Artificial Photosynthesis: A Workshop in Solar Cell Design



Similar documents
Titanium Dioxide Raspberry Solar Cell 2012, 2011, 2005 by David A Katz. All rights reserved

SOLAR ENERGY. Solar Energy, Kit #5: Making a Dye Sensitized Solar Cell INSTITUTE FOR SCHOOL PARTNERSHIP PARC

Sugar Makers. Real-world Connection: Energy harnessed by photosynthesis powers ecosystems, machines, and even our own bodies.

SOLAR CELLS From light to electricity

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria

Equation for Photosynthesis

Photosynthesis Chapter 8 E N E R G Y T O M A K E F O O D?

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Photosynthesis P P P. Autotrophs and Heterotrophs (page 201) Chemical Energy and ATP (pages ) Chapter 8. Name Class Date

Review Questions Photosynthesis

Searching New Materials for Energy Conversion and Energy Storage

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

LESSON PLAN 1. Fire Science. Key Terms and Concepts. ash chemical reaction combustion Consumer Product Safety Commission endothermic exothermic

DYE SOLAR CELLS FOR REAL. The Assembly Guide for Making Your Own Solar Cells. David Martineau REV

Lecture 7 Outline (Ch. 10)

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives.

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Running protein gels and detection of proteins

8-3 The Reactions of Photosynthesis Slide 1 of 51

Animal & Plant Cell Slides

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

Solar Energy Discovery Lab

Fast Semi-Dry Transfer System with Yrdimes

Chemical Reactions Practice Test

Photosynthesis and Cellular Respiration. Stored Energy

EXPERIMENT 12: Empirical Formula of a Compound

Green pigment that absorbs solar energy and is important in photosynthesis

Photosynthesis January 23 Feb 1, 2013 WARM-UP JAN 23/24. Mr. Stephens, IB Biology III 1

Development of High-Speed High-Precision Cooling Plate

Strategy for Functional Material Development in FUJIFILM

Name Date Period PHOTOSYNTHESIS HW REVIEW ENERGY AND LIFE

Photosynthesis. Name. Light reactions Calvin cycle Oxidation Reduction Electronegativity Photosystem Electron carrier NADP+ Concentration gradient

The soot and scale problems

Chloroplasts and Mitochondria

Plastics and Polymer Business. Properties enhancement for Plastics

How compact discs are made

Biology Slide 1 of 51

Diffusion, Osmosis, and Membrane Transport

RECITATION NOTES FOR EXPERIMENT # 5 A&B THIN LAYER CHROMATOGRAPHY

Solar Photovoltaic (PV) Cells

SORTING PLASTICS FOR RECYCLING INTRODUCTION

Characteristic curves of a solar cell

E F G. Overview of the activities. SAPIE ZA Università di Roma - Laboratorio di Fotonica Molecolare

Biology for Science Majors

Jan Baptisa van Helmont (1648)

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1

High Efficiency Black Polymer Solar Cells November 2012 Annual Report

Question. Which of the following are necessary in order for photosynthesis to occur? A. water B. light energy C. carbon dioxide D.

Consider How can you collect solar energy for use in your school? What are other alternatives?

From Nano-Electronics and Photonics to Renewable Energy

Photosynthesis (Life from Light)

Figure 1: Exaggerated side-view of a cathode with a four-coating PTFE diffusion layer

8.3 The Process of Photosynthesis

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

Ch. 4 ATP & Photosynthesis

The Physics of Energy sources Renewable sources of energy. Solar Energy

CELERY LAB - Structure and Function of a Plant

Metabolism: Cellular Respiration, Fermentation and Photosynthesis

Remember the best arguments are based on the strongest evidence and can explain why opposing arguments are incorrect.

Georgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites

Like The Guy From Krypton Photosynthesis: Energy from Sunlight What Is Photosynthesis?

Biology. Slide 1of 51. End Show. Copyright Pearson Prentice Hall

Fiber Analysis 2005, 2004, 2003, 2001, 1999 by David A. Katz. All rights reserved.

CELERY LAB - Structure and Function of a Plant

The Electrical Control of Chemical Reactions E3-1

SDS-PAGE Protocol Mutated from the SDS-PAGE protocol written by the Lord of the Flies

Petri Dish Electrolysis Electrolysis Reactions

Tin Man Electrolysis

Photosynthesis-Review. Pigments. Chloroplasts. Chloroplasts 5. Pigments are located in the thylakoid membranes. An Overview of Photosynthesis

Building Electrochemical Cells

EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K

The Empirical Formula of a Compound

Chemistry Assessment Unit AS 1

Chemical Reactions & Electricity

OLED display. Ying Cao

ph Measurements of Common Substances

Unit 5 Photosynthesis and Cellular Respiration

Science Standard Articulated by Grade Level Strand 5: Physical Science

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

Tungsten Tip Preparation

Information sheet. 1) Solar Panels - Basics. 2) Solar Panels Functionality

A B C D. Name Class Date

Electrophoretic Gold Nanoparticles Depostion On Carbon Nanotubes For NO 2 Sensors

Product name Company Cat # PowerPac Basic Power supply Bio Rad Mini Protean electrophoresis system Mini trans blot cell Bio Rad

A Beer s Law Experiment

2. PHOTOSYNTHESIS. The general equation describing photosynthesis is light + 6 H 2 O + 6 CO 2 C 6 H 12 O O 2

Explain the role of blood and bloodstain patterns in forensics science. Analyze and identify bloodstain patterns by performing bloodstain analysis

Photosynthesis Part I: Overview & The Light-Dependent Reactions

Biology I. Chapter 8/9

Oxygen Give and Take. Correlation to National Science Education Standards

Experiment #5: Qualitative Absorption Spectroscopy

CHEMICAL SENSORS 1. DEFINITION

Materials for Organic Electronic. Jeremy Burroughes FRS FREng

Metabolism Poster Questions

Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells).

Transcription:

Artificial Photosynthesis: A Workshop in Solar Cell Design Joseph P. Harney, Sam Toan, Jonathan Rochford* Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125. email: jonathan.rochford@umb.edu Introduction In reading the title of this workshop you may be asking yourself What is artificial photosynthesis? or alternatively How is photosynthesis related to solar cell research? This workshop is aimed at bridging the gap between our knowledge of Natures energy conversion and storage factory, i.e. the photosynthetic reaction center, and current to future solar cell technologies. Although it involves a complex sequence of events, the overall photosynthetic reaction can be simply summarized by the chemical equation 6 CO 2 + 6 H 2 O + sunlight C 6 H 12 O 6 + 6 O 2 where carbon dioxide and water are ultimately converted to carbohydrates and dioxygen replenishing the air we breathe. In essence, photosynthesis uses sunlight to power the movement of electrons (aka electrical current) to cause this chemical change. For the chemical sciences, an understanding of photosynthesis is particularly attractive since valuable substances, i.e. fuels, are produced in these reactions from very simple, low energy starting materials powered by a readily available and abundant form of energy in sunlight. Solar cells mimic the light absorption and electron flow of photosynthesis to produce electricity. The basic components of a solar cell are a negative electrode (anode) and a positive electrode (cathode) connected by an external circuit. Through irradiation with sunlight, an electron is excited to a high energy state and transferred from the negative electrode to the positive electrode via the external current. The difference in energy between both electrodes determines the electrical potential (voltage) of the solar cell. Furthermore, the efficiency of photo to current conversion will determine the current (amperage) of the cell. There are many classes of solar cells but today we will learn about chemically designed solar cells. http://www.greenchemistry.umb.edu/ 1

Introduced over 20 years ago by Grätzel and co workers, 1 dye sensitized solar cell (DSSC) technology has stimulated vast interest from the academic, federal and private sectors with the maximum reported DSSC efficiency now standing at almost 12%. 2 DSSCs are built around a photoanode (negative electrode) consisting of a mesoporous network of transparent n type wide band gap inorganic semiconductor nanoparticles in TiO 2 deposited on an optically transparent conducting substrate [fluorine doped tin oxide (FTO) glass]. 3 The mesoporous (sponge like) layer (ca. 10 m) of TiO 2 nanoparticles (ca. 10 20 nm diameter) boasts a remarkable surface area (roughness factor ~1x10 3 ). The dye sensitizer is adsorbed on the high surface area TiO 2 by covalent attachment allowing a large absorption cross section (light harvesting). The low cost TiO 2 semiconductor mimics the light absorbing proteins found in the thylakoid membrane of the natural photosynthetic system. 4 The function of this protein is to arrange the light harvesting molecules (chlorophylls and carotenes) in a fixed orientation with respect to one another for optimum vectorial energy transfer to the photosynthetic reaction center. TiO 2 functions similar to this naturally occurring protein as a scaffold for the selfassembly of dye molecules. In fact, TiO 2 plays a dual role in DSSCs as it also acts as an electron acceptor and charge carrier, once again mimicking the natural photosynthetic system. 4 5 Fig 1: Schematic diagram of a dye sensitized solar cell operation. http://www.greenchemistry.umb.edu/ 2

Materials 2 x transparent fluorine doped tin oxide (FTO) conductive glass slides (20 mm x 15mm x 2.2 mm) Scotch tape Mortar and pestle (or alternatively a glass dish and stopper) 18 % wt. TiO 2 / terpineol paste Electrolyte solution (0.5 M lithium iodide : 0.05 M iodine in acetonitrile) 2 small binder clips Fruit! (raspberry, concord grape, blackberry or acai berry) Deionised water 1 candle 1 piece of parafilm spacer (U shaped; 15 mm x 15 mm OD; 10 mm x 10 mm ID) 1 glass pipette Multimeter Light source Solar Cell Fabrication 1. Determine which side of the conductive glass has the FTO coating by using a multimeter with its setting placed on resistance (Ω the instructor may have labeled this already!). 2. Facing the glass FTO face up, carefully tape the glass to the benchtop on four sides using Scotch tape. It is critical here to expose just 1 cm 2 of the FTO surface (leaving roughly 2 mm from one end of the glass and about 8mm of bare FTO on the opposite end; ref. picture below). 3. Add 2 3 drops of the TiO 2 paste uniformly to a single side of the Scotch tape. Using gentle pressure with adequate momentum spread the paste across the exposed FTO surface using the smooth edge of a glass pipette. http://www.greenchemistry.umb.edu/ 3

4. Allow the TiO 2 to settle for 2 min. Very carefully remove the tape and, keeping the FTO/TiO 2 side up, dry the paste over a heat source for about 30 60 seconds (a hot plate set at ~ 250 C will work fine; alternatively use a Bunsen burner on low flame below an aluminum sheet do not use an open flame on the electrode). 5. Place the berry of choice in the glass dish and mash it gently with the glass stopper. Gently place the FTO/TiO 2 electrode face down into the fruit for about 10 min. (this is where natural dye molecules from the fruit will attach themselves to the white TiO 2 nanoparticles producing a bright colorful electrode surface). 6. In the meantime (while the FTO/TiO 2 is absorbing the natural dye) take the second piece of FTO conductive glass. Confirm using the multimeter which side is conductive (the instructor may have labeled this already!). 7. Take this second piece of FTO using a tweezers and glide (FTO face down) over a burning flame from a wax candle to deposit carbon directly onto the FTO surface. This will leave a black film of carbon on the FTO surface which will be used as our positive electrode. 8. Remove the TiO 2 slide from the fruit juice and gently rinse with deionized water. Allow to air dry (gently blot with a tissue if needed but do not damage the surface!). 9. Next carefully place the U shaped parafilm spacer around 3 sides of the TiO 2 layer. 10. Now place the FTO/Carbon positive electrode face down on top of the FTO/TiO 2 /dye negative electrode making sure to offset both ends by a few mm (see picture below ). THE POSITIVE AND NEGATIVE ELECTRODES SHOULD BE FACE TO FACE BUT NOT IN DIRECT CONTACT! http://www.greenchemistry.umb.edu/ 4

11. Taking extreme care, fix both electrodes in place using the binding clips. 12. Now, place the multimeter alligator clips on opposite ends of the solar cell s conductive glass slides and put 1 2 drops of the provided electrolyte solution between the two electrodes (capillary action should carry the solution throughout the solar cell spacer and electrolyte allow the chemistry to occur without short circuiting the cell!) 13. Finally we are ready to expose the solar cell to our light source and with a multimeter measure electrical potential (V) and current (A) of the solar cell under ambient (alternatively cover the cell for dark) and illuminated conditions. Now compare with your colleagues and determine which fruit generates the greatest electrical power density in a dye sensitized solar cell. [note: each cell must be measured equidistant from the light source so they are exposed equal intensity irradiation] power density W. m current A voltage V area m Fruit Potential (V) Current (A) Power density (Wm 2 ) Concord grape Raspberry Acai berry Blackberry http://www.greenchemistry.umb.edu/ 5

Supplies We would like to emphasize that this procedure has been optimized so that it can be reproduced in a K 12 teaching environment with both non science and science students at relatively cheap cost. To reproduce this experiment please see the following list of suppliers but do check for alternatives if more convenient and no harm to inquire about educational samples! Fluorine doped tin oxide (FTO) conductive glass slides (2 per solar cell). Pre cut commercially available at 2.5 cm 2.5 cm TEC 8 or TEC 10 (TEC = transparent electrically conductive ; 8 or 10 = resistivity per square cm 2 either will work well) Vendor: Hartford Glass Co. Inc., P.O. Box 613, Hartford City, IN 47348 (Tel) 765/348 1282; (Fax) 765/348 5435; e mail: hartglas@netusa1.net; TiO 2 nanoparticles (commercial name: Aeroxide P25) were donated by. Vendor: Innovadex, 7930 Santa Fe, Overland Park, Kansas 66204. sales@innovadex.com; (Tel) 913 307 9010 terpineol (technical grade); Parafilm; Lithium Iodide (reagent grade); Iodine (reagent grade); acetonitrile (reagent grade alternatively anti freeze can be used as a solvent but the solar cell with not be as efficient!) Vendor: Wilkem Scientific, PO Box 301, Pawtucket, Rhode Island 02862. jim@wilkem.com; (Tel) 800 766 5676; (Fax) 401 724 8760 Scotch tape; candles; multimeter; light source (your local hardware store) For fresh fruit support your local market! References 1. Vlachopoulos, N.; Liska, P.; Augustynski, J.; Gratzel, M., J. Am. Chem. Soc. 1988, 110, 1216-1220. 2. Chen, C. Y., et al., Acs Nano 2009, 3, 3103-3109. 3. Gratzel, M., Nature 2001, 414, 338-344. 4. Blankenship, R. E., Molecular Mechanisms of Photosynthesis. Blackwell Science: 2002. 5. Barber, J., Chemical Society Reviews 2009, 38, 185-196. http://www.greenchemistry.umb.edu/ 6