MTAT.03.231 Business Process Management (BPM) Lecture 6 Quantitative Process Analysis (Queuing & Simulation)



Similar documents
Process simulation. Enn Õunapuu

MTAT Business Process Management (BPM) (for Masters of IT) Lecture 2: Introduction to BPMN

CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION

Waiting Times Chapter 7

UNIT 2 QUEUING THEORY

Basic Queuing Relationships

ICT353/532 Advanced Business Analysis & Design

Queuing Theory. Long Term Averages. Assumptions. Interesting Values. Queuing Model

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements

Simple Queuing Theory Tools You Can Use in Healthcare

Business Process Modeling

A MODEL OF OPERATIONS CAPACITY PLANNING AND MANAGEMENT FOR ADMINISTRATIVE SERVICE CENTERS

Fundamentals of Business Process Management

White Paper Business Process Modeling and Simulation

CALL CENTER PERFORMANCE EVALUATION USING QUEUEING NETWORK AND SIMULATION

BPMN and Simulation. L. J. Enstone & M. F. Clark The Lanner Group April 2006

Implementing an Approximate Probabilistic Algorithm for Error Recovery in Concurrent Processing Systems

LECTURE 16. Readings: Section 5.1. Lecture outline. Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process

Simulation and Lean Six Sigma

Queuing Theory II 2006 Samuel L. Baker

Process Optimizer Hands-on Exercise

Chapter 13 Waiting Lines and Queuing Theory Models - Dr. Samir Safi

BPMN 2.0 Descriptive Constructs

Internet Traffic Variability (Long Range Dependency Effects) Dheeraj Reddy CS8803 Fall 2003

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications

LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera

OPTIMUM TOUR SCHEDULING OF IT HELP DESK AGENTS

IST 301. Class Exercise: Simulating Business Processes

Basic Multiplexing models. Computer Networks - Vassilis Tsaoussidis

Competitive Analysis of QoS Networks

Reducing or increasing the number of people assigned to an activity. A sudden increase of the number of instances flowing through the process.

M/M/1 and M/M/m Queueing Systems

BUS 101. Information Systems Presentation. Dr. Dave Croasdell Dr. Chad Anderson

modeling Network Traffic

Process Mining Data Science in Action

A capacity planning / queueing theory primer or How far can you go on the back of an envelope? Elementary Tutorial CMG 87

Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

A Periodic Events - For the Non- Scheduling Server

Job Scheduler Oracle FLEXCUBE Universal Banking Release [April] [2014] Oracle Part Number E

Chapter 2. Simulation Examples 2.1. Prof. Dr. Mesut Güneş Ch. 2 Simulation Examples

Arena 9.0 Basic Modules based on Arena Online Help

CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT

Using Simulation Models to Evolve Business Processes

Quantitative Analysis of Cloud-based Streaming Services

TEST 2 STUDY GUIDE. 1. Consider the data shown below.

Business Process Modeling

Business Process Driven SOA using BPMN and BPEL

BIS 3106: Business Process Management. Business Process Management Outline

Research Article Average Bandwidth Allocation Model of WFQ

WebSphere Business Modeler

Justifying Simulation. Why use simulation? Accurate Depiction of Reality. Insightful system evaluations

Chapter 1. Introduction

Business Process Simulation Survival Guide

ANALYSIS OF THE QUALITY OF SERVICES FOR CHECKOUT OPERATION IN ICA SUPERMARKET USING QUEUING THEORY. Azmat Nafees Liwen Liang. M. Sc.

Supporting the BPM lifecycle with FileNet

Load balancing model for Cloud Data Center ABSTRACT:

Load Balancing and Switch Scheduling

Traffic Control by Influencing User Behavior

DISCRETE EVENT SIMULATION HELPDESK MODEL IN SIMPROCESS

Programma della seconda parte del corso

Modeling and simulation modeling

Aachen Summer Simulation Seminar 2014

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS

Introduction to Business Model Simulation ActiveVOS Designer

COMMUNICATING WITH MANAGEMENT ABOUT THE BENEFITS OF BUSINESS PROCESS SIMULATION

10g versions followed on separate paths due to different approaches, but mainly due to differences in technology that were known to be huge.

2. Analysis. 2.1 Resource Planning. Resource Planning. 1st Question. Example. BPM & WfM. Lecture 9 III. Workflow Theory & Analysis

QUEUING THEORY. 1. Introduction

How To Manage A Call Center

How To Model A System

Business Process Modeling Notation. Bruce Silver Principal, BPMessentials

Operations and Supply Chain Simulation with AnyLogic 7.2

Deployment of express checkout lines at supermarkets

DDSS: Dynamic Dedicated Servers Scheduling for Multi Priority Level Classes in Cloud Computing

Optimal Dynamic Resource Allocation in Multi-Class Queueing Networks

A Policy-Based Admission Control Scheme for Voice over IP Networks

School of Computer Science

AN EFFICIENT DISTRIBUTED CONTROL LAW FOR LOAD BALANCING IN CONTENT DELIVERY NETWORKS

CONTAINER TERMINAL SIMULATION. A CASE STUDY: PORT OF VALENCIA.

Process Mining The influence of big data (and the internet of things) on the supply chain

Malay A. Dalal Madhav Erraguntla Perakath Benjamin. Knowledge Based Systems, Inc. (KBSI) College Station, TX 77840, U.S.A.

IBM Software Group. Introduction to BPMN. Stephen A. White, BPM Architect, IBM October 16, IBM Corporation

Simulation Software 1

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age.

Modelling the performance of computer mirroring with difference queues

ASSESSING AIRPORT PASSENGER SCREENING PROCESSING SYSTEMS

1: B asic S imu lati on Modeling

Business Process Modelling with BPMN. Monique Snoeck Management Information Systems Group FEB KU Leuven

LECTURE - 3 RESOURCE AND WORKFORCE SCHEDULING IN SERVICES

EXAM IN COURSE [EKSAMEN I EMNE] TTM4110 Dependability and Performance with Discrete event Simulation [Pålitelighet og ytelse med simulering]

Network Design Performance Evaluation, and Simulation #6

MTAT Software Economics. Lecture 6: Software Cost Estimation (part II)

08 BPMN/1. Software Technology 2. MSc in Communication Sciences Program in Technologies for Human Communication Davide Eynard

Load Balancing in cloud computing

Performance Analysis of a Telephone System with both Patient and Impatient Customers

AS-D2 THE ROLE OF SIMULATION IN CALL CENTER MANAGEMENT. Dr. Roger Klungle Manager, Business Operations Analysis

Faculty of Science and Technology MASTER S THESIS. Writer: Artur Latifov

Simulation of Call Center With.

Contents. Document Management Systems. Portale. Workflow Engines. Tools_and_Systems. How to find the right Tools and Systems?

Naso CC Statistics & Call Center system

Transcription:

MTAT.03.231 Business Process Management (BPM) Lecture 6 Quantitative Process Analysis (Queuing & Simulation) Marlon Dumas marlon.dumas ät ut. ee

Business Process Analysis 2

Process Analysis Techniques Qualitative analysis Value-Added Analysis Root-Cause Analysis Pareto Analysis Issue Register Quantitative Analysis Quantitative Flow Analysis Queuing Theory Process Simulation 3

Why flow analysis is not enough? Flow analysis does not consider waiting times due to resource contention Queuing analysis and simulation address these limitations and have a broader applicability 4

Why is Queuing Analysis Important? Capacity problems are very common in industry and one of the main drivers of process redesign Need to balance the cost of increased capacity against the gains of increased productivity and service Queuing and waiting time analysis is particularly important in service systems Large costs of waiting and of lost sales due to waiting Prototype Example ER at a Hospital Patients arrive by ambulance or by their own accord One doctor is always on duty More patients seeks help longer waiting times Question: Should another MD position be instated? Laguna & Marklund 5

Delay is Caused by Job Interference Deterministic traffic Variable but spaced apart traffic If arrivals are regular or sufficiently spaced apart, no queuing delay occurs Dimitri P. Bertsekas 6

Burstiness Causes Interference Queuing results from variability in service times and/or interarrival intervals Dimitri P. Bertsekas 7

Job Size Variation Causes Interference Deterministic arrivals, variable job sizes Dimitri P. Bertsekas 8

High Utilization Exacerbates Interference The queuing probability increases as the load increases Utilization close to 100% is unsustainable too long queuing times Dimitri P. Bertsekas 9

The Poisson Process Common arrival assumption in many queuing and simulation models The times between arrivals are independent, identically distributed and exponential P (arrival < t) = 1 e -λt Key property: The fact that a certain event has not happened tells us nothing about how long it will take before it happens e.g., P(X > 40 X >= 30) = P (X > 10) Laguna & Marklund 10

Negative Exponential Distribution 11

Queuing theory: basic concepts arrivals waiting service l Basic characteristics: l (mean arrival rate) = average number of arrivals per time unit m (mean service rate) = average numberof jobs that can be handled by one server per time unit: c = number of servers c m Wil van der Aalst 12

Queuing theory concepts (cont.) l Wq,Lq c m W,L Given l, m and c, we can calculate : occupation rate: r Wq = average time in queue W = average system in system (i.e. cycle time) Lq = average number in queue (i.e. length of queue) L = average number in system average (i.e. Work-in-Progress) Wil van der Aalst 13

M/M/1 queue l Assumptions: time between arrivals and service time follow a negative exponential distribution 1 server (c = 1) FIFO L=r/(1- r) 1 ρ W=L/l=1/(m- l) m Capacity Demand Available Capacity λ μ L q = r 2 /(1- r) = L-r Wq=Lq/l= l /( m(m- l)) Laguna & Marklund 14

M/M/c queue Now there are c servers in parallel, so the expected capacity per time unit is then c*m r Capacity Demand Available Capacity l c* m Little s Formula Wq=Lq/l W=Wq+(1/m) Little s Formula L=lW Laguna & Marklund 15

Tool Support For M/M/c systems, the exact computation of Lq is rather complex P 0 L q n c c 1 n 0 (n c)p ( l / m) n! Consider using a tool, e.g. n http://apps.business.ualberta.ca/aingolfsson/qtp/ n... ( l / m) c! ( l / m) http://www.stat.auckland.ac.nz/~stats255/qsim/qsim.html c c!(1 r) c r 2 P 0 1 1 ( l /(cm) 1 16

Example ER at County Hospital Situation Patients arrive according to a Poisson process with intensity l ( the time between arrivals is exp(l) distributed. The service time (the doctor s examination and treatment time of a patient) follows an exponential distribution with mean 1/m (=exp(m) distributed) The ER can be modeled as an M/M/c system where c=the number of doctors Data gathering l = 2 patients per hour m = 3 patients per hour Question Should the capacity be increased from 1 to 2 doctors? Laguna & Marklund 17

Queuing Analysis Hospital Scenario Interpretation To be in the queue = to be in the waiting room To be in the system = to be in the ER (waiting or under treatment) Characteristic One doctor (c=1) Two Doctors (c=2) r 2/3 1/3 Lq 4/3 patients 1/12 patients L 2 patients 3/4 patients Wq 2/3 h = 40 minutes 1/24 h = 2.5 minutes W 1 h 3/8 h = 22.5 minutes Is it warranted to hire a second doctor? Laguna & Marklund 18

Process Simulation Drawbacks of queuing theory: Generally not applicable when system includes parallel activities Requires case-by-case mathematical analysis Assumes steady-state (valid only for long-term analysis) Process simulation is more versatile (also more popular) Process simulation = run a large number of process instances, gather data (cost, duration, resource usage) and calculate statistics from the output 19

Process Simulation Steps in evaluating a process with simulation 1. Model the process (e.g. BPMN) 2. Enhance the process model with simulation info simulation model Based on assumptions or better based on data (logs) 3. Run the simulation 4. Analyze the simulation outputs 1. Process duration and cost stats and histograms 2. Waiting times (per activity) 3. Resource utilization (per resource) 5. Repeat for alternative scenarios 20

Elements of a simulation model The process model including: Events, activities, control-flow relations (flows, gateways) Resource classes (i.e. lanes) Resource assignment Mapping from activities to resource classes Processing times Per activity or per activity-resource pair Costs Per activity and/or per activity-resource pair Arrival rate of process instances Conditional branching probabilities (XOR gateways) 21

Simulation Example BPMN model Receive info Request info No accept Deliver card Start Check for completeness complete? Yes Perform checks Make decision Decide reject Notify acceptance End Notify rejection review request Time out reviiew Receive review request 22

Resource Pools (Roles) Two options to define resource pools Define individual resources of type clerk Or assign a number of anonymous resources all with the same cost E.g. 3 anonymous clerks with cost of 10 per hour, 8 hours per day 2 individually named clerks Jim: 12.4 per hour Mike: 14.8 per hour 1 manager John at 20 per hour, 8 hours per day 23

Resource pools and execution times Task Role Execution Time Normal distribution: mean and std deviation Receive application system 0 0 Check completeness Clerk 30 mins 10 mins Perform checks Clerk 2 hours 1 hour Request info system 1 min 0 Receive info (Event) system 48 hours 24 hours Make decision Manager 1 hour 30 mins Notify rejection system 1 min 0 Time out (Time) system 72 hours 0 Receive review request (Event) system 48 hours 12 hours Notify acceptance system 1 min 0 Deliver Credit card system 1 hour 0 Alternative: assign execution times to the tasks only (like in cycle time analysis) 24

Reminder: Normal Distribution 25

Arrival rate and branching probabilities 10 applications per hour (one at a time) Poisson arrival process (negative exponential) Receive info Request info No 0.3 0.5 accept Deliver card Start Check for completeness complete? Yes 0.7 Perform checks Make decision Decide reject 0.5 Notify acceptance Notify rejection 0.8 Time out review request End Receive review request reviiew 0.2 Alternative: instead of branching probabilities one can assign conditional expressions to the branches based on input data 26

# PI's Simulation output: KPIs Resource Resource Utilization Cost 100.00% 4,500.00 $ 4,260.95 90.00% 4,000.00 80.00% 3,500.00 70.00% 3,000.00 60.00% 2,500.00 50.00% 2,000.00 40.00% 1,500.00 30.00% 1,000.00 20.00% 12 10 18.82% $ 898.458 50.34% Cycle Time - Histogram 10.00% 500.00 6 $ 5.04% 285.00 0.00% 4 Clerk 2 Manager System 0 0 10 20 30 40 50 60 Days 27

Simulation output: detailed logs Process Instance # Activities Start End Cycle Time Cycle Time (s) Total Time 6 5 4/06/2007 13:00 4/06/2007 16:26 03:26:44 12403.586 03:26:44 7 5 4/06/2007 14:00 5/06/2007 9:30 19:30:38 70238.376 19:30:38 Process Instance Activity ID Activity Name Activity Type Resource Start End 11 5 4/06/2007 18:00 5/06/2007 12:14 18:14:56 65695.612 18:14:56 6 aed54717-f044-4da1-b543-82a660809ecb Check for completeness Task Manager 4/06/2007 13:00 4/06/2007 13:53 13 5 4/06/2007 20:00 5/06/2007 13:14 17:14:56 62095.612 17:14:56 6 a270f5c6-7e16-42c1-bfc4-dd10ce8dc835 Perform checks Task Clerk 4/06/2007 13:53 4/06/2007 15:25 16 5 4/06/2007 23:00 5/06/2007 15:06 16:06:29 57989.23 16:06:29 6 77511d7c-1eda-40ea-ac7d-886fa03de15b Make decision Task Manager 4/06/2007 15:25 4/06/2007 15:26 22 5 5/06/2007 5:00 6/06/2007 10:01 29:01:39 104498.797 29:01:39 6 099a64eb-1865-4888-86e6-e7de36d348c2 Notify acceptance IntermediateEvent (none) 4/06/2007 15:26 4/06/2007 15:26 27 8 5/06/2007 10:00 6/06/2007 12:33 26:33:21 95600.649 26:33:21 6 0a72cf69-5425-4f31-8c7e-6d093429ab04 Deliver card Task System 4/06/2007 15:26 4/06/2007 16:26 7 aed54717-f044-4da1-b543-82a660809ecb Check for completeness Task Manager 4/06/2007 14:00 4/06/2007 14:31 7 a270f5c6-7e16-42c1-bfc4-dd10ce8dc835 Perform checks Task Clerk 4/06/2007 14:31 5/06/2007 8:30 28

Tools for Process Simulation Listed in no specific order: ITP Commerce Process Modeler for Visio Models presented earlier are made with ITP Commerce Progress Savvion Process Modeler IBM Websphere Business Modeler Oracle BPA ARIS ProSim 29

Simple Online Simulator BIMP: http://bimp.cs.ut.ee/ Accepts standard BPMN 2.0 as input Link from Signavio Academic Edition to BIMP Open a model in Signavio and push it to BIMP using the flask icon 30

BIMP Demo 31