An ultimate Sobolev dimension-free imbedding

Similar documents
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

Publications, sorted by subject

Error estimates for nearly degenerate finite elements

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

Existence and multiplicity of solutions for a Neumann-type p(x)-laplacian equation with nonsmooth potential. 1 Introduction

( ) ( ) [2],[3],[4],[5],[6],[7]

BV has the bounded approximation property

1. INTRODUCTION. u yy. u yx

RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS

Existence for some vectorial elliptic problems with measure data **)

Erdős on polynomials

Wissenschaftliche Artikel (erschienen bzw. angenommen)

Manual for SOA Exam MLC.

EXERCISES PDE v(x)

Lipschitz classes of A-harmonic functions in Carnot groups

Pacific Journal of Mathematics

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

Theory of Sobolev Multipliers

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction

THE DIMENSION OF A CLOSED SUBSET OF R n AND RELATED FUNCTION SPACES

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space


Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

DIRICHLET S PROBLEM WITH ENTIRE DATA POSED ON AN ELLIPSOIDAL CYLINDER. 1. Introduction

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup

THE SQUARE PARTIAL SUMS OF THE FOURIER TRANSFORM OF RADIAL FUNCTIONS IN THREE DIMENSIONS

Notes on metric spaces

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

Finite speed of propagation in porous media. by mass transportation methods

MATH4427 Notebook 2 Spring MATH4427 Notebook Definitions and Examples Performance Measures for Estimators...

Augusto Teixeira (IMPA)

CHAPTER IV - BROWNIAN MOTION

Optimal Investment with Derivative Securities

UNIFORM ASYMPTOTICS FOR DISCOUNTED AGGREGATE CLAIMS IN DEPENDENT RISK MODELS

Math 461 Fall 2006 Test 2 Solutions

Class Meeting # 1: Introduction to PDEs

THE EIGENVALUES OF THE LAPLACIAN ON DOMAINS WITH SMALL SLITS

User Guide Thank you for purchasing the DX90

An optimal transportation problem with import/export taxes on the boundary

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering


MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL

Influences in low-degree polynomials

Lecture 8: More Continuous Random Variables

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES

Statistics 100A Homework 7 Solutions

UNIVERSITETET I OSLO

Lecture Notes on Measure Theory and Functional Analysis

THE BANACH CONTRACTION PRINCIPLE. Contents


Frakcionális Brown mozgás által. Sztochasztikus differenciálegyenletek megoldásának közelíté. Soós Anna

Fuzzy Differential Systems and the New Concept of Stability

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

Finitely Additive Dynamic Programming and Stochastic Games. Bill Sudderth University of Minnesota

NONLOCAL PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS

Numerical Verification of Optimality Conditions in Optimal Control Problems

1. Prove that the empty set is a subset of every set.

MULTIPLE RECURRENCE AND CONVERGENCE FOR SEQUENCES RELATED TO THE PRIME NUMBERS

No: Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

A note on the convex infimum convolution inequality

Nonlinear Systems of Differential Equations

Properties of BMO functions whose reciprocals are also BMO

Power-law Price-impact Models and Stock Pinning near Option Expiration Dates. Marco Avellaneda Gennady Kasyan Michael D. Lipkin

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí

Limit theorems for the longest run

Practice problems for Homework 11 - Point Estimation

Stationary random graphs on Z with prescribed iid degrees and finite mean connections

Model order reduction via Proper Orthogonal Decomposition

Linköping University Electronic Press

ON THE EXISTENCE AND LIMIT BEHAVIOR OF THE OPTIMAL BANDWIDTH FOR KERNEL DENSITY ESTIMATION

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

Optimal boundary control of quasilinear elliptic partial differential equations: theory and numerical analysis

Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks

Transcription:

An ultimate Sobolev dimension-free imbedding Alberto FIORENZA Universitá di Napoli "Federico II" Memorial seminar dedicated to Prof. RNDr. Miroslav Krbec, DrSc. Praha, November 8, 212 () 1 / 25

PRAHA 1995 1996 1998 2 21 212 NAPOLI 1994 1997 23 26 21 211 () 2 / 25

() 3 / 25

Sobolev inequality for gradients n 2 Q n = (, 1) n unit cube in R n classical: 1 < p < n p(n 1) u np L n p n p u L p u W 1,p () 4 / 25

Sobolev inequality for gradients n 2 Q n = (, 1) n unit cube in R n classical: 1 < p < n p(n 1) u np L n p n p u L p u W 1,p dimension-free: p > 1 u Xp c p u L p u W 1,p () 4 / 25

Sobolev inequality for gradients n 2 Q n = (, 1) n unit cube in R n classical: 1 < p < n p(n 1) u np L n p n p u L p u W 1,p dimension-free: p > 1 u Xp(,1) = u Xp c p u L p u W 1,p () 5 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequalities Small Lebesgue inequality Poincaré estimate: u L p p u L p u W 1,p () 6 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequalities Small Lebesgue inequality Poincaré estimate: special case of u L p p u L p u W 1,p u L p p Ω 1 n u L p u W 1,p (Ω) () 6 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequalities Small Lebesgue inequality Poincaré estimate: special case of u L p p u L p u W 1,p u L p p Ω 1 n u L p u W 1,p (Ω) The no gain of summability is a first answer! () 6 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequalities Let s go back to the Sobolev inequality: u L np n p c p,n u L p u W 1,p Small Lebesgue inequality () 7 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequalities Let s go back to the Sobolev inequality: Small Lebesgue inequality Improvement: u L np n p c p,n u L p u W 1,p where u L np n p,p = u L np n p [ 1 u np c L n p,p p,n u L p u W 1,p (t n p np u (t) ) p dt t ] 1 p, u (t) = 1 t t u (s)ds () 7 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequalities Small Lebesgue inequality u L np n p,p c p,n u L p u W 1,p O Neil Edmunds, Kerman, Pick Duke Math. J. 1963 J. Funct. Anal. 2 J. Peetre Malý, Pick Ann. Inst. Fourier 1966 Proc. A.M.S. 22 Pick Sobolev Ineq. in Math., Springer 29 () 8 / 25

L np n p,p X p L p L p!!, p! Ln-p! np! X p! () 9 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequalities Small Lebesgue inequality ( ) 1 1 ( (1 + log t ) p 2 u (t) p dt p c p (true, more generally, for u W 1,p (R n )) Q n u(x) p dx Triebel Banach Center Publ. 211 Martin, Milman J. Funct. Anal. 29, Adv. in Math. 21 ) 1 ) 1 p +c p u(x) ( Q p p dx n () 1 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequalities Small Lebesgue inequality ( ) 1 1 ( (1 + log t ) p 2 u (t) p dt p c p Q n u(x) p dx ) 1 ) 1 p +c p u(x) ( Q p p dx n u {λ Lp(log L) p = inf > : 2 u Lp(log L) p 2 c p u L p u W 1,p Q n ( u(x) λ ) p ( log p 2 e + u(x) ) } dx 1 λ () 11 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequalities Small Lebesgue inequality u {λ Lp(log L) p = inf > : 2 Krbec, Schmeisser J. Math. Anal. Appl. 212 Krbec, Schmeisser Rev. Math. Complut. 212 u Lp(log L) p 2 c p u L p u W 1,p Q n ( u(x) λ ) p ( log p 2 e + u(x) ) } dx 1 λ () 12 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequality: Logarithmic Sobolev inequalities u Lp(log L) p 2 c p u L p u W 1,p Small Lebesgue inequality () 13 / 25

Spaces X p such that u Xp c p u L p u W 1,p Poincaré estimate Logarithmic Sobolev inequality: Logarithmic Sobolev inequalities u Lp(log L) p 2 c p u L p u W 1,p Improvement (F., Krbec, Schmeisser 212): Small Lebesgue inequality where u Lp(log L) p c p 2 (p, p u L 2 p (p, u L 2 c p u L p u W 1,p is a particular small Lebesgue space () 14 / 25

Basics on grand Lebesgue spaces Ω R n bounded domain f : Ω R n Df (x) : R n R n J(x, f ) = det Df (x) x Ω () 15 / 25

Basics on grand Lebesgue spaces Ω R n bounded domain f : Ω R n Df (x) : R n R n J(x, f ) = det Df (x) x Ω Hölder inequality: f W 1,n (Ω, R n ) J(x, f ) L 1 (Ω) () 15 / 25

Basics on grand Lebesgue spaces Ω R n bounded domain f : Ω R n Df (x) : R n R n J(x, f ) = det Df (x) x Ω Hölder inequality: f W 1,n (Ω, R n ) J(x, f ) L 1 (Ω) Müller, Bull. A.M.S. 1989 : f W 1,n (Ω, R n ), J a.e. J(x, f ) L 1 log L loc (Ω) () 15 / 25

Basics on grand Lebesgue spaces Ω R n bounded domain f : Ω R n Df (x) : R n R n J(x, f ) = det Df (x) x Ω Hölder inequality: f W 1,n (Ω, R n ) J(x, f ) L 1 (Ω) Müller, Bull. A.M.S. 1989 : f W 1,n (Ω, R n ), J a.e. J(x, f ) L 1 log L loc (Ω) Iwaniec, Sbordone, Arch. Rat. Mech. Anal. 1992 : Df L n) (Ω), J a.e. J(x, f ) L 1 loc (Ω) () 15 / 25

Basics on grand Lebesgue spaces Ω R n bounded domain f : Ω R n Df (x) : R n R n J(x, f ) = det Df (x) x Ω Hölder inequality: f W 1,n (Ω, R n ) J(x, f ) L 1 (Ω) Müller, Bull. A.M.S. 1989 : f W 1,n (Ω, R n ), J a.e. J(x, f ) L 1 log L loc (Ω) Iwaniec, Sbordone, Arch. Rat. Mech. Anal. 1992 : Df L n) (Ω), J a.e. J(x, f ) L 1 loc (Ω) ( u L n) (Ω) u L n) (Ω) = sup ɛ <ɛ<n 1 Ω ) 1 u(x) n ɛ n ɛ dx < [look at references in Capone, F., J. Funct. Spaces Appl. 25 for the state-of-art until 24] () 15 / 25

Basics on grand Lebesgue spaces Ω R n bounded domain 1 < p < θ > ( u L p),θ (Ω) u L p) (Ω) = sup <ɛ<p 1 ɛ θ Ω ) 1 u(x) p ɛ p ɛ dx L p),θ (Ω) is a rearrangement-invariant Banach Function Space (Bennett, Sharpley 1988) Iwaniec, Koskela, Onninen Invent. Math. 21 L p (log L) θ Lp),θ L Φ < () 16 / 25

Basics on small Lebesgue spaces Ω R n bounded domain 1 < p < θ > Definition The small Lebesgue space L (p,θ (Ω) is the associate space of the grand Lebesgue space L p),θ (Ω) () 17 / 25

Basics on small Lebesgue spaces Ω R n bounded domain 1 < p < θ > Definition The small Lebesgue space L (p,θ (Ω) is the associate space of the grand Lebesgue space L p),θ (Ω) } u L (p,θ (Ω) { = sup u(x)v(x) dx : v L p),θ (Ω), v L p),θ (Ω) 1 Ω u(x)v(x)dx u L (p,θ (Ω) v L p),θ (Ω) Ω L (p,θ (Ω) is a rearrangement-invariant Banach Function Space () 17 / 25

Basics on small Lebesgue spaces Ω R n bounded domain 1 < p < θ > () 18 / 25

Basics on small Lebesgue spaces Ω R n bounded domain 1 < p < θ > F. F., Rakotoson Collect. Math. 2 Math. Ann. 23 { ( ) 1/(p ɛ) } u L (p,θ (Ω) inf u= P k u k ɛ) inf <ɛ<p 1 ɛ θ/(p u k (p ɛ) dx k Ω () 18 / 25

Basics on small Lebesgue spaces Ω R n bounded domain 1 < p < θ > F. F., Rakotoson Collect. Math. 2 Math. Ann. 23 { ( ) 1/(p ɛ) } u L (p,θ (Ω) inf u= P k u k ɛ) inf <ɛ<p 1 ɛ θ/(p u k (p ɛ) dx k F., Karadzhov Di Fratta, F. Z. Anal. Anwen. 24 Nonlinear Anal. 29 u L (p,θ (Ω) Ω ( ( )) θ t p 1 log 1 ( t ) 1 p u (s) p dt ds Ω t Ω () 18 / 25

Basics on small Lebesgue spaces Capone, F. J. Funct. Spaces Appl. 25 Capone, F., Krbec J. Ineq. Appl. 26 Cobos, Kühn preprint 212 L p (log L) βθ/(p 1) (Ω) L (p,θ (Ω) L p (log L) θ/(p 1) (Ω) β>1 In particular, when θ = p /2, i.e. L (p,p /2 (Ω) L p (log L) p/2 (Ω) u L p (log L) p/2 (Ω) u L (p,p /2 (Ω) () 19 / 25

Grand/small Sobolev spaces Fusco, Lions, Sbordone, Proc. A.M.S. 1996 u W 1,1 (Ω), u Ln),θ (Ω) u EXP(L n/(n 1+θ) )(Ω) () 2 / 25

Grand/small Sobolev spaces Fusco, Lions, Sbordone, Proc. A.M.S. 1996 u W 1,1 (Ω), u Ln),θ (Ω) u EXP(L n/(n 1+θ) )(Ω) F., Rakotoson, Math. Ann. 23 u W 1,1 (Ω), u L (n (Ω) osc B(x,t) u c N Ω 1/N u χ B(x,t) L (n (Ω) () 2 / 25

Grand/small Sobolev spaces Fusco, Lions, Sbordone, Proc. A.M.S. 1996 u W 1,1 (Ω), u Ln),θ (Ω) u EXP(L n/(n 1+θ) )(Ω) F., Rakotoson, Math. Ann. 23 u W 1,1 (Ω), u L (n (Ω) osc B(x,t) u c N Ω 1/N u χ B(x,t) L (n (Ω) F., Rakotoson, Calc. Var. 25 (case k = 1) Cobos, Kühn, preprint 212 (case k positive integer) Ω R n connected, bounded, open, smooth, Ω = 1, 1 < p < n/k W k,p (Ω) L p ) are compact, where p = np/(n kp) W k,(p (Ω) L p () 2 / 25

F., Krbec, Schmeisser, the main idea Alvino, Boll. U.M.I. 1977 u np/(n p),p c p n 1/2 u p u W 1,p () 21 / 25

F., Krbec, Schmeisser, the main idea Alvino, Boll. U.M.I. 1977 u np/(n p),p c p n 1/2 u p u W 1,p n 1/2 u np/(n p),p c p u p () 21 / 25

F., Krbec, Schmeisser, the main idea Alvino, Boll. U.M.I. 1977 u np/(n p),p c p n 1/2 u p u W 1,p n 1/2 u np/(n p),p c p u p inf n n1/2 u np/(n p),p c p u p () 21 / 25

F., Krbec, Schmeisser, the main idea Alvino, Boll. U.M.I. 1977 u np/(n p),p c p n 1/2 u p u W 1,p n 1/2 u np/(n p),p c p u p inf n n1/2 u np/(n p),p c p u p (change n 1/ɛ) inf ɛ ɛ 1/2 u (p ɛ),p c p u p () 21 / 25

F., Krbec, Schmeisser, the main idea Alvino, Boll. U.M.I. 1977 u np/(n p),p c p n 1/2 u p u W 1,p n 1/2 u np/(n p),p c p u p inf n n1/2 u np/(n p),p c p u p (change n 1/ɛ) inf ɛ ɛ 1/2 u (p ɛ),p c p u p (setting θ = p /2) ɛ 1/2 = ɛ θ/p ɛ θ/(p ɛ) () 21 / 25

F., Krbec, Schmeisser, the main idea Alvino, Boll. U.M.I. 1977 u np/(n p),p c p n 1/2 u p u W 1,p n 1/2 u np/(n p),p c p u p inf n n1/2 u np/(n p),p c p u p (change n 1/ɛ) inf ɛ ɛ 1/2 u (p ɛ),p c p u p (setting θ = p /2) (conclusion) ɛ 1/2 = ɛ θ/p ɛ θ/(p ɛ) u (p,p /2 c p u p () 21 / 25

F., Krbec, Schmeisser, the main idea Alvino, Boll. U.M.I. 1977 u np/(n p),p c p n 1/2 u p u W 1,p u Y c p n 1/2 u np/(n p),p c p u p inf n n1/2 u np/(n p),p c p u p (change n 1/ɛ) (setting θ = p /2) (conclusion) optimality : L (p,p /2 Y inf ɛ ɛ 1/2 u (p ɛ),p c p u p ɛ 1/2 = ɛ θ/p ɛ θ/(p ɛ) u Y c p u (p,p /2 c p u p () 22 / 25

() 23 / 25

() 24 / 25

() 25 / 25