PCBs DETERMINATION IN TRANSFORMER OIL BY SPE AND GAS CHROMATOGRAPHY ANALYSIS



Similar documents
1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax.

How To Test For Contamination In Large Volume Water

METHOD 8082A. POLYCHLORINATED BIPHENYLS (PCBs) BY GAS CHROMATOGRAPHY

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography

Fipronil Analysis By GC/XSD following Post-Extraction Gel Permeation Chromatography Cleanup

Determination of Pesticide Residues in Drinking Water Using Automated Solid-Phase Extraction and Gas Chromatography with Nitrogen Phosphorus Detection

CONFIRMATION OF ZOLPIDEM BY LIQUID CHROMATOGRAPHY MASS SPECTROMETRY

Determination of Haloacetic Acids and Dalapon in Drinking Water by SPE and GC/ECD*

Application Note. Determination of Nitrite and Nitrate in Fruit Juices by UV Detection. Summary. Introduction. Experimental Sample Preparation

Purification of reaction mixtures using flash chromatography.

Guide to Reverse Phase SpinColumns Chromatography for Sample Prep

LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research

METHOD POLYCHLORINATED BIPHENYLS (PCBs) BY GAS CHROMATOGRAPHY

Thermo Scientific HyperSep Solid Phase Extraction Method Development Guide

Technique of Monitoring Dioxins in Flue Gas from MSW Incinerators using Dioxin Precursor Analyzer

Guidance for Industry

Automation of Solid Phase Extraction and Column Chromatographic Cleanup

23 The Thermal Conductivity Detector

Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC.

This study was performed by Patrick Sullivan and staff at TestAmerica Analytical Testing Corp., Westfield, MA, USA

ACETALDEHYDE and ISOVALERALDEHYDE (Gas Chromatography)

High-Throughput 3-D Chromatography Through Ion Exchange SPE

Analysis of Organophosphorus Pesticides in Milk Using SPME and GC-MS/MS. No. GCMS No. SSI-GCMS Shilpi Chopra, Ph.D.

Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry

Technical Report. Automatic Identification and Semi-quantitative Analysis of Psychotropic Drugs in Serum Using GC/MS Forensic Toxicological Database

Reversed Phase High Presssure Liquid Chromatograhphic Technique for Determination of Sodium Alginate from Oral Suspension

SPE and HPLC. Dr Iva Chianella Lecturer in Analytical Chemistry Cranfield Health +44 (0)

Fractional Distillation and Gas Chromatography

PCB SPIU CLEANUP CAUSE AND EFFECT DIAGRAM. Bruce A. Bohnen Technical Director Integrated Chemistries, Incorporated 1970 Oakcrest Avenue, Suite 215

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols.

A VISION to On-Line SPE PTV GC MS Determination of Organic Micro Pollutants in Surface Water

Determination of Polycyclic Aromatic Hydrocarbons (PAH) in Food with GC-MS/MS

Pesticide Analysis by Mass Spectrometry

S olid Ph ase Extraction (SP E) Method:

AMD Analysis & Technology AG

Solid Phase Extraction Products PAGE: 1. Introduction of Solid Phase Extraction (SPE) Why Choose Nano-Micro Tech SPE

ß-CYCLODEXTRIN SYNONYMS

SUCRALOSE. White to off-white, practically odourless crystalline powder

α-cyclodextrin SYNONYMS α-schardinger dextrin, α-dextrin, cyclohexaamylose, cyclomaltohexaose, α- cycloamylase

VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1)

Analyzing Small Molecules by EI and GC-MS. July 2014

Separation of Amino Acids by Paper Chromatography

Oasis HLB Cartridges and 96-Well Plates

New drugs of abuse? A case study on Phenazepam & Methoxetamine

Intelligent use of Relative Response Factors in Gas Chromatography-Flame Ionisation Detection

Gas Chromatography Liner Selection Guide

GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE

Extraction of Cannabinoids in Marijuana and Edibles by QuEChERS

Simultaneous determination of L-ascorbic acid and D-iso-ascorbic acid (erythorbic acid) in wine by HPLC and UV-detection (Resolution Oeno 11/2008)

Process Instrumentation

# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water

GCxGC COUPLED TO FAST SCANNING QUADRUPOLE MS FOR TRACE ANALYSIS OF POPs

Determination of Anabolic Steroids in Horse Urine by SPE and LC-MS/MS

ADVANCEMENTS IN MICRO GAS CHROMATOGRAPHY (GC)

Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS

Ferda ORHUN Mineral Research and Exploration Institute of Turkey

Fast, Reproducible LC-MS/MS Analysis of Dextromethorphan and Dextrorphan

Lecture Chromo-3: Gas Chromatography. CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography. Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder

Determination of Caffeine in Beverages HPLC-1

Expectations for GC-MS Lab

HEXANES. Insoluble in water, soluble in ether, alcohol, and acetone. Neutral to methyl orange (ph indicator) Not more than 0.

ABRF 2004 Poster# P55-S Displacement Chromatography Effects Can Cause Highly Selective Sampling of Peptides During Solid Phase Extraction Cleanup

Which analytical tools/instruments/techniques are used for POPs. A general walk through the analysis

ANALYTICAL METHODS INTERNATIONAL QUALITY SYSTEMS

High sensitivity assays using online SPE-LC-MS/MS -How low can you go? Mohammed Abrar Unilabs York Bioanalytical solutions, York, UK

MILESTONE H E L P I N G C H E M I S T S

SPE, LC-MS/MS Method for the Determination of Ethinyl Estradiol from Human Plasma

SIMULTANEOUS DETERMINATION OF NALTREXONE AND 6- -NALTREXOL IN SERUM BY HPLC

Background Information

Thermo Scientific SOLAµ SPE Plates Technical Guide. Consistent excellence. for bioanalysis

Analysis of Phthalate Esters in Children's Toys Using GC-MS

Innovative vs Traditional

PLOT Columns. Top: Bob Langford, GC Column Manufacturing Technician Bottom: Stephanie Sunner, Customer Service Representative

LIQUID CHROMATOGRAPHY HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: )

Theory and Instrumentation of GC Introduction

Transformer Oil Gas Analysis

6. ANALYTICAL METHODS

HORIZONTAL concerning the layout, editorial and technical content, this document needs revising. In order to harmonize all documents within

ORGANIC SAMPLE PREPARATION

CCME. Reference Method for the Canada- Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method

Multi-elemental determination of gasoline using Agilent 5100 ICP-OES with oxygen injection and a temperature controlled spray chamber

METHOD 9075 TEST METHOD FOR TOTAL CHLORINE IN NEW AND USED PETROLEUM PRODUCTS BY X-RAY FLUORESCENCE SPECTROMETRY (XRF)

DMA-1 Direct Mercury Analyzer

SPE Reference Manual & Users Guide. Reference Manual & Users Guide

Bioremediation of contaminated soil. Dr. Piyapawn Somsamak Department of Environmental Science Kasetsart University

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION ACKNOWLEDGEMENT ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES

Paper Chromatography: Separation and Identification of Five Metal Cations

LUMEFANTRINE Draft proposal for The International Pharmacopoeia (October 2006)

Extraction of Epinephrine, Norepinephrine and Dopamine from Human Plasma Using EVOLUTE EXPRESS WCX Prior to LC-MS/MS Analysis

MEPS - Micro Extraction by Packed Sorbent Online SPE for GC and LC sample preparation - Extraction to injection in a single process

On-line Dissolved Gas Analysis

EPA Method RSK 175 Dissolved Gasses in Water Matrices using the Teledyne Tekmar HT3 Headspace Analyzer. HT3 Application Note.

Hand blenders available on the Swedish market may contaminate food with chlorinated paraffins.

FOR RISK ASSESSMENT. Analysis of mineral oil: Manual pre-separation, followed by LV-GC/FID Off-line HPLC-GC/FID FEDERAL INSTITUTE.

Transcription:

PCBs DETERMINATION IN TRANSFORMER OIL BY SPE AND GAS CHROMATOGRAPHY ANALYSIS Bogdevich O.P. *, Cadocinicov O.P. * Institute of Geophysics and Geology, Laboratory of Geochemistry GEOLAB Academiei str. 3, of. 133, Chisinau, MD2028, Moldova, Tel: 373-22-739636; Fax: 373-22-739663; e-mail: bogdevicholeg@yahoo.com Keywords: Gas Chromatography, Polychlorinated biphenyl s (PCBs), Solid Phase Extraction (SPE), transformer oil. Summary The aim of this work is the development of the PCBs determination method in the transformer oil by the SPE and Gas Chromatograph analysis. The proposed method was used for the cleanup of modeling solutions of transformer oil polluted by PCBs congeners and Aroclor1254. PCB 209 was used as internal standard for quantitation purposes. Octadecyl bonded silica phase AccuBOND C18 100mg/1ml cartridge was chosen for extraction performing. This technology has shown a very good recovery (84 109 %) and accuracy for investigated samples. The following advantages can be indicated for this method in comparison with others: a little solvent amount, a short labor time, a low analysis cost, a good recovery and accuracy. By this case this method can be recommended for PCBs determination in the complex oil matrix. 1. Introduction Polychlorinated biphenyl s (PCBs) are a subset of the synthetic organic chemicals known as chlorinated hydrocarbons. PCBs have been produced in high volume by the chemical industry and used as additives to oils in electrical equipment, hydraulic machinery, and other applications where chemical stability has been required. These organic compounds can be transported for long distances, and have been detected in the furthest corners of the globe, including places far from where they were manufactured or used. Since PCBs exhibit a high degree of chemical and biological stability and also lipid solubility, they tend to accumulate in the food chains and have been detected in animal and human tissues [2,6,17]. Protection of human health and the environment requires that PCBs be disposed of in such a way that they do not enter the environment. The important step in the environmental management of PCBs is to identify their sources and develop strategies for reducing or eliminating their release into the environment. The chemical formula for PCBs is C 12 H (10-n) Cl n, where n is a number of chlorine atoms within the range of 1-10. Theoretically, a total of 209 possible PCBs congeners exist, but only about 130 of these are likely to occur in commercial products [4]. These compounds were widely used as dielectric fluids: transformer oil, capacitors. The example of the total PCBs application is characterized as follows [4]: Germany dielectric fluids - 56 %; dissapative uses 28,7 %; hydraulic fluids 14,3 %. Japan dielectric fluids 66 %; copying paper 18 %; heat transfer fluids 11 %; other 5 %. USA dielectric fluids - 70 % of total application. 226

From this data we can see that transformer oil is a principal pollution source of PCBs in the environment. The US Department of Health and Human Services as well as the International Agency for Research on Cancer (IARC) consider PCBs to be probable carcinogens in humans (ATSDR 1997; IARC 1987). Many countries have developed classification for PCB-containing fluids and materials. The benchmark level for PCBs is considered as 50 mg kg -1 (or 50 ppm) in many countries [4]. The analytical determination is very important task for the control of PCBs concentration in the environment. Some Screening Test and Gas Chromatography methods are used for the determination of PCBs in different media [1,15,16]. Gas Chromatography with ECD detector is more accurate for this purpose. The matrix impact is very strong for this determination by the case of close chemical properties of oil and our interested substances (PCBs). Different methods for sample preparation and cleanup exist [5, 7-14,19,20]. These methods are needed in the detail development for the specific analyses. This paper presents the procedure for determination of PCBs in the transformer oil with the utilization of Solid Phase Extraction (SPE) for the sample preparation. With SPE, many of the problems associated with liquid/liquid extraction can be prevented, such as incomplete phase separations, less-than-quantitative recoveries, use of expensive, breakable specialty glassware, and disposal of large quantities of organic solvents. SPE is more efficient than liquid/liquid extraction, yields quantitative extractions that are easy to perform, is rapid, and can be automated. Solvent use and laboratory time is reduced. 2. Experimental 2.1 Chemicals All solvents were GC-pure quality and were purchased from Supelco and Sigma-Aldrich Inc. (Germany). A working stock solution was prepared from PCBs congener mix standard (IUPAC Nos. 18, 29, 31, 52, 44, 101, 118, 138, 149, 180, 194) containing 10 µg of each in 1 ml of heptane, and from Aroclor 1254 1000 µg in 1 ml of hexane. These standard solutions were purchased from Supelco Inc. (Germany). PCB 209 was used as an internal standard. Octadecyl bonded silica phase AccuBOND C18 100mg/1ml cartridge was chosen for extraction performing. Reversed phase separations involve a polar or moderately polar sample matrix (mobile phase) and a nonpolar stationary phase. C18 SPE cartridge has following characteristics: surface area 546 m 2 g -1 ; average pore size 60 ; Surface ph 7; carbon loading 18,8%; surface coverage 1,6 µmol m -2. Compounds are retained in C18 by nonpolarnonpolar interactions and van der Waals or dispersion forces. This cartridge is used usually for reversed phase extraction of nonpolar to moderately polar compound [3]. 2.2 Instrumentation GC 6890 (Agilent, Germany) gas chromatograph equipped with µecd detector, split/splitless injection system, and capillary columns HP-5MS. Parameters of the gas chromatograph system are characterized in Table 1. 227

Table 1. Experimental Conditions Equipment and system elements Method parameters Gas chromatograph: Agilent 6890 Injection ports: Split/splitless inlet; injection - Splitless 1 µl, inlet temperature of 300 C Column HP-5MS 30 m Length, 0,25 mm I.D., 0,25 µm Film; Part number Carrier gas H 2, 1,5 ml min -1, or Average Velocity 46 cm sec -1, Constant Flow Oven First ramp: 100 C (hold 1 min) to 190 C at 30 C min -1 Second ramp: 190 C to 280 C (hold 1 min) at 6 C/min Detector µecd, 320 0 C, N2 makeup, 60 ml min -1 Data collection ChemStation GC was calibrated with five calibration standard solutions in the concentration range 0,05 0,70 µg ml -1 for PCBs, and 0,5 7,0 µg ml -1 for Aroclor1254. The calibration standards were prepared on pure oil matrix passed through cartridges C18 for the removal of the matrix impact. The quantitative calculation was based on the area count obtained for the merged peaks. The area obtained for interested peaks in the chromatograms was compared to the standard and calibration curve to quantify the PCBs concentration. The analysis control and quatitation were performed by ChemStation software version C 00-01 (Agilent). 2.3 Study of the matrix removal by SPE cartridges The pure transformer oil sample without PCBs was chosen for the preparation of experimental modeling solutions. This sample was diluted in 10 times with hexane by EPA method 3580. PCBs congener mix and Aroclor1254 were added to the diluted oil sample to final concentrations of 0,2 and 0,5 µg ml -1 for each compounds for PCBs and to the total concentrations of 2,0 and 5,0 µg ml -1 for Aroclor1254. Then an internal standard (PCB 209) was added to samples. Samples were shaken for 10 min for the better dissolution. These concentrations were considered by the reason of PCBs limit concentration of 50,0 mg kg -1 in PCBs containing materials. Thereby four modeling samples were prepared for the experiment. The extraction is performed in three steps. First is a disk cleaning by dichlormethane 5 ml under vacuum near 50 kpa, and drying under vacuum 5 min. Second is a conditioning by hexane 10 ml (the functional groups of the sorbent bed are solvated in order to make them interact with the sample). Third is a matrix removal. This step was started right after hexane conditioning by the sample addition to the cartridge (1 ml) and the elution by 2 ml of hexane under vacuum. PCBs were extracted in this eluate. The total time of extraction procedure was near 10 min. This procedure was repeated three times for every concentration and for blank solution. The sample volume was striped to 1 ml under Argon stream. Then 1 µl aliquots of hexane extract is injected into chromatographic column. The same procedure was used for the sample preparation of real transformer oil samples. The vacuum was controlled by Supelco Vacuum Manifold, which has a solvent resistant main vacuum gauge and valve used to monitor the vacuum and release the vacuum during processing. 228

Results and discussion Chromatograms of PCBs mix standard solutions with the concentration of 0,5 µg ml -1 and Aroclor1254 with the concentration of 5,0 µg ml -1 are presented in Fig. 1. Column HP-5MS showed a good chromatographic separation, resolution and reproducibility. The calibration database of Gas Chromatography System was created for 12 PCB congeners and 45 compounds for Aroclor1254. The correlation coefficient for all calibration compounds was in the interval of 0,990 to 1,000. Table 2 Results of PCBs determination in modeling solutions of 0,2 µg ml -1 Nr IUPAC Repetitions Recovery Average St. dev. No 1 2 3 % 1) PCB 31 0,222 0,185 0,194 0,2003 0,01937 100,13 2) PCB 29 0,221 0,183 0,192 0,1986 0,02023 99,30 3) PCB 18 0,218 0,184 0,193 0,1983 0,01740 99,14 4) PCB 52 0,197 0,191 0,188 0,1920 0,00469 95,99 5) PCB 44 0,211 0,177 0,186 0,1914 0,01780 95,70 6) PCB 101 0,214 0,181 0,188 0,1943 0,01759 97,15 7) PCB 149 0,212 0,180 0,187 0,1932 0,01688 96,58 8) PCB 118 0,209 0,177 0,184 0,1902 0,01665 95,10 9) PCB 167 0,211 0,180 0,186 0,1926 0,01666 96,30 10) PCB 138 0,209 0,179 0,185 0,1909 0,01622 95,46 11) PCB 180 0,210 0,180 0,186 0,1922 0,01580 96,11 12) PCB 194 0,215 0,185 0,190 0,1963 0,01606 98,15 Integration result for IS IS PCB 209 48110207 47467063 46632829 47403366 740745,7 94,14 Table 3 Results of PCBs determination in modeling solutions of 0,5 µg ml -1 Nr IUPAC Repetitions Recovery Average St. dev. No 1 2 3 % 1) PCB 31 0,495 0,469 0,475 0,4799 0,01371 95,97 2) PCB 29 0,501 0,469 0,482 0,4843 0,01613 96,86 3) PCB 18 0,495 0,474 0,484 0,4843 0,01037 96,87 4) PCB 52 0,498 0,501 0,497 0,4988 0,00192 99,77 5) PCB 44 0,487 0,462 0,474 0,4741 0,01281 94,83 6) PCB 101 0,483 0,460 0,476 0,4731 0,01171 94,63 7) PCB 149 0,479 0,458 0,473 0,4702 0,01089 94,04 8) PCB 118 0,484 0,462 0,473 0,4730 0,01094 94,59 9) PCB 167 0,478 0,458 0,471 0,4690 0,00985 93,81 10) PCB 138 0,480 0,460 0,473 0,4710 0,01000 94,20 11) PCB 180 0 479 0 461 0 475 0 4719 0 00933 94 38 229

Table 4 Results of Aroclor1254 determination in modeling solutions of 2,0 µg ml -1 Peak Ret. Repetitions 2,0 µg ml -1 St Average No time 1 2 3 deviation Recovery % 1 8,02 0,0693 0,0307 0,0685 0,0562 0,02208 98,8 2 8,11 0,0161 0,0158 0,0168 0,0162 0,00052 99,2 3 8,43 0,0332 0,0311 0,0338 0,0327 0,00140 95,0 4 8,50 0,0032 0,0030 0,0031 0,0031 0,00010 90,1 5 8,68 0,0135 0,0131 0,0138 0,0135 0,00034 84,0 6 8,84 0,0031 0,0031 0,0032 0,0031 0,00008 102,1 7 9,15 0,0139 0,0134 0,0143 0,0139 0,00044 94,9 8 9,24 0,0439 0,0416 0,0486 0,0447 0,00357 84,9 9 9,31 0,1033 0,1004 0,1059 0,1032 0,00275 94,9 10 9,45 0,0168 0,0161 0,0171 0,0167 0,00053 94,3 11 9,67 0,0352 0,0348 0,0367 0,0356 0,00103 96,1 12 9,80 0,1501 0,1469 0,1548 0,1506 0,00395 94,8 13 9,92 0,0509 0,0495 0,0523 0,0509 0,00145 94,0 14 10,17 0,0089 0,0088 0,0092 0,0089 0,00021 93,7 15 10,29 0,0463 0,0452 0,0477 0,0464 0,00121 94,6 16 10,40 0,0951 0,0928 0,0980 0,0953 0,00258 94,6 17 10,51 0,0302 0,0298 0,0312 0,0304 0,00077 91,1 18 10,57 0,0132 0,0132 0,0137 0,0134 0,00030 95,0 19 10,63 0,1694 0,1660 0,1747 0,1700 0,00438 96,6 20 10,91 0,0394 0,0384 0,0406 0,0395 0,00112 95,5 21 11,02 0,0291 0,0285 0,0298 0,0291 0,00067 99,0 22 11,19 0,0143 0,0138 0,0147 0,0143 0,00041 97,0 23 11,19 0,0596 0,0577 0,0614 0,0596 0,00187 87,5 24 11,24 0,1256 0,1218 0,1297 0,1257 0,00391 95,4 25 11,45 0,0115 0,0110 0,0123 0,0116 0,00065 87,8 26 11,51 0,0048 0,0045 0,0048 0,0047 0,00017 81,6 27 11,56 0,0055 0,0053 0,0057 0,0055 0,00019 91,3 28 11,63 0,0178 0,0172 0,0184 0,0178 0,00059 94,6 29 11,78 0,0798 0,0774 0,0823 0,0798 0,00244 92,3 30 11,88 0,0733 0,1265 0,1341 0,1113 0,03318 83,8 31 12,09 0,0260 0,0269 0,0287 0,0272 0,00136 89,2 32 12,26 0,0150 0,0142 0,0155 0,0149 0,00066 88,9 33 12,32 0,0154 0,0148 0,0159 0,0154 0,00058 93,4 34 12,46 0,1628 0,1579 0,1682 0,1630 0,00518 94,1 35 12,52 0,0286 0,0278 0,0295 0,0286 0,00086 92,9 36 13,01 0,0165 0,0161 0,0168 0,0165 0,00039 91,2 37 12,88 0,0073 0,0101 0,0108 0,0094 0,00187 81,9 38 13,01 0,0075 0,0073 0,0077 0,0075 0,00018 92,5 39 13,15 0,0563 0,0544 0,0585 0,0564 0,00207 93,2 40 13,47 0,0123 0,0117 0,0127 0,0122 0,00052 89,5 41 13,61 0,0074 0,0070 0,0078 0,0074 0,00042 90,0 42 13,75 0,0377 0,0362 0,0389 0,0376 0,00133 93,7 43 13,89 0,0080 0,0077 0,0083 0,0080 0,00031 90,6 44 14,18 0,0257 0,0249 0,0270 0,0259 0,00105 92,5 45 14 94 0 0274 0 0267 0 0293 0 0278 0 00132 91 6 230

Peak No Table 5 Results of Aroclor1254 determination in modeling solutions of 5,0 µg ml -1 Ret. Repetitions 5,0 µg ml -1 time 1 2 3 Average St deviation Recovery % 1 8,02 0,1591 0,1349 0,1654 0,1531 0,01608 109,2 2 8,11 0,0420 0,0356 0,0418 0,0398 0,00368 96,0 3 8,43 0,0847 0,0709 0,0835 0,0797 0,00761 94,1 4 8,50 0,0076 0,0076 0,0076 0,0076 0,00002 84,3 5 8,68 0,0377 0,0320 0,0410 0,0369 0,00452 90,4 6 8,84 0,0084 0,0069 0,0083 0,0079 0,00083 96,3 7 9,15 0,0370 0,0316 0,0365 0,0350 0,00299 95,8 8 9,24 0,1308 0,0949 0,1427 0,1228 0,02485 94,5 9 9,31 0,2704 0,2278 0,2668 0,2550 0,02360 93,5 10 9,45 0,0439 0,0374 0,0433 0,0415 0,00356 95,5 11 9,67 0,0920 0,0775 0,0910 0,0868 0,00808 95,7 12 9,80 0,4006 0,3360 0,3955 0,3774 0,03591 94,6 13 9,92 0,1329 0,1130 0,1320 0,1260 0,01125 95,3 14 10,17 0,0250 0,0208 0,0243 0,0234 0,00224 95,7 15 10,29 0,1205 0,1020 0,1189 0,1138 0,01023 95,7 16 10,40 0,2553 0,2142 0,2518 0,2404 0,02276 94,7 17 10,51 0,0812 0,0684 0,0801 0,0766 0,00710 95,6 18 10,57 0,0354 0,0303 0,0354 0,0337 0,00295 98,2 19 10,63 0,4585 0,3845 0,4531 0,4320 0,04121 95,0 20 10,91 0,1023 0,0865 0,1007 0,0965 0,00869 95,8 21 11,02 0,0738 0,0630 0,0730 0,0699 0,00602 98,8 22 11,19 0,0375 0,0320 0,0372 0,0356 0,00312 95,1 23 11,19 0,1654 0,1402 0,1642 0,1566 0,01423 94,6 24 11,24 0,3400 0,2851 0,3337 0,3196 0,03003 95,1 25 11,45 0,0336 0,0284 0,0331 0,0317 0,00283 97,7 26 11,51 0,0150 0,0119 0,0149 0,0140 0,00176 90,9 27 11,56 0,0157 0,0133 0,0153 0,0148 0,00126 95,4 28 11,63 0,0467 0,0403 0,0462 0,0444 0,00356 97,1 29 11,78 0,2126 0,1805 0,2091 0,2007 0,01759 95,5 30 11,88 0,3388 0,2888 0,2084 0,2787 0,06581 83,9 31 12,09 0,0786 0,0673 0,0777 0,0746 0,00628 100,4 32 12,26 0,0415 0,0348 0,0416 0,0393 0,00386 96,3 33 12,32 0,0412 0,0355 0,0408 0,0391 0,00320 96,3 34 12,46 0,4392 0,3720 0,4334 0,4149 0,03728 94,8 35 12,52 0,0749 0,0651 0,0748 0,0716 0,00562 96,8 36 13,01 0,0464 0,0390 0,0456 0,0437 0,00403 97,0 37 12,88 0,0278 0,0233 0,0274 0,0262 0,00248 91,4 38 13,01 0,0211 0,0178 0,0208 0,0199 0,00184 97,0 39 13,15 0,1488 0,1272 0,1465 0,1408 0,01184 95,8 40 13,47 0,0349 0,0296 0,0341 0,0329 0,00287 96,7 41 13,61 0,0214 0,0181 0,0209 0,0201 0,00176 96,4 42 13,75 0,0996 0,0858 0,0982 0,0945 0,00761 96,1 43 13,89 0,0233 0,0201 0,0230 0,0221 0,00179 97,2 44 14,18 0,0671 0,0576 0,0661 0,0636 0,00525 96,6 231

Response_ 2.2e+07 2e+07 Signal: PCB05.D\ECD1B.CH PCB180 14.16 PCB194 16.60 1.8e+07 PCB138 12.45 1.6e+07 PCB18 PCB118 PCB149 PCB167 1.4e+07 7.40 PCB44 PCB101 11.23 PCB29 11.76 8.41 11.18 1.2e+07 9.78 7.37 PCB52 1e+07 8.01 PCB31 8000000 6.64 6000000 4000000 a) IS DCB 18.37 2000000 Time Response_ 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 1.4e+07 1.2e+07 1e+07 8000000 6000000 4000000 2000000 1 2 3 5 4 6 9 12 16 19 8 13 15 11 1720 31 35 21 7 10 18 28 22 32 25 33 14 26 27 Signal: AR545.D\ECD1B.CH 24 23 29 30 34 39 42 44 37 38 36 40 4143 45 b) IS DCB Time 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 Fig. 1 Chromatograms of PCBs (a) and Aroclor1254 (b) standard solutions with concentrations of 0,5 and 5,0 µg ml -1 respectively 232

Response_ 2.2e+07 Signal: PCBOIL51.D\ECD1B.CH PCB194 16.59 2e+07 PCB180 14.16 1.8e+07 1.6e+07 1.4e+07 1.2e+07 1e+07 8000000 PCB18 PCB118 7.41 PCB167 PCB44 11.23 PCB29 11.76 PCB101 PCB149 8.42 11.18 7.38 9.79 PCB52 PCB31 6.64 8.02 PCB138 12.45 6000000 9.23 4000000 2000000 7.95 7.89 7.64 14.86 IS DCB 18.37 17.22 Time Response_ 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 Signal: OIL545_1.D\ECD1B.CH 1.4e+07 19 1.3e+07 1.2e+07 34 1.1e+07 12 1e+07 24 9000000 9 8000000 16 7000000 6000000 1 8 23 29 30 5000000 13 15 39 4000000 3000000 2000000 2 3 4 5 6 11 10 7 17 20 21 28 18 22 14 25 26 27 31 35 32 33 42 44 40 37 38 36 4143 45 IS DCB Time 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 Fig. 2 Chromatograms of PCBs (a) and Aroclor1254 (b) modeling solutions with concentrations of 0,5 and 5,0 µg ml -1 respectively 233

The PCBs determination in transformer oil by Gas Chromatography has a strong matrix impact. Proposed SPE extraction method has a possibility to clean up investigated modeling samples and reduces this impact very well. Cartridges C18 are a good solution for this matrix impact elimination. After this cleanup 1 µl of the obtained extract was injected in column HP- 5MS. Chromatograms of modeling solutions have a minimal retention time drift (0,02 min) and the close base line in comparison with chromatograms of calibration solutions. The quantitative result of extracted modeling samples of PCBs congeners is presented in tables 2 and 3. The average value of modeling solutions with the concentration of 0,2 and 0,5 µg ml -1 are in intervals 0,1902 0,2003 and 0,4690 0,4988 by Standard Deviation 0,00469 0,0202 and 0,0019 0,0161 respectively. The recovery of congener PCBs for modeling samples was assessed by standard solutions with the same concentration and by internal standard PCB209. The recovery was indicated in the interval of 95,10 100,13 % for modeling solution with the PCBs concentration of 0,2 µg ml -1 and 94,04 99,77 % for modeling solution with the PCBs concentration of 0,5 µg ml -1. (table 2, 3). The better statistic parameters were indicated for samples with higher concentration. The same result was indicated for modeling solutions of Aroclor1254 with concentrations of 2,0 and 5,0 µg ml -1 (table 4, 5). The total concentration of every 45 component can be assessed easy by ChemStation software for this mixture. Maximal 4 peaks with retention times 9,80, 10,63, 11,24, 12,46 min have a good recovery in intervals 94,1 96,6 % for 2,0 µg ml -1 and 94,6 95,0 % for 5,0 µg ml -1 internal standard. The recovery for total Aroclor1254 amount is 93,1 % for 2,0 µg ml -1 and 94,9 % for 5,0 µg ml -1. The internal standard recovery is 94,1 and 93,0 % respectively for the different concentration. These good parameters for every solution are explained by two reasons: first is a good cleanup of modeling samples by SPE procedure on C18 cartridges, and second is a good separation, resolution and accuracy of Chromatographic System by the proposed method. Conclusion The utilization of AccuBOND C18 100mg/1ml cartridges with Octadecyl bonded silica phase showed a good result of the SPE cleanup and PCBs determination by Gas Chromatography in the transformer oil. The proposed method has following principal advantages: reducing a solvent amount, labor time, and so an analysis cost in comparison with other technologies; increasing a labor capacity and number of samples up to 10 times (from 30 40 per month to 300 400 per month for one worker); minimization of the matrix impact on the Gas Chromatography analysis; good recovery and accuracy of PCBs determination in the complex oil matrix. This method can be recommended for the implementation in analytical laboratories for the investigation of the pollutant content in the complex oil matrix. 234

Reference [1] Chang I. L., Sanders W. J. The Analysis of Chlorinated Pesticides and PCBs Using the HP- 608 Capillary Column. Agilent Technologies, Application Note 228, (2000). [2] Custer T.W., Custer C.M., Hines R.K. Dioxins and congener-specific polychlorinated biphenyls in three avian species from the Wisconsin River, Wisconsin. Environmental Pollution 119, 323, (2002). [3] Guide to Solid Phase Extraction Sigma-Aldrich Co, Bulletin 910, (1998). [4] Guidance for the identification of PCBs and materials containing PCBs. UNEP, first issue, (1999). [5] Hartonen K., Bøwadt S., Dybdahl H.P., Nylund K., Sporring S., Lund H., Oreld F. Nordic laboratory intercomparison of supercritical fluid extraction for the determination of total petroleum hydrocarbon, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in soil. Journal of Chromatography A, 958, 239, (2002). [6] Knut Breivik, Ruth Alcock, Yi-Fan Li, Robert E. Bailey, Heidelore Fiedler, Jozef M. Pacyna Primary sources of selected POPs: regional and global scale emission inventories. Environmental Pollution 128, 3, (2004). [7] Method 3500B: Organic Extraction and Sample Preparation. EPA (1996). [8] Method 3535 Solid-Phase Extraction (SPE) EPA (1996). [9] Method 3600C Cleanup. EPA (1996). [10] Method 3610B Alumina Cleanup. EPA (1996). [11] Method 3620B Florisil Cleanup. EPA (1996). [12] Method 3630C Silica Gel Cleanup. EPA (1996). [13] Method 3660B Sulfur Cleanup. EPA (1996). [14] Method 3665A Sulfur Acid/Permanganate Cleanup. EPA (1996). [15] Method 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography. EPA, 41 p. (1996). [16] Method 9079: Screening Test Method for Polychlorinated Biphenyls in Transformer Oil. EPA (1996). [17] Nguyen Hung Minh, Masayuki Someya, Tu Binh Minh, and others. Persistent organochlorine residues in human breast milk from Hanoi and Hochiminh city, Vietnam: contamination, accumulation kinetics and risk assessment for infants. Environmental Pollution 129, 431 (2004). [18] Ruiz-Gutierrez V., Perez-Camino M.C. Update on solid-phase extraction for the analysis of lipid classes and related compounds Journal of Chromatography A, 885 321 (2000). [19] Wolska L. Miniaturized analytical procedure of determining polycyclic aromatic hydrocarbons and polychlorinated biphenyls in bottom sediments. Journal of Chromatography A, 959 173 (2002). [20] Buldini P.L., Ricci L., Sharma J.L. Recent applications of sample preparation techniques in food analysis. Review. Journal of Chromatography A, 975, 47 70 (2002). 235