Similar documents
ก ก ก ก Hydrologic Cycle

COMBINED LIABILITY INSURANCE CERTIFICATE. effected through. Bluefin Insurance Services Limited CI Tower St. George s Square New Malden Surrey KT3 4TP

0vre Haldenveien 14, 3515 H0nefoss Soldiagram

What is a piper plot?

B A R M A G - F R I C T I O N U N I T

Rotary actuator for 2 and 3-way (control) ball valves Torque 5 Nm Nominal voltage AC V Control: Open/close or 3-point Auxiliary switch


School Year Pathways for Special Education

Enrolled Copy S.B. 159 ASSESSMENT OFFSET FOR DONATIONS PROMOTING OCCUPATIONAL HEALTH AND SAFETY 2005 GENERAL SESSION STATE OF UTAH

Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price

E-COMMERCE: AMONG THE FIRST MOVERS. Patrice Taillandier-Thomas Damien Jamet

A Guide to the Private Office Asset Management Ltd Wrap Account

Appendix B D&B Rating & Score Explanations

E. OZCEYLAN /International Journal of Lean Thinking Volume 1, Issue 1 (June 2010)

Insurance and Banking Supervision XBRL Implementation in France

Deklaracja podatku od nieruchomości DL-1 schemat

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Reharmonizations and Substitutions

Green = 0,255,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (43,215,35) Equal Luminance Gray for Green

Checklist for Meeting Regulatory Requirements: Performance Appraisal Systems

東 海 大 學 資 訊 工 程 研 究 所 碩 士 論 文

Residual current devices

Incorporating Innovative Materials for Seismic Resilient Bridge Columns

RGB - CGA, EGA, HD to VGA Converter ID# 657

PAMANTASAN NG LUNGSOD NG MAYNILA (University of the City of Manila) Intramuros, Manila NOTICE OF VACANT ADMINISTRATIVE POSITIONS

Neutralization of Acid Mine Drainage Using Stabilized Flue Gas Desulfurization Material

8. Relax and do well.

How To Get A Better Price For Your Phone In Orange (European)

Zsolt Katona. Last Update: July, 2013

Bachelors of Science-Computer System Engineering (Information Assurance)

Bachelors of Science-Electrical Engineering

Site Review Instrument: Outpatient and Outpatient Rehabilitation Treatment Programs Part 822-4

The Accounting Cycle. Chapters 4 and 3

Mark Scheme (Results) June 2010

Aim for Success. Isaac Kohls Financial Services Representative Princor Registered Representative

DATING YOUR GUILD

A Security Protocol Animator Tool for AVISPA

Zsolt Katona. Last Update: January, 2015

Survey Instrument Requirements Requirements Definition Template

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

STATEMENT OF WORK AND/OR SPECIFICATIONS STATEMENT OF WORK

Tutorial 1J: Chords, Keys, and Progressions

Know Before You Owe Mortgage Disclosure Rule Construction Lending

Every person who is a British citizen is so either "by descent" or "otherwise than by descent".

Introductory sub-table (I)(a) As a % of total no. of partly paid-up shares. Held by promoter/promoter group Held by public 0 0 0

JAN continuous struggle for the department of education to place. teachers in schools having high turnover rates or determined as

WELCOME TO UNIVERSIDAD DE LOS ANDES

Roadside Truck Survey in the National Capital Region

Bachelors of Science-Civil Engineering Environmental Engineering

KEY FINDINGS. 2 New trends in global shopping habits. Smartphones are increasingly important during all stages of the consumer journey

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

PSTN. Gateway. Switch. Supervisor PC. Ethernet LAN. IPCC Express SERVER. CallManager. IP Phone. IP Phone. Cust- DB


BILL ANALYSIS. Senate Research Center S.B By: Hinojosa; Huffman Criminal Justice 3/18/2013 As Filed

Ash content [%] Sulphur content [%]

Inspired LED Price List

Il/network/italiano/ Risorse digitali e strumenti colaborativi per le Scienze del'antichità/ Venezia'3'o*obre'2014' Emiliano Degl Innocenti

Draft Lambeth Local Plan Location of Betting Shops, Pawnbrokers and Money Lenders in Lambeth

E-learning and Student Mobility in Higher Education. BEST Symposium on Education, Gothenburg 2 nd June 10 th June; 2007

How To Use Excel To Compute Compound Interest

YOUR EQUIFAX CREDIT REPORT


doi: /j.jocn

Mark Scheme (Final) January GCSE ICT 2010 (5IT01) Paper 1 Living in a Digital World

Engineering Economy. Time Value of Money-3

UK Register of Expert Witnesses Expert Witness Year Book 2015

Amendment No. 1 to SB0211. Bell Signature of Sponsor. AMEND Senate Bill No. 211* House Bill No. 393

Transcription:

ComprehensiveColourImageNormalization GrahamD.Finlayson1,BerntSchiele2,andJamesL.Crowley3 1TheColour&ImagingInstitute TheUniversityofDerby 2MITMediaLab UnitedKingdom 3INRIARh^onesAlpes 38330Montbonnot CambridgeMA France USA colourbutareplacedatdierentpositionsthencorrespondingrgbpixels ducestwodierentcolourimages.ifthetwoilluminantsarethesame Abstract.Thesamesceneviewedundertwodierentilluminantsin- arerelatedbysimplescalefactors.incontrastifthelightinggeometry colourchannels(e.g.alltheredpixelvaluesorallthegreenpixels)that areascalingapart.itiswellknownthattheimagedependenciesdueto lightinggeometryandilluminantcolourcanberespectivelyremovedby normalizingthemagnitudeofthergbpixeltriplets(e.g.bycalculating isheldxedbutthecolourofthelightchangesthenitistheindividual thernormalizationsucestoaccountforchangesinboththelighting chromaticities)andbynormalizingthelengthsofeachcolourchannel (byrunningthe`grey-world'colourconstancyalgorithm).however,nei- normalizethergbpixels(toremovedependenceonlightinggeometry) geometryandilluminantcolour. andthennormalizether,gandbcolourchannels(toremovedependence colour.ourapproachisdisarminglysimple.wetakethecolourimageand whichremovesimagedependencyonlightinggeometryandillumination Inthispaperwepresentanewcomprehensiveimagenormalization thisprocessuntilwereachastablestate;thatisreachapositionwhere onilluminantcolour).wethenrepeatthisprocess,normalizergbpixels thenr,gandbcolourchannels,andthenrepeatagain.indeedwerepeat procedurealwaysconvergestothesameanswer.moreover,convergence eachnormalizationisidempotent.cruciallythisiterativenormalization thatappearintheliterature:swain'sdatabase,thesimonfraserdatabase, SangWokLee'sdatabase.Inallcases,forrecognitionbycolourdistributioncomparison,thecomprehensivenormalizationimprovesrecognition reportedintheliterature).alsorecognitionforthecompositedatabase rates(theresultsarenearperfectandinallcasesimproveonresults weconsideredtheobjectrecognitionproblemforthreeimagedatabases isveryrapid,typicallytakingjust4or5iterations. Toillustratethevalueofour\comprehensivenormalization"procedure (comprisingalmost100objects)isalsonearperfect.

1Introduction Thelightreachingoureyeisafunctionofsurfacereectance,illuminantcolour andlightinggeometry.yet,thecoloursthatweperceivedependalmostexclusivelyonsurfacereectance;thedependenciesduetolightinggeometryand illuminantcolourareremovedthroughsomesortofimagenormalizationprocedure.asanexample,thewhitepageofabooklookswhitewhetherviewed underblueskyorunderarticiallightandremainswhite,independentofthe positionofthelightsource.whileanalogousnormalizationsexistincomputer visionfordiscountinglightinggeometryorilluminantcolourtheredoesnotexistanormalizationwhichcandoboth,togetheratthesametime.yet,sucha comprehensivenormalizationisclearlyneededsincebothlightinggeometryandilluminantcolourcanbeexpectedtochangefromimagetoimage.a comprehensivenormalizationisdevelopedinthispaper. Imagenormalizationresearchincomputervisiongenerallyproceedsintwo stagesandwewilladoptthesamestrategyhere.first,thephysicsofimage formationarecharacterizedandthedependencyduetoagivenphysicalvariableismadeexplicit.inasecondstage,methodsforremovingthisdependency (thatis,cancelingdependentvariables)aredeveloped.asanexampleofthis kindofreasoning,itiswellknownthat,assumingalinearcameraresponse,if lightintensityisscaledbyafactorsthentheimagescalesbythesamefactor: eachcaptured(r;g;b)pixelbecomes(sr;sg;sb).relativetothissimplephysical modelitiseasytoderiveanormalizationprocedurewhichisindependentofthe intensityoftheviewingilluminant: r r+g+b; g r+g+b; b r+g+b (1) Thenormalizedimagecoloursaresometimesrepresentedusingonlythechromaticitiesr r+g+bandg r+g+b(sinceb r+g+b=1?r?g r+g+b). Thenormalizationshownin(1)iswellused,andwellaccepted,inthecomputervisionliterature(e.g.[SW95,CB97,MMK95,FDB91,Hea89])anddoesan admirablejobofrenderingimagecoloursindependentofthepoweroftheviewingilluminant.asweshallseelater,lightinggeometryingeneral(thisincludes thenotionsoflightsourcedirectionandlightsourcepower)aectsonlythe magnitudeofacapturedrgbandsothenormalizationshownin(1)performs wellindiversecircumstances. Dependencyduetoilluminationcolourisalsoverysimpletomodel(subject tocertaincaveatswhichareexploredlater).if(r1;g1;b1)and(r2;g2;b2)denote cameraresponsescorrespondingtotwoscenepointsviewedunderonecolour oflightthen(r1;g1;b1)and(r2;g2;b2)denotetheresponsesinducedby thesamepointsviewedunderadierentcolouroflight[wb86](thered,green andbluecolourchannelsscalebythefactors,and).clearly,itiseasyto derivealgebraicexpressionswhere,andcancel: (2r1 r1+r2;2g1 g1+g2;2b1 b1+b2);(2r2 r1+r2;2g2 g1+g2;2b2 b1+b2) (2)

denominatortermbecomesthesumofallpixelsandnumeratorsarescaledby thatis,to`grey'.forthisreason,equation(2)issometimescalled`grey-world' normalization[hun95,gjt88,buc80]. N.Noticethatafternormalization,themeanimagecolourmapsto(1,1,1); Thetwopixelcasesummarizedin(2)naturallyextendstoN-pixels:the itisusefultostepthroughaworkedexample.let(s1r1;s1g2;s1b1)and dencyonbothlightinggeometryandilluminantcolour.toseethatthisisso, (s2r2;s2g2;s2b2)denoteimagecolourscorrespondingtotwoscenepoints where(s1;s2)and(;;)arescalarsthatmodellightinggeometryandilluminantcolourrespectively.underlightinggeometrynormalization,equation(1), Unfortunately,neithernormalization(1)or(2)sucestoremovedepen- thepixelsbecome:( andunderilluminantcolournormalization,equation(2): ( r1+g1+b1; r2+g2+b2; r1+g1+b1; r2+g2+b2; r1+g1+b1); r2+g2+b2) (3) Inbothcasesonlysomeofthedependentvariablescancel.Thisisunsatisfactory (2s1r1 s1r1+s2r2; s1g1+s2g2; 2s1g1 s1b1+s2b2);(2s2r2 2s1b1 s1r1+s2r2; s1g1+s2g2; 2s2g2 s1b1+s2b2) 2s2b2 sincebothlightinggeometryandilluminantcolourwillchangefromimageto image. (4) solvedusingnormalizedcolourdistributionmanifolds.intheirmethodimages ismodelledexplicitly.theyshowthatthelightinggeometrynormalizeddistributionofcoloursinasceneviewedunderallilluminantcoloursoccupiesacontinuousmanifoldindistributionspace.inlaterworkbyberwickandlee[bl98] arenormalizedforlightinggeometryandthevariationduetoilluminantcolour LinanLee[LL97]proposedthatthisproblem(cancelationfailure)couldbe computationaloverhead.ahighdimensionalmanifoldis,atthebestoftimes, themanifold`onthey'.unfortunatelyboththesesolutionsincurasubstantial `matched'byashiftinilluminantcolour;thismatchingeectivelyreconstructs malizedimagecolourdistributionsaredenedtobethesameiftheycanbe thismanifoldisrepresentedimplicitly.hereapairoflightinggeometrynor- agivenmanifold).similarlythedistributionmatchingsolution,whichoperates unwieldyandimpliescostlyindexing(i.e.todiscoverifadistributionbelongsto atthesametime.ourapproachissimplicityitself.wetakeaninputimageand malizeawayvariationduetoilluminantcolourandlightinggeometrytogether byexhaustivedistributioncorrelation,isveryexpensive. normalizeforlightinggeometryusingequation(1).wethennormalizeforilluminantcolourusingequation(2).wetheniterateonthistheme,successively Inthispaperwedevelopanewcomprehensivenormalizationwhichcannor- stepisidempotent. normalizingawaylightinggeometryandlightcolouruntileachnormalization

verges.second,thattheconvergentimageisunique:thesamesceneviewed underanylightinggeometryandunderanyilluminantcolourhasthesamecomprehensivelynormalizedimage.wealsofoundthatconvergenceisveryrapid, typicallytakingjust4or5iterations. Weprovetwoveryimportantresults.First,thatthisprocessalwaysconeratedsyntheticimagesofayellow/greywedgeviewedunderwhite,blueand normalforgrey),90o(halfwaybetweenbothsurfaces)and135o(closetothenormalofyellow).theimagecaptureconditionsareillustratedatthetopoffigure1 Toillustratethepowerofthecomprehensivenormalizationprocedurewegen- orangecolouredlightswhichwereplacedatanglesof45o(closetothesurface bottomoftheguretogetherwithcorrespondingnormalizedimages.lighting ingpositionbutnotilluminantcolour.conversely,illuminantcolournormalized geometrynormalization(equation(1))sucestoremovevariationduetolight- images(equation2)areindependentoflightcolourbutdependonlightingposition.onlythecomprehensivenormalizationsucestoremovevariationdueto lightinggeometryandilluminantcolour. (abluelightat80oisshown).the9generatedsyntheticimagesareshownatthe neath,arealmostthesame.thisexperimentsisrepeatedonasecondimage imagesappear.aftercomprehensivenormalizationtheimages,shownunder- apairoflightinggeometriesandilluminantcolours.noticehowdierentthe showninfigure2.thetoptwoimagesareofthesameobjectviewedunder Examplesofthecomprehensivenormalizationactingonrealimagesare pairwithsimilarresults1. distributions(orinthecaseofourexperimentsbythedistributionofcolours e.g.[so95],[nb93]and[ll97])whereobjectsarerepresentedbyimagecolour nitionparadigmsuggestedbyswainandballard[sb91](whichiswidelyused severalobjectrecognitionexperimentsusingrealimages.weadoptedtherecog- Asayetmorerigoroustestofcomprehensivenormalizationwecarriedout comparison:querydistributionsarecomparedtoobjectdistributionsstoredin adatabaseandtheclosestmatchidentiesthequery. incomprehensivelynormalizedimages).recognitionproceedsbydistribution jee(13database,26queries),brewsterandlee(8objectsand9queries)anda compositeset87objectsand67queries,comprehensivenormalizationfacilitated almostperfectrecognition.forthecompositedatabaseallbut6oftheobjects arecorrectlyidentiedandthosethatarenotareidentiedinsecondplace.this FortheimagedatabasesofSwain(66databaseobjects,31queries),Chatter- performanceisquitestartlinginitsownright(itisalargedatabasecompiledby avarietyofresearchgroups).moreover,recognitionperformancesurpasses,by appliedindividually. far,thatsupportedbythelightinggeometryorilluminantcolournormalizations normalizationispresentedinsection3togetherwithproofsofuniquenessand thenormalizationsshownaboveinequations(1)and(2).thecomprehensive 1AllfourinputimagesshowninFigure2weretakenbyBerwickandLee[BL98] Insection2ofthispaperwediscusscolourimageformationandderive

Fig.1.Ayellow/greywedge,showntopofgure,isimagedunder3lightinggeometries and3lightcolours.theresulting9imagescomprisethe33gridofimagesshown izationremovestheeectsofbothilluminantcolourandlightinggeometry(thesingle normalizationsuces(top3imagesinthelastcolumn).thecomprehensivenormal- suces(rst3imagesinthelastrow).forxedlightinggeometry,illuminantcolour imageshownbottomright) topleftabove.whenilluminantcolourisheldxed,lightinggeometrynormalization

hensivelynormalized(bottompairofimages).noticehoweectivelycomprehensive Fig.2.Apeanutcontainerisimagedundertwodierentlightinggeometriesandilluminantcolours(topofgure).Aftercomprehensivenormalizationtheimagesappear thesame(2ndpairofimages).apairof`split-pea'images(thirdrow)arecompre- normalizationremovesdependenceilluminantcolourandlightinggeometry

convergence.insection4theobjectrecognitionexperimentsaredescribedand resultspresented.thepapernisheswithsomeconclusionsinsection5. 2ColourImageFormation Thelightreectedfromasurfacedependsonthespectralpropertiesofthesurfacereectanceandoftheilluminationincidentonthesurface.Inthecaseof Lambertiansurfaces(theonlyonesweconsiderhere),thislightissimplythe productofthespectralpowerdistributionofthelightsourcewiththepercent sensorresponse: spectralreectanceofthesurface.assumingasinglepointsourcelight,illumination,surfacereectionandsensorfunction,combinetogetherinforminga isthe3-vectorofresponsefunctions(red-,greenandblue-sensitive),eisthe whereiswavelength,pisa3-vectorofsensorresponses(rgbpixelvalue),f p^x;e=ex:nxz!sx()e()f()d (5) illuminationstrikingsurfacereectancesxatlocationx.integrationisoverthe visiblespectrum!.here,andthroughoutthispaper,underscoringdenotesvector ofexmodelsthepoweroftheincidentlightatx.notethatthisimpliesthat surfacenormalatxandexisinthedirectionofthelightsource.thelength onto^xonthesensorarray.theprecisepowerofthereectedlightisgoverned bythedot-producttermex:nx.here,nxistheunitvectorcorrespondingtothe quantities.thelightreectedatx,isproportionaltoe()sx()andisprojected R!Sx()E()F()allowsustosimplify(5): thefunctione()isactuallyconstantacrossthescene.substitutingqx;efor lightinggeometry(butdoeschangewithilluminantcolour).equation(6),which Itisnowunderstoodthatqx;Eisthatpartofascenethatdoesnotvarywith p^x;e=qx;eex:nx dealsonlywithpoint-sourcelightsiseasilygeneralizedtomorecomplexlighting (6) thethecameraresponseisequalto: lightswithlightingdirectionvectorsequaltoex;i(i=1;2;;m).inthiscase geometries.supposethelightincidentatxisacombinationofmpointsource Ofcourse,allthelightingvectorscanbecombinedintoasingleeectivedirection vector(andthistakesusbacktoequation(6)): p^x;e=qx;emxi=1ex;i:nx (7) ex=mxi=1ex;i)p^x;e=qx;eex:nx (7a)

sucestomodelextendedlightsourcessuchasuorescentlights[pet93]. equalsthesumoftheresponsestoeachindividuallight.simplethough(7)is,it Sincewenowunderstandthedependencybetweencameraresponseandlightinggeometry,itisascalarrelationshipdependentonex:nx,itisastraightforward mattertonormalizeitaway: Equation(7)conveystheintuitiveideathatthecameraresponsetomlight Whenp^x;E=(r;g;b)thenthenormalizationreturns:(r P3i=1p^x;E i = ex:nxp3i=1qx;e qx;eex:nxi = P3i=1qx;E Itisusefultoviewthedynamicsofthisnormalizationintermsofacomplete r+g+b;g i r+g+b;b r+g+b). (8) image.letusplacethenimagergbpixelsinrowsofann3imagematrix I.Itisclearthat(8)scalestherowsofItosumtoone.ThefunctionR() row-normalizesanimagematrixaccordingto(8): Here,andhenceforth,adoublesubscripti;jindexestheijthelementofamatrix. R(I)i;j= P3k=1Ii;k Ii;j Letusnowconsidertheeectofilluminantcolouronthergbsrecordedby (8a) mattersstillfurthercamerasensorsaredeltafunctions:f()=(?i) (i=1;2;3).undere()thecameraresponseisequalto: acamera.hereweholdlightinggeometry,thevectorsex,xed.tosimplify andundere1(): p^x;e i =ex:nxz!sx()e()(?i)d=ex:nxsx(i)e(i) (9) Combining(9)and(10)togetherweseethat: p^x;e1 i =ex:nxz!sx()e1()(?i)d=ex:nxsx(i)e1(i) (10) recordedineachcolourchannelscalebyamultiplicativefactor(onefactorper Equation(11)informsusthat,asthecolourofthelightchanges,thevalues p^x;e1 i =E1(i) E(i)p^x;E scalars).itisasimplemattertoremovedependenceonilluminationcolour: eachofthered,greenandbluecolourchannels)thenunderachangeinlight colourchannel).ifr,gandbdenotethenvaluesrecordedinanimage(for colourthecapturedimagebecomesr,gandb(where,andare

PNi=1Gi=N=3G PNi=1Ri=N=3R N=3G N=3R PNi=1Bi=N=3B N=3B (12) columntosumton=3.thisn=3tallyisfarfromarbitrary,butratherensures sameasthetotalimagesumcalculatedpostrownormalization.thus,inprinciple,animagecanbeinbothrow-andcolumn-normalform(andthegoal IntermsoftheN3imagematrixI,thenormalizationactstoscaleeach thatthetotalsumofallpixelspost-columnnormalizationisnwhichisthe ofcomprehensivenormalization,discussedinthenextsection,isfeasible).the functionc()columnnormalizesiaccordingto(12): izationpresentedin(12)deltafunctionsensitivitieswereselectedforourcamera. Itisprudenttoremindthereaderthatinordertoarriveatthesimplenormal- C(I)i;j=N=3Ii;j PNk=1Ik;j (12a) Whilesuchaselectionisnotgenerallyapplicable,studies[FF96,FDF94b,FDF94a] haveshownthatmostcamerasensorsbehave,orcanbemadetobehave,like deltafunctions. 3TheComprehensiveNormalization Thecomprehensivenormalizationprocedureisdenedbelow: 2.Ii+1=C(R(Ii)) 1.I0=I 3.Ii+1=Ii Initialization Iterationstep Thecomprehensiveprocedureiterativelyperformsrowandcolumnnormalizationsuntiltheterminationconditionismet.Inpracticetheprocesswillterminate whenanormalizationstepinducesachangelessthanacriterionamount. vergenceanduniqueness.theprocedureissaidtoconverge,ifforallimages xedscene)thenuniquenessfollows. terminationisguaranteed.iftheconvergentimageisalwaysthesame(forany Obviouslythisiterativeprocedureisusefulifandonlyifwecanshowcon- Terminationcondition (13) thediscussioninsection2,weknowthatviewingthesamesceneunderadierent lightinggeometryandilluminantcolourusingthetoolsofmatrixalgebra.from Asasteptowardsprovinguniquenessitisusefultoexaminetheeectsof

lightinggeometryresultsinanimagewherepixels,thatisrowsofi,arescaled. ThisideacanbeexpressedasanNNdiagonalmatrixDrpremultiplyingI: colourchannels;thatis,ascalingofthecolumnsofi.thismaybewrittenas Ipostmultipliedbya33matrixDc: Similarly,achangeinilluminantcolourresultsinascalingofindividual DrI (14) matrices:ianddridc. underapairoflightinggeometriesandilluminantcoloursinducestheimage Equations(14)and(15)takentogetherinformusthatthesamesceneviewed IDc (15) normalizedcounterpartarerelated: scalestherowsandthenthecolumnsofibypre-andpost-multiplyingwith canbecascadedtogetherandsowendthatanimageanditscomprehensively theappropriatediagonalmatrix.theoperationsofsuccessivenormalizations Bydenition,eachiterationofthecomprehensivenormalizationprocedure wherecomprehensive()isafunctionimplementingtheiterativeprocedureshown in(13)andthesymbolconveystheideaofasequenceofdiagonalmatrices. comprehensive(i)=dridc (16) Proof.LetusassumethatC16=C2.By(16),C1=Dr1IDc1andC2=Dr2DrIDcDc2 andc2=comprehensive(dridc)thenc1=c2(proofofuniqueness). forsomediagonalmatricesdr1,dr2,dc1anddc2.itfollowsthat: Theorem1.Assumingtheiterativeprocedureconverges,ifC1=comprehensive(I) Clearly,foranyDaandDbsatisfying(17)sodokDaand1kDbso,withoutloss C16=C2,DaandDbarenotequaltoidentity(orscaled)identitymatrices. whereda=dr2dr[dr1]?1anddb=[dc1]?1dcdc2.bytheassumptionthat C2=DaC1Db (17) ofgeneralityweassumethatdbi;i>1.wealsoassumethatdb1;1>db2;2>db3;3 ofc1).sincec2iscomprehensivelynormalizedwecanexpressthecomponents (sinceifthisisnotthecaseitcanbemadetruebyinterchangingthecolumns ofdaintermsofdbandc1.inparticulartheithdiagonaltermofdais,and mustbe,thereciprocalofthesumoftheithrowofc1db: Fromwhichitfollowsthat: Dai;i= Db1;1C1i;1+Db2;2C1i;2+Db3;3C1i;3 1 (18) C2i;1= Db1;1C1i;1+Db2;2C1i;2+Db3;3C1i;3 (19)

SincehaveassumedthatDb1;1>Db2;2>Db3;3,itfollowsthat whichimpliesthat Db1;1C1i;1+Db1;1C1i;2+Db1;1C1i;3< Db1;1C1i;1+Db2;2C1i;2+Db3;3C1i;3 (20) lessthanthecorrespondingelementininc2.however,thiscannotbethecase Equation(21)informsusthateveryelementintherstcolumnofC1isstrictly C1i;1+C1i;2+C1i;3< Db1;1C1i;1+Db2;2C1i;2+Db3;3C1i;3C1i;1<C2i;1 sincebothc1andc2arecomprehensivelynormalizedwhichimpliesthatthesum oftheirrespectedrstcolumnsmustbethesame(andthiscannotbethecase iftheinequalityin(21)holds). Proof.OurprooffollowsdirectlyfromSinkhorn'sthoerem[Sin64]whichwe Wehaveacontradictionandso,C1=C2anduniquenessisproven. Theorem2.Thecomprehensivenormalization,(13),procedurealwaysconverges. ut thattheprocesswheretherowsofbareiterativelyscaledtosumton=3and invokehereasalemma. thenthecolumnsarescaledtosumton=3(inananalogousprocessto(13))is Lemma.LetBdenoteanarbitrarynnallpositivematrix.Sinkhornshowed guaranteedtoconverge2. letmatrixbbea3n3nwherethen3imagematrixiiscopiedntimes inthehorizontaland3timesintheverticaldirection: First,notethatimages,underanyimagingconditions,areallpositive.Now, B=24III sumtonandthecolumnsofbdcsumton(noten=3n=3).fromtheblock SupposethatDrandDcarediagonalmatricessuchthattherowsofDrB 3 5 (22) structureofb,itfollowsthatdri;i=dri+kn;i+kn(i=1;2;;n)(k=2;3). SimilarlybecausecolumnssumtoN,Dci;i=Dci+kN;i+kN(i=1;2;3)andk= canwritedrbandbdcas: (2;;N).SettingDa=Dri;i(i=1;2;;N)andDb=Dci;i(i=1;2;3),we DrB=24DaIDaIDaI DaIDaIDaI 3 5;BDc=24IDbIDbIDb35 3NN=N=3.ThatiseachIinBisnormalizedaccordingtothefunctionsR() NEachrowinDaIsumsto3 3NN=1andeachcolumninIDbsumsto (23) 2Infactwecouldchooseanypositivenumberhere;n=3willworkwellforourpurposes.

andc()andsoaftersucientiterations,sinkhorn'siterativeprocessconverges to: Sinkhorn(B)=24comprehensive(I)comprehensive(I)comprehensive(I) Clearly,Sinkhorn'stheoremimpliestheconvergenceofthecomprehensivenor- (24) 3 5 malizationprocedureandourproofiscomplete. veryrapidily:4or5iterationsgenerallysuces. Experimentally,wefoundthatthecomprehensivenormalizationconverges ut 4ObjectRecognitionExperiments WecarriedoutimageindexingexperimentsfortheSwainandBallard[SB91], imagescombined.swainandballard'simagesetcomprises66databaseand31 SimonFraser[Cha95,GFF95],BerwickandLee[BL98]imagesetsandasetofall queryimages.allimagesaretakenunderaxedcolourlightsourceandthere areonlysmallchangesinlightinggeometry.becausethereare,eectively,no confoundingfactorsinswain'simages,weexpectgoodindexingperformance forlightinggeometry,illuminantcolourandcomprehensivenormalizations.the queryimages.queryimagescontainthesameobjectsbutviewedunderlarge SimonFraserdatasetcomprisesasmalldatabaseof13objectimagesand26 setthereare8objectimagesand9queryimages.againqueriesimagesare changesinlightinggeometryandilluminantcolour.inleeandberwick'simage Thecompositesetcomprises87databaseimagesand67queries. capturedunderdierentconditions(viewinggeometryandlightcolourchange). ages,databaseandquery,weseparatelycarriedoutlightinggeometry,illuminant colourandcomprehensivenormalizations.atasecondstagecolourhistograms, structed.thisinvolveshistogrammingonlythe(g;b)tuplesinthenormalized representingthecolourdistributions,ofthevariouslynormalizedimagesarecon- Totesttheecacyofeachnormalizationweproceedasfollows.Forallim- images.thepixelvaluerisdiscardedbecauser+g+b=1afterlightinggeometryandcomprehensivenormalizations,andsoisadependentvariable.after (G;B)colourspace(whichhavevaluesbetween0and1)denethebinsforthe colourhistograms.ifhiandqdenotesthehistogramsfortheithdatabaseand illuminantcolournormalizationonaverager+g+b=1.a1616partionof queryimagesthenthesimilarityoftheithimagetothequeryimageisdened wherejj:jj1denotesthel1(orcity-blockdistance)betweenthecolourdistributions.thisdistanceisequaltothesumofabsolutedierencesofcorresponding jjhi?qjj1 as: (25)

spondstosmalldistances. histogrambins.reassuringly,ifhi=qthenjjhi?qjj1=0;closenesscorre- shouldcontainthesameobjectasthequeryimage).tables1,2and3summarizeindexingperformanceforallthreenormalizationsoperatingonallfourdattionsinthedatabase.thesedistancesaresortedintoascendingorderandthe Foreachquerycolourdistribution,wecalculatethedistancetoalldistribu- rankofthecorrectanswerisrecorded(ideallytheimagerankedinrstplace sets.twoperformancemeasuresareshown:the%ofqueriesthatwerecorrectly matched(%in1stplace)andtherankoftheworstcasematch. ImageSet Swain's SimonFraser LeeandBerwick33.33 %correctworstranking 42.313thoutof13 96.7 2ndoutof66 Table1.Indexingperformanceoflightinggeometrynormalization Composite 58.286thoutof87 ImageSet Swain's SimonFraser LeeandBerwick67.7 %correctworstranking 80.8 87.1 6thoutof13 5thoutof66 Table2.Indexingperformanceofilluminantnormalization Composite 79.116thoutof87 4thoutof9 ImageSet Swain's SimonFraser %correctworstranking 80.62ndoutof66 Table3.Indexingperformanceofcomprehensivenormalization LeeandBerwick Composite 93.12ndoutof87 100 1stoutof13 1stoutof9 suggestthatlightinggeometrynormalizationworksbestandthecomprehensivenormalizationworst.thisis,infact,notthecase:allthreenormalizationinggeometrynormalizationsplacethecorrectanswersinthetoptworanks workverywell.noticethatonlythecomprehensivenormalizationandlight- AcursorylookatthematchingperformanceforSwain'simagesappearsto

andthisisanadmirablelevelofperformancegivensuchalargedatabase. vastlysuperior,100%recognitionissupportedcomparedwith42.3%and80.8% FortheSimonFraserDatabasethecomprehensivenormalizationprocedureis noothercolourdistributioncomparisonmethodhascomeclosetodelivering are13thand6threspectively.thisisquiteunacceptablegiventheverysmall forlightinggeometryandilluminantcolournormalizations.thelatternormalizationsalsoperformverypoorlyintermsoftheworstcaserankingswhich size(just13objects)ofthesimonfraserdatabase.itisworthnotingthat 100%recognitiononthisdataset[FCF96](thesemethodsinclude,colour-angular indexing[fcf96],ane-invariantsofcolourhistograms[hs94]andcolourconstantcolourindexing[ff95]).thesamerecognitionstoryisrepeatedforthnitionandtheothernormalizationperformverypoorly. BerwickandLeedatabase.Comprehensivenormalizationsupports100%recog- thesewerecompiledbythreedierentresearchgroups.alsothemeansofrecognitionisasimplecolourdistributioncomparisonwhichisboundtofailwhen placematchesthatarerecordedhavecolourdistributionswhicharesimilarto performanceisquitestartling.thedatabaseislargecomprising87objectsand normalizationandtheworstcasematchisinsecondplace.suchrecognition teresting.over93%(of67)queriesarecorrectlyidentiedusingcomprehensive Perhapstherecognitionresultsforthecompositedatasetarethemostin- images,orobjects,havethesamemixtureofcolours.indeed,mostofthe,2nd theoverallbestmatch.forexampleanimageof`campbell'schickensoup'is confusedwithanimageof`campbell'sspecialchickensoup'.bothimagesare colournormalizationperformsbetter,arecognitionrateof79%butagainthe andtheworstcaserankingisanincrediblypoor86th(outof87).illuminant predominantlyredandwhite(asweexpectwithcampbell'ssoup). worstcasematchisunacceptable:16thplacedoutof87. usedindividually,performverypoorly.theformersucceedsjust58%ofthetime Incomparisonthelightinggeometryandilluminantcolournormalizations, Thecoloursrecordedinanimagedependonboththelightinggeometryandthe 5Conclusion colouroftheilluminant.unlesstheseconfoundingfactorscanbediscounted, colourscannotbemeaningfullycomparedacrossimages(andsoobjectrecognitionbycolourdistributioncomparisoncannotwork).inthispaperwedeveloped anewcomprehensivenormalizationprocedurewhichcanremovedependency duetolightinggeometryandilluminantcolourandsocanfacilitatecross-image togetheranditeratively.weprovethatthisiterativeprocessalwaysconverges whichdiscounteitherlightinggeometryorilluminantcolourandapplythem toauniquecomprehensivelynormalizedimage. colourcomparison. Ourapproachissimplicityitself.Wesimplyinvokenormalizationprocedures inasettheobjectrecognitionexperiments.forfourimagedatabases:swain's Thepowerofourcomprehensivenormalizationprocedurewasillustrated

post-comprehensivenormalizationwasfoundtobenearperfect.importantly, database,thesimonfraserdatabase,sangwoklee'sdatabase,andacomposite set(withalmost100objects),recognitionbycolourdistributioncomparison, References performancegreatlysurpassedthatachievableusingthelightinggeometryor illuminantcolournormalizationsindividually. [BL98]D.BerwickandS.W.Lee.Achromaticityspaceforspecularity-,illumination [CB97]J.L.CrowleyandF.Berard.Multi-modaltrackingoffacesforvideocommunications.InCVPR97,pages640{645,1997. [Buc80]G.Buchsbaum.Aspatialprocessormodelforobjectcolourperception. JournaloftheFranklinInstitute,310:1{26,1980. pagesession2.3,1998. color-andilluminationpose-invariant3-dobjectrecognition.iniccv98, [Cha95]S.S.Chatterjee.Colorinvariantobjectandtexturerecognition,1995.MSc [FCF96]G.D.Finlayson,S.S.Chatterjee,andB.V.Funt.Colorangularindexing.In thesis,simonfraseruniversity,schoolofcomputingscience. TheFourthEuropeanConferenceonComputerVision(VolII),pages16{27. [FDB91]B.V.Funt,M.S.Drew,andM.Brockington.Recoveringshadingincolor [FDF94a]G.D.Finlayson,M.S.Drew,andB.V.Funt.Colorconstancy:Generalized EuropeanVisionSociety,1996. [FDF94b]G.D.Finlayson,M.S.Drew,andB.V.Funt.Spectralsharpening:Sensortransformationsforimprovedcolorconstancy.J.Opt.Soc.Am.A, 11(5):1553{1563,May1994. images,1991.submittedforpublication. [FF95]B.V.FuntandG.D.Finlayson.Colorconstantcolorindexing.IEEEtransactionsonPatternanalysisandMachineIntelligence,1995. diagonaltransformssuce.j.opt.soc.am.a,11:3011{3020,1994. [FF96]G.D.FinlaysonandB.V.Funt.Coecientchannels:Derivationandrelationshiptoothertheoreticalstudies.COLORresearchandapplication, [GFF95]S.S.ChatterjeeG.D.FinlaysonandB.V.Funt.Colorangleinvariantsfor 21(2):87{96,1996. [GJT88]R.Gershon,A.D.Jepson,andJ.K.Tsotsos.From[r;g;b]tosurfacere- objectrecognition.in3rdis&tandsidcolorimagingconference,pages 44{47.1995. [HS94]G.HealeyandD.Slater.\Globalcolorconstancy:recognitionofobjectsby [Hea89]G.Healey.Usingcolorforgeometry-insensitivesegmentation.J.Opt.Soc. Am.A,6:920{937,1989. ectance:computingcolorconstantdescriptorsinimages.ininternational useofilluminationinvariantpropertiesofcolordistributions".journalof JointConferenceonArticialIntelligence,pages755{758,1987. [LL97] [Hun95]R.W.G.Hunt.TheReproductionofColor.FountainPress,5thedition,1995. S.LinandS.W.Lee.Usingchromaticitydistributionsandeigenspaceanalysisforpose-,illumination-andspecularity-invariantrecognitionof3dobject. theopticalsocietyofamerica,a,11(11):3003{3010,november1994. [MMK95]J.Matas,R.Marik,andJ.Kittler.Onrepresentationandmatchingof oncomputervision,pages726{732.ieeecomputersociety,june1995. multi-colouredobjects.inproceedingsofthefthinternationalconference InCVPR97,pages426{431,1997.

[NB93]W.NiblackandR.Barber.TheQBICproject:Queryingimagesbycontent [Pet93]A.P.Petrov.Onobtainingshapefromcolorshading.COLORresearchand [SB91] usingcolor,textureandshape.instorageandretrievalforimageandvideo DatabasesI,volume1908ofSPIEProceedingsSeries.1993. [Sin64]R.Sinkhorn.Arelationshipbetweenarbitrarypositivematricesanddoubly M.J.SwainandD.H..Ballard.Colorindexing.InternationalJournalof application,18(4):236{240,1993. [SO95]M.A.StrickerandM.Orengo.Similarityofcolorimages.InStorageandRetrievalforImageandVideoDatabasesIII,volume2420ofSPIEProceedings stochasticmatrices.annalsofmathematicalstatistics,35:876{879,1964. ComputerVision,7(11):11{32,1991. [WB86]J.A.WortheyandM.H.Brill.HeuristicanalysisofvonKriescolorconstancy. [SW95]B.SchieleandA.Waibel.Gazetrackingbasedonface-color.InInternational Series,pages381{392.Feb.1995. WorkshoponAutomaticFace-andGesture-Recognition,June1995. JournalofTheOpticalSocietyofAmericaA,3(10):1708{1712,1986.