handbook Panel Anchoring System

Foundation Experts, LLC Specializes in Foundation Repair and Waterproofing

USE OF CONE PENETRATION TEST IN PILE DESIGN

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer

Tests and Analyses on Shear Strength Increment of Soft Soil under Embankment Fill

Dr. Jesús Gómez, P.E. 36th Annual Conference on Deep Foundations, Boston, MA

FRANKIPILE. High Pile Loads Optimum Adaptation to Foundation Soil Low-noise Manufacturing Process

WASHINGTON MONUMENT CASE HISTORY. Jean-Louis BRIAUD Texas A&M University

Using Accelerated Pavement Testing to Evaluate Permeable Interlocking Concrete Pavement Performance

4.3 Results Drained Conditions Undrained Conditions References Data Files Undrained Analysis of

ick Foundation Analysis and Design

Permafrost in Marine Deposits at Ilulissat Airport in Greenland, Revisited

Introduction: Overview of Soil Mechanics

Table of Contents. July

Welded Mesh Gabions and Mattresses River Protection Design Guide HY-TEN GABION SOLUTIONS Dunstall Hill Trading Estate, Gorsebrook Road,

Table of Contents 10.1 GENERAL

Technical Note by G.L. Sivakumar Babu, H. Sporer, H. Zanzinger, and E. Gartung SELF-HEALING PROPERTIES OF GEOSYNTHETIC CLAY LINERS

The Challenge of Sustainability in the Geo-Environment Proceedings of the Geo-Congress 2008 ASCE New Orleans LA

Laterally Loaded Piles

Washington ,

Embankment Consolidation

Monitoring of Tunnel End Plug Performance in ONKALO

BUILDING OVER OR NEAR WATER & SEWER MAINS POLICY

Dimensional and Structural Data for Elliptical Pipes. PD 26 rev D 21/09/05

COSMOS 2012: Earthquakes in Action COSMOS 2012

Investigation on the Effects of Twin Tunnel Excavations Beneath a Road Underpass

CPTWD (Cone Penetration Test While Drilling) a new method for deep geotechnical surveys

EGYPTIAN CODES FOR DESIGN AND CONSTRUCTION OF BUILDINGS

A Theoretical Solution for Consolidation Rates of Stone Column-Reinforced Foundations Accounting for Smear and Well Resistance Effects

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1

BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM

Appendix E. Embankment Sample Report

Geotechnical Investigation Test Report

DEM modelling of the dynamic penetration process on Mars as a part of the NASA InSight Mission

Embedded Retaining Wall Design Engineering or Paradox?

Transcription:

21 st Alert Workshop Program Aussois, October the 6 th 2010 Analysis of ground movements induced by diaphragm wall installation Benoit Garitte, Marcos Arroyo and Antonio Gens Universitat Politècnica de Catalunya, Barcelona

Rebaix de terres 20-8-08 21-7-08 21-6-08 22-5-08 Motivation Sant Cosme. Movimientos 1 T1B05282R289HT066Z T1B05283R207HT066Z T1B05286R207HT029Z T1B05294R208HT066Z Execució bigues centrals Estació Pas de la Tuneladora 12 10 8 6 4 Execució bigues c. Xuquer Jet 3 (1 col/2 dies) Jet 2 (<1 col/dia) Jet rampa (Jet 3) Jet protecció CC Pilots protecció Pantalles-pila (mòduls 92-95) Pantalles front CC (mòdul 76) Pantalles front CC (mòduls 71-75) Pantalles rampa costat edificis Pantalla rampa costat CC (mòduls R1-R5) -2 02-4 -10-8 -6-12 -14-16 -18-20 -22-24 -26-28 -30-32 -34-36 -38-40 -42-44 -46-48 -50-52 -54-56 -58 22-4-08 23-3-08 22-2-08 23-1-08 24-12-07 24-11-07 25-10-07 25-9-07 26-8-07 27-7-07 27-6-07 28-5-07 28-4-07 29-3-07 27-2-07 28-1-07 29-12-06 29-11-06 30-10-06 30-9-06 fechas asientos (mm) Settlements [mm] 58

Outline of the presentation Boundary condition for diaphragm wall: implementation and validation San Cosme station and parameter determination Modelling one panel: sensitivity analysis Modelling an entire diaphragm wall: comparison with in situ measurements Conclusions

Implementation of the boundary condition Literature review (Ng y Yan, 1998; Gourvenec & Powrie, 1999; Schaffer y Triantafyllidis, 2006) : Guide wall construction is not taken into account Excavation under bentonite slurry support is reproduced by retiring the elements included in the volume of the panel and applying the hydrostatic pressure (total stresses and null flux) Fresh concrete is reproduced by a bilinear hydrostatic boundary condition Hardening of concrete is reproduced by replacement of the panel volume by new elements with hard concrete parameters. The bilinear hydrostatic boundary condition is desactivated Installation Function: protection of existing structures Impermeabilization Stiffening

Implementation of the boundary condition Excavation under bentonite slurry Installation of fresh concrete Critical depth Gourvenec & Powrie, 1999

Implementation of the boundary condition Validation (2D): comparison between CB and G&P simulation results Profundidad [m] Depth [mm] 0-2 -4-6 -8-10 -12-14 -16-30 -25-20 -15-10 -5 0 Displacement [mm] Desplazamientos [mm] CB (bentonita) G&P (bentonita) CB (24h después bentonita) CB (hormigón) G&P (hormigón) CB (24h después hormigón)

Implementation of the boundary condition Gourvenec & Powrie, 1999 Displacement [mm] Installation of a panel is a 3D event Depth [mm] Effects due to the installation of various panels are not additive Correct representation of the earth pressure coefficient is a key issue

Outline of the presentation Implementation of the boundary condition in CB and validation San Cosme station and parameter determination Modelling one panel: sensitivity analysis Modelling an entire diaphragm wall and comparison with in situ measurements Conclusions

San Cosme station

San Cosme station and parameter determination Quaternary alluvial Silty clay Sand Clay Gravels

Parameter determination DMT (Marchetti Dilatometer)

Parameter determination DMT (Marchetti Dilatometer) Depth [m] 0.00-5.00-10.00-15.00-20.00-25.00-30.00-35.00-40.00-45.00-50.00 0.00 2.00 4.00 Id 6.00 8.00 Clay Arcill Silt Limo Sand Aren a DMT01 DMT02 DMT03 DMT04 Quaternary alluvial Silty clay Sand Clay Gravels

Parameter determination DMT (Marchetti Dilatometer) Depth [mm] Profundidad [m] 0.00-5.00-10.00-15.00-20.00-25.00-30.00-35.00-40.00-45.00-50.00 DMT01-1 DMT02-1 DMT03-1 DMT04-1 Ajuste del coefficiente de empuje 0.0 0.5 1.0 1.5 2.0 2.5 3.0 K 0 Horizontal stress index Earth pressure coefficient Quaternary alluvial Silty clay K 0 Sand σ ' = σ ' Clay Gravels h v

Parameter determination DMT (Marchetti Dilatometer) Depth [m] 0.00-5.00-10.00-15.00-20.00-25.00-30.00-35.00-40.00-45.00-50.00 Quaternary alluvial DMT01 DMT02 DMT03 DMT04 Gravels 0 200 400 600 E [bar] 800 1000 Silty clay Sand Clay DMT modulus Oedometer modulus λ (CC): 0.06

Parameter determination DMT (Marchetti Dilatometer) Depth [m] 0.00-5.00-10.00-15.00-20.00-25.00-30.00-35.00-40.00-45.00-50.00 0.00 1.00 2.00 3.00 OCR Preconsolidation pressure Swelling coefficient and friction angle: Mayne (2008): fitting of DMT and CPTu tests Permeability values were determined o the basis of in situ pump tests (AMPHOS)

Outline of the presentation Implementation of the boundary condition in CB and validation San Cosme station and parameter determination Modelling one panel: sensitivity analysis Modelling an entire diaphragm wall and comparison with in situ measurements Conclusions

Modelling one panel Modelling domain for one panel 50m 25m

Modelling one panel cota topográfica [m] Depth [mm] 0-5 -10-15 -20 Perfil hidrostático en la bentonita Perfil hidrostático en el hormigón Perfil en el hormigón (empírico) Tensión horizontal (total) -25 0 100 200 300 400 tensión [kpa] Stresses [kpa]

Modelling one panel Settlement evolution Settlement [mm] 1 0-1 -2-3 -4-5 Hardening of the concrete Injection of fresh concrete Excavation under bentonite support 0 10 20 30 40 Time [hrs] Settlement @ 2 m Settlement @ 3 m Settlement @ 4 m Settlement @ 5 m Settlement @ 10 m Settlement @ 16 m Di Biagio and Myrvoll, 1973

Modelling one panel Profundidad [m] Depth [mm] Convergence of the panel wall 0-5 -10-15 -20-25 t [horas] = 0.13, profundidad panel [m] = 1 t [horas] = 0.26, profundidad panel [m] = 2 t [horas] = 0.39, profundidad panel [m] = 3 t [horas] = 0.52, profundidad panel [m] = 4 t [horas] = 0.65, profundidad panel [m] = 5 t [horas] = 0.90, profundidad panel [m] = 7 t [horas] = 1.16, profundidad panel [m] = 9 t [horas] = 1.42, profundidad panel [m] = 11 t [horas] = 1.55, profundidad panel [m] = 12 t [horas] = 1.81, profundidad panel [m] = 14 t [horas] = 2.06, profundidad panel [m] = 16 t [horas] = 2.32, profundidad panel [m] = 18 t [horas] = 2.58, profundidad panel [m] = 20 t [horas] = 2.84, profundidad panel [m] = 22 t [horas] = 3.10, profundidad panel [m] = 24 t [horas] = 3.23, profundidad panel [m] = 25 t [horas] = 8.23, antes hormigonado Justo despues hormigonado t [horas] = 20.23, antes fraguado Justo despues fraguado t [horas] = 24 t [horas] = 2400-40 -20 0 20 40 desplazamientos [mm] Displacement [mm]

Modelling one panel Settlement profile Settlements asientos [mm] 2 0-2 -4-6 -8-10 -12-14 t [horas] = 0.13, profundidad panel [m] = 1 t [horas] = 0.26, profundidad panel [m] = 2 t [horas] = 0.39, profundidad panel [m] = 3 t [horas] = 0.52, profundidad panel [m] = 4 t [horas] = 0.65, profundidad panel [m] = 5 t [horas] = 0.90, profundidad panel [m] = 7 t [horas] = 1.16, profundidad panel [m] = 9 t [horas] = 1.42, profundidad panel [m] = 11 t [horas] = 1.55, profundidad panel [m] = 12 t [horas] = 1.81, profundidad panel [m] = 14 t [horas] = 2.06, profundidad panel [m] = 16 t [horas] = 2.32, profundidad panel [m] = 18 t [horas] = 2.58, profundidad panel [m] = 20 t [horas] = 2.84, profundidad panel [m] = 22 t [horas] = 3.10, profundidad panel [m] = 24 t [horas] = 3.23, profundidad panel [m] = 25 t [horas] = 8.23, antes hormigonado 0 10 20 30 40 50 Distancia hasta la pared [m] Distance to wall [m]

Modelling one panel: sensitivity analysis Case 1: base case Case 2: bentonite slurry level is 2m below the surface Case 3: length of the panel is 6m (instead of 3.6m) Case 4: depth of the panel is 35m (instead of 25m) Case 5: Critical depth is set to H/5 (instead of H/3) Case 6: width of the panel is 1m (instead of 1.2m) 1 Settlements [mm] asientos [mm] 0-1 -2-3 -4-5 Settlement evolution Asientos @ 3 m (caso 1) Asientos @ 3 m (caso 2) Asientos @ 3 m (caso 3) Asientos @ 3 m (caso 4) Asientos @ 3 m (caso 5) Asientos @ 3.1 m (caso 6) -6 0 10 20 30 40 Tiempo [hrs] Time [hrs]

Outline of the presentation Implementation of the boundary condition in CB and validation San Cosme station and parameter determination Modelling one panel: sensitivity analysis Modelling an entire diaphragm wall and comparison with in situ measurements Conclusions

Rebaix de terres Execució bigues centrals Estació Pas de la Tuneladora 20-8-08 21-7-08 21-6-08 22-5-08 22-4-08 23-3-08 22-2-08 23-1-08 Execució bigues c. Xuquer Jet 2 (<1 col/dia) 24-12-07 24-11-07 Modelling an entire diaphragm wall 12 10 8 6 4 Jet 3 (1 col/2 dies) Jet rampa (Jet 3) Jet protecció CC Pilots protecció Pantalles-pila (mòduls 92-95) Pantalles front CC (mòdul 76) Pantalles front CC (mòduls 71-75) Pantalles rampa costat edificis Pantalla rampa costat CC (mòduls R1-R5) -2 02-4 -10-8 -6-12 -14-16 -18-20 -22-24 -26-28 -30-32 -34-36 -38-40 -42-44 -46-48 -50-52 -54-56 -58 25-10-07 25-9-07 26-8-07 R1 p5 p7 p3 p6 p4 p2 p1 R2 R3 R4 R5 27-7-07 27-6-07 28-5-07 28-4-07 29-3-07 27-2-07 28-1-07 29-12-06 29-11-06 30-10-06 30-9-06 asientos (mm) Settlements [mm]

Modelling an entire diaphragm wall Settlements [mm] asientos [mm] 1 0-1 -2-3 -4-5 -6-7 Prisma 1 :3m desde panel (medidas) Prisma 2 :5.5m desde panel (medidas) Prisma 3 :13.5m desde panel (medidas) Prisma 4 :23.5m desde panel (medidas) Prisma 5 :31m desde panel (medidas) Prisma 6 :42.5m desde panel (medidas) Prisma 7 :49.5m desde panel (medidas) 15/11/2006 05/12/2006 25/12/2006 14/01/2007 03/02/2007 23/02/2007 R1 p3 p5 p7 R2 p2 p4 p6 R3 R4 p1 R5

Modelling an entire diaphragm wall

Modelling an entire diaphragm wall Settlement evolution 1 0 Asientos @ 3 m debidos a la ejecución de dos panel de 3.6m Asientos @ 3 m debidos a la ejecución de un panel de 6m Settlements [mm] asientos [mm] -1-2 -3-4 -5-6 0 50 100 Tiempo [horas] Time [hrs]

Modelling an entire diaphragm wall Settlement evolution 1 0-1 -2-3 -4-5 -6-7 Prisma 1 :3m desde panel (simulación) Prisma 1 :3m desde panel (medidas) Settlements [mm] asientos [mm] 15/11/2006 17/11/2006 19/11/2006 21/11/2006 23/11/2006 25/11/2006 27/11/2006 29/11/2006 01/12/2006 03/12/2006 05/12/2006 Di Biagio and Myrvoll, 1973

Modelling an entire diaphragm wall Settlement evolution 1 0-1 -2-3 -4-5 -6-7 Prisma 1 :3m desde panel (simulación) Prisma 1 :3m desde panel (medidas) Settlements [mm] asientos [mm] 15/11/2006 05/12/2006 25/12/2006 14/01/2007 03/02/2007 23/02/2007

Modelling an entire diaphragm wall Settlement evolution 1 Prisma 2 :5.5m desde panel (simulación) 0.5 0-0.5-1 -1.5-2 -2.5-3 Prisma 2 :5.5m desde panel (medidas) Settlements [mm] asientos [mm] 15/11/2006 17/11/2006 19/11/2006 21/11/2006 23/11/2006 25/11/2006 27/11/2006 29/11/2006 01/12/2006 03/12/2006 05/12/2006

Modelling an entire diaphragm wall Settlement evolution 1 0-1 -2-3 -4-5 Prisma 2 :5.5m desde panel (simulación) Prisma 2 :5.5m desde panel (medidas) asientos [mm] Settlements [mm] 15/11/2006 05/12/2006 25/12/2006 14/01/2007 03/02/2007 23/02/2007

Modelling an entire diaphragm wall Settlement profile Settlements [mm] asientos [mm] 1 0-1 -2-3 -4-5 -6-7 Simulación (R1-R2) @ 27/11/2006 Simulación (R4) @ 27/11/2006 Medida @ 12/02/2007 (p1) Medidas @ 12/02/2007 (otros prismas) 0 20 40 60 80 Distancia a la pared [m] Distance to wall [m]

Concluding remarks Diaphragm wall installation in soft soils may produce settlement in its neighbourhood. Numerical models may help to quantify and understand the problem. Three settlement phases were distinguished during the installation of a panel: Settlement during excavation under bentonite support Heave during injection of concrete Settlement during hardening of concrete Design parameters were classified by order of importance: The length of the panel The bentonite level during excavation The width of the panel The depth of the panel 3D effects were shown to be very important A good agreement between measured and simulated settlements was achieved Model limitations: soil-wall interface & concrete hardening

Implementation of the boundary condition Fresh concrete: Critical depth Schad et al., 2007 Lion Yard, Cambridge (Lings et al., 2004) H crit = H/3 H crit = H/5

Modelling one panel Case 1: base case Case 2: bentonite slurry level is 2m below the surface Case 3: length of the panel is 6m (instead of 3.6m) Case 4: depth of the panel is 35m (instead of 25m) Case 5: Critical depth is set to H/5 (instead of H/3) Case 6: width of the panel is 1m (instead of 1.2m) Settlements [mm] asientos [mm] 0-2 -4-6 -8-10 -12-14 -16-18 -20 Settlement profile t [horas] = 3.23 (caso 1) t [horas] = 3.23 (caso 2) t [horas] = 3.23 (caso 3) t [horas] = 4.35 (caso 4) t [horas] = 3.23 (caso 5) t [horas] = 3.23 (caso 6) 0 10 20 30 40 50 Distancia hasta la pared [m] Distance to wall [m] Profundidad [m] Depth [m] Convergence of the panel wall 0-5 t [horas] = 3.23, profundidad panel [m] = 25 (caso 1) t [horas] = 3.23, profundidad panel [m] = 25 (caso 2) -10 t [horas] = 3.23, profundidad panel [m] = 25 (caso 3) t [horas] = 4.35, profundidad panel [m] = 35 (caso 4) -15 t [horas] = 3.23, profundidad panel [m] = 25 (caso 5) t [horas] = 3.23, profundidad panel [m] = 25 (caso 6) -20-25 -40-30 -20-10 0 Desplazamiento Displacement [mm] [mm]