Computational Modelling of Free Surface Flows: wave interaction with fixed and floating bodies

Similar documents
Damage detection in composite laminates using coin-tap method

Faraday's Law of Induction

Actuator forces in CFD: RANS and LES modeling in OpenFOAM

Rotation Kinematics, Moment of Inertia, and Torque

Imperial College London

Simulation of Under Water Explosion using MSC.Dytran

Simulating injection moulding of microfeatured components

Automated information technology for ionosphere monitoring of low-orbit navigation satellite signals

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum

CFD MODELLING BY DHI. Statement of Qualifications

Laws of Electromagnetism

SIMULATION OF THERMAL AND CHEMICAL RELAXATION IN A POST-DISCHARGE AIR CORONA REACTOR

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

where the coordinates are related to those in the old frame as follows.

Consider a 1-D stationary state diffusion-type equation, which we will call the generalized diffusion equation from now on:

IMPACT ANALYSIS OF A CELLULAR PHONE

Loop Parallelization

Chapter 11 Torque and Angular Momentum

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

APPLICATION OF PROBE DATA COLLECTED VIA INFRARED BEACONS TO TRAFFIC MANEGEMENT

A frequency decomposition time domain model of broadband frequency-dependent absorption: Model II

An Integrated Semantically Correct 2.5D Object Oriented TIN. Andreas Koch

Homework: 49, 56, 67, 60, 64, 74 (p )

How To Understand The Results Of The German Meris Cloud And Water Vapour Product

Sharp-Crested Weir Discharge Coefficient

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST)

Topical Workshop for PhD students Adsorption and Diffusion in MOFs Institut für Nichtklassische Chemie, Germany,

An Overview of Computational Fluid Dynamics

Parallelization of a 3-D SPH code for massive HPC simulations

Parallel Numerical Simulation of Visual Neurons for Analysis of Optical Illusion

Realistic Image Synthesis

A Three-Point Combined Compact Difference Scheme

"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

Application of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance

Mathematical modeling of water quality in river systems. Case study: Jajrood river in Tehran - Iran

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

Computational Fluid Dynamics II

Calculating the high frequency transmission line parameters of power cables

An Enhanced Super-Resolution System with Improved Image Registration, Automatic Image Selection, and Image Enhancement

How To Calculate The Power Of A Bubble Swarm

Numerical Analysis of the Natural Gas Combustion Products

Section 2 Introduction to Statistical Mechanics

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

Introduction. by a source term ( ) 242 / Vol. XXVIII, No. 2, April-June 2006 ABCM. Denise Maria V. Martinez et al

An interactive system for structure-based ASCII art creation

1 Example 1: Axis-aligned rectangles

Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid

Immersed interface methods for moving interface problems

CHAPTER 8 Potential Energy and Conservation of Energy

Inner core mantle gravitational locking and the super-rotation of the inner core

REDUCED-ORDER MODELING OF MULTISCALE TURBULENT CONVECTION: APPLICATION TO DATA CENTER THERMAL MANAGEMENT

NOMENCLATURE. n i. nb variable of the present and

Reduced magnetohydrodynamic equations with coupled Alfvén and sound wave dynamics

Numerical Methods 數 值 方 法 概 說. Daniel Lee. Nov. 1, 2006

Time Domain simulation of PD Propagation in XLPE Cables Considering Frequency Dependent Parameters

SUMMARY. Topology optimization, buckling, eigenvalue, derivative, structural optimization 1. INTRODUCTION

THE USE OF CFD TOOLS FOR INDOOR ENVIRONMENTAL DESIGN

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6

Adaptive Fractal Image Coding in the Frequency Domain

Rotation and Conservation of Angular Momentum

914 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 5, OCTOBER 2010

DEFINING %COMPLETE IN MICROSOFT PROJECT

A Multi-mode Image Tracking System Based on Distributed Fusion

STANDING WAVE TUBE TECHNIQUES FOR MEASURING THE NORMAL INCIDENCE ABSORPTION COEFFICIENT: COMPARISON OF DIFFERENT EXPERIMENTAL SETUPS.

An Adaptive and Distributed Clustering Scheme for Wireless Sensor Networks

The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dualoverflow

European Collaboration on Lead Cooled Nuclear Reactor Development

NUMERICAL HYDRO- MORPHODINAMIC 2DH MODEL FOR THE SHALLOW WATERS

How To Test The Transferablty Of An Orgnal Manuscrpt

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

Shielding Equations and Buildup Factors Explained

Quotes. Research Findings. The First Law of Thermodynamics. Introduction. Introduction. Thermodynamics Lecture Series

Lagrangian Dynamics: Virtual Work and Generalized Forces

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Comparison of Weighted Sum Fitness Functions for PSO Optimization of Wideband Medium-gain Antennas

Conversion between the vector and raster data structures using Fuzzy Geographical Entities

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

Least Squares Fitting of Data

Mooring Pattern Optimization using Genetic Algorithms

An Analysis of Dynamic Severity and Population Size

Simulation and Optimization of SCR System for Direct-injection Diesel Engine

Modelling of Hot Water Flooding

Stochastic Six-Degree-of-Freedom Flight Simulator for Passively Controlled High-Power Rockets

On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features

FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES

A Multi-Camera System on PC-Cluster for Real-time 3-D Tracking

Viscosity of Solutions of Macromolecules

Transcription:

Computatonal Modellng of Free Surface Flows: wave nteracton wth fxed and floatng bodes Dere Causon, Clve Mngham, Lng Qan Zheng Zheng Hu and Hanbn Gu Department of Computng & Mathematcs Centre for Mathematcal Modellng and Flow Analyss

CMMFA Team Photo B Wang, ZZ Hu, Y Zhang, D Causon, J Armesto, K Bennett, L Qan Bac S Hggns, N Subramanam, F Gao, J Shach and C Mngham Front

Outlne Shallow water code AMAZON-CC Surface capturng Naver Stoes code AMAZON-SC Wave overtoppng and wave energy converters Further methods development Hgh Performance Computng the GPU Future wor Research lns

Wave Overtoppng: Hazards

Wave Energy The Pelams Manchester Bobber

AMAZON two-flud solver Incompressble Naver-Stoes solver Based on an artfcal compressblty solver. Surface-capturng method Treats the free surface as a contact dscontnuty n the densty feld, allowng the use of modern hgh resoluton shoc capturng methods. Fully two phase approach whch solves n both the ar and the water flud regons. Boundary ftted va Cartesan cut cell method

Cut Cell Method overlay Cartesan grd

Cut cells wor for any doman adaptve cut cell grd for an sland

AMAZON-CC: generaton of oblque waves usng cut cells

3D ncompressble, Euler equatons wth varable densty: T I T I T I T z I y I x I T S w p w vw uw w v vw p v uv v u uw uv p u u n n n p w v u s t 0 g - 0 0 0,, where. 2 2 2 h g f B h g f F Q B F n Q s the coeffcent of artfcal compressblty Governng equatons

Convectve fluxes The convectve flux F s evaluated usng Roe s approxmate Remann solver. I 1 F 2 F I Q F I Q R LQ Q To ensure second order accuracy, MUSCL reconstructon s used Q x, y, z Q,, Q,, r where x,y,z s a pont nsde the cell,,, r s the vector from the cell centre to the pont x,y,z, Q,, s the cell centre data and s the slope lmted gradent. Q,,

Tme dscretsaton The mplct bacward Euler scheme s used together wth an artfcal tme varable to ensure a dvergence free velocty feld and a lnearsed RHS. I m V n R Q Q 1, m Q n 1, m 1 Q n 1, m I ta Q n 1, m Q t n, m V R Q n 1, m where I m dag 1 1 t 1 1 t 1 1 t 1 The resultng system s solved usng an approxmate LU factorsaton. A Jameson-type dual tme teraton s used to elmnate at each real outer teraton.

AMAZON-SC 2D smulaton ar/water Overtoppng event occurred 142 seconds nto the experment. Seaward boundary located 2m from wall. Landward boundary s transmssve. Assume: flat water for ntal condtons.

3D Cartesan Cut Cell Method Merged cell Cut cell

Computatonal doman and boundary condtons Numercal Tan Non-reflectng Free surface Non-reflectng Ar Body Wave maer Water Non-reflectng Wall Reflecton boundary the fctonal cell R: v p R R R v p 2 v gn n n 2 v n n z RO b

Results A. Fxed Body B. Movng Body C. Wave propagaton and Extreme waves

A. Fxed Body Cases 1. A vertcal cylnder n a 1 st order wave maer 2. A horzontal cylnder n a 1 st order wave maer 3. The Dam brea flow past varous bodes a rght cube, a sewed cube, a bottom mounted and truncated cylnder 4. A bottom mounted and truncated cylnder n regular waves 5. A Pelams-type Geometry n regular waves

2. Horzontal Cylnder A regular 1 st order wave mposed at the nlet: u ga cosh z hcos x cosh h t w gasnh z hsn x cosh h t Acos x t Experments and Theoretcal analyses conducted by A.G. Dxon et al. 1979 and W.J. Easson et al. 1985 as well as used the STAR CCM by J. Westphalen

2. Horzontal Cylnder Relatve vertcal force Relatve vertcal force Relatve vertcal force Case1: d= 0.0m 0.40 0.20 0.00 Theoretcal force Expermental force Present result -0.20-0.40-0.60 0.00 0.50 1.00 t/t Case 2: d= -0.075m 0.40 0.30 0.20 0.10 Theoretcal force Expermental force present result 0.00-0.10-0.20-0.30-0.40 0.00 0.50 t/t 1.00 Case 3: d= -0.15m 0.40 0.30 Theoretcal force 0.20 Expermental force 0.10 present result 0.00-0.10-0.20-0.30-0.40 0.00 0.50 1.00 t/t Vertcal force vs tme

5. Fxed Pelams-type geometry n regular waves Pelams: 0.6 0.2 0.2m Tan: 6.86 1 1m Water depth: 0.45m Grd sze: 256 39 39 Wave gauges: at front of Pelams CPU about 25 days for 8s Input velocty = Asn t A=-0.1, =2, T =1s

5. Pelams Tests Setch of the reference of three trm angles 0º, -9.6º, 9.6º A horzontal poston of front Pelams 1 2 3 4 5 6 7 bac Setch of the Pelams splt to 9 sectons Tan: 13.0m 1.0m 3.5m and the water depth:h=2.8m The front end of the cylnder s placed at 5.0m from the wave maers Input ampltude: A=0.025,0.05,0.1 & 0.15, wave perod: T=1.78s, wave maer number: =1.277, wave length: L=5.0m the angular frequency: w=3.534 and frequency: f=0.5625 the radus of cylnder: a=0.095m, the total length of Pelams=1.40m

Tme hstory of wave run up on the front of Pelams

B. Movng Body Cases 1. Oscllatng cone descrbng a vertcal Gaussan wave pacet moton blnd test valdaton 2. Water entry of varous rgd bodes a wedge; Bobber-type shape; sphere shape; cone shape at a prescrbed velocty 3. Regular wave nteracton wth a vertcal floatng bobber

1. Oscllatng Cone usng AMAZON-2D axsymmetrc code The vertcal poston of the cone followed the form of a Gaussan wave pacets Experments conducted by K. Drae et al.2008 Test case: A=50mm and m=9 The dead-rse angle s 45º Tan: 2.0m 1.6m, the water depth: h=1.02m and the ntal draught of the cone s z=0.148m Dmensons: a =0.228m, d=0.2281m, b=0.05m The tme step=0.00005 a the CPU for coarse mesh dx=dy=0.02m 15 hours the CPU for fne mesh dx=dy=0.01m 41 hours z b d

Non-dmensonal vertcal forces non-dmensonalsed vertcal force 1.2 0.8 m=9 AMAZON 001 AMAZON 002 expermental data CV-FE 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4-0.6-0.8 AMAZON Δ=0.01 AMAZON Δ=0.02 Expermental data -6-4 -2 0 2 4 6 t/t 0.4 0-0.4-0.8-6 -4-2 0 2 4 6 t/t Comparson wth expermental data K. Drae et al. 2008 and numercal result for non-dmensonal vertcal forces on cone aganst tme

2. Water entry of varous rgd bodes

Water entry of 3D rgd wedge Body moves vertcally downwards towards an ntally calm water surface at a velocty V=1.19m/s Experments conducted by Tvetnes et al.2008 Tan: 2.0m 0.4m 2.0m and the water depth: h=1.0m The dead-rse angle s 45º Unform mesh: 80 16 80=102,400 dx=dy=dz=0.025m Dmensons: breadth=0.6m, length=0.3m, heght=0.3m A tme step=0.0002s and total CPU about 3 days and 6 hours t=1s

Force N 700 600 500 Expermental data Present result 400 300 z d 200 100 0 0 0.5 1 1.5 z/d Comparson wth expermental data Tvetnes et al. 2008 and numercal result for water entry forces

Water ext of 3D rgd wedge

3. Sngle and multple floatng Bobbers n regular waves mf=1.2 g float mass mc=0.4 g counterweght mass Pulley radus=0.0175m Bobber geometry: a=0.074m, b=0.06m and c=0.07m, Sx = 4a, the water depth =0.46m Intal free surface a b Beam sea drecton Sx c Manchester Bobber Head sea drecton Radus a Beam sea drecton wave maer number : =6.63 Wave perod: T=0.78s Wave length: L=0.95m frequency: f=1.28 ampltude: A=0.013 Head sea drecton K=8.36 T=0.69s Wave length: L=0.75m f=1.44 A=0.013

3a. Free-decay for the Manchester Bobber flat-bottomed and concal-topped float a 3 Mc Mf * a3 pnz ds Mc Mf g Mf pnz ds M = 3.1g Mc Counterweght mass=1.0g float mass=2.1g 6 1 M s b U m= 1.1g f mg 3 s b

Vertcal dsplacement m Vertcal dsplacement m 0.10 0.05 Case 1: mf=2.1g, mc=1.0g Expermental data Present result a. The drop test 0.00-0.05-0.10 0.00 3.00 6.00 9.00 tme s Case 2: mf=2.1g, mc=1.2g 0.10 0.05 0.00-0.05 Expermental data Present result -0.10 0.00 3.00 6.00 9.00 tme s Comparson: expermental data T. Stallard 2008 and current results for decay rate

Vertcal dsplacement m vertcal dsplacement m Case 1: mf=2.1g, mc=1.0g b. The rse test 0.10 0.05 0.00-0.05 Expermental data -0.10 Present result -0.15 0.00 3.00 6.00 9.00 tme s Case 2: mf=2.1g, mc=1.2g 0.10 0.05 0.00-0.05-0.10 Expermental data -0.15 present result 0.00 3.00 6.00 9.00 tme s Comparson: expermental data T. Stallard 2008 and current results for decay rate

Sngle and multple hemsphercal Bobbers n regular waves mf=1.2g,mc=0.4g the water depth =0.46m The radus of a=0.075m, b=0.07m The floats separated by Sx = 4a Head sea drecton Beam sea drecton Sx Radus a Intal free surface b a Beam sea drecton wave maer number : =6.63 Wave perod: T=0.78s Wave length: L=0.95m frequency: f=1.28 ampltude: A=0.013 Head sea drecton K=8.36 T=0.69s Wave length: L=0.75m f=1.44 A=0.013

Isolaton a. Head seas drecton

Vertcal force N Vertcal velocty m/s Vertcal dsplacement m Dsplacement vs tme 0.06 0.04 0.02 Bobber 1 Isolaton 0.00-0.02-0.04 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 tme s Vertcal velocty vs tme 0.40 0.20 Bobber 1 Isolaton 0.00-0.20 Comparson: The Bobber at same poston n solaton and array -0.40 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 tme s Vertcal force vs tme 6.00 4.00 Bobber 1 2.00 Isolaton 0.00-2.00-4.00-6.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 tme s

dt/a dt/a dt/a dt/a dt/a 4.00 2.00 0.00 Exp. data Present result float 1 Dsplacement n head seas drecton -2.00-4.00 34.00 34.50 35.00 35.50 36.00 36.50 t/t 4.00 2.00 0.00-2.00 Exp. data present result float 2-4.00 34.00 34.50 35.00 35.50 36.00 36.50 t/t 4.00 2.00 0.00-2.00-4.00 Exp.data Present result float 3 34.00 34.50 35.00 35.50 36.00 36.50 t/t 4.00 2.00 Exp. data Present result float 4 4.00 2.00 Exp.data Present result float 5 0.00-2.00-4.00 34.00 34.50 35.00 35.50 36.00 36.50 t/t 0.00-2.00-4.00 34.00 34.50 35.00 35.50 36.00 36.50 t/t Comparson: expermental data T. Stallard 2008 and present results for dsplacement vs wave perod

Isolaton b. Beam seas drecton

Vertcal velocty m/s Vertcal force N Vertcal dsplacement m Dsplacement vs tme 0.04 0.03 0.02 0.01 0.00-0.01-0.02-0.03 Bobber 1 Isolaton 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 tme s Vertcal force vs tme 4.00 2.00 0.00 Bobber 1 Isolaton -2.00-4.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 tme s Comparson: The Bobber at same poston n solaton and array 0.25 0.13 0.00 Vertcal velocty vs tme Bobber 1 Isolaton -0.13-0.25 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 tme s

dt/a dt/a dt/a dt/a dt/a 4.00 2.00 Exp.data Present result float 1 Dsplacement n beam seas drecton 0.00-2.00-4.00 30.00 30.50 31.00 31.50 32.00 32.50 t/t 4.00 2.00 Exp.data Present result float 2 4.00 2.00 Exp. data present result float 4 0.00 0.00-2.00-4.00 30.00 30.50 31.00 31.50 32.00 32.50 t/t -2.00-4.00 30.00 30.50 31.00 31.50 32.00 32.50 t/t 4.00 2.00 0.00-2.00 Exp.data Present result float 3-4.00 30.00 30.50 31.00 31.50 32.00 32.50 t/t 4.00 2.00 0.00-2.00 Exp. data Present result float 5-4.00 30.00 30.50 31.00 31.50 32.00 32.50 Comparson: expermental data T. Stallard 2008 and present results for dsplacement vs wave perod t/t

C. Devces n Extreme waves 1. Wave propagaton n empty tan for comparson of the experments conducted by Gao 2003 2. Extreme wave n empty tan for comparson of the experments conducted by Nng et al. 2008 3. Extreme wave maer wth a vertcal floatng bobber

Inlet condton for New Wave extreme wave: sn cosh snh 0 0 1 1 N t t x x h h z ga w N t t x x A 1 0 0 1 cos N N t t x x A t t x x A A t t x x A A 1 0 0 2 1 0 0 0 0 2 cos2 cos cos cos cosh cosh 0 0 1 1 N t t x x h h z ga u cos2 cosh 2 cosh 2 ] cos[ cosh cosh ] cos[ cosh cosh 0 0 1 2 1 0 0 2 N N t t x x h h z D G A t t x x h h z D G A A t t x x h h z D G A A u sn 2 cosh 2 snh 2 2 ] sn[ cosh snh ] sn[ cosh snh 0 0 1 2 1 0 0 2 N N t t x x h h z D G A t t x x h h z D G A A t t x x h h z D G A A w

Surface elevaton m 0.58 present result 1st order present result 1st+2nd order Physcal Exp. 0.56 0.54 0.52 0.5 0.48 0.46 0.44 6 7 8 9 10 11 12 tme s Comparson wth expermental data by Nng et al. 2008 and present numercal results for free surface elevaton at x=3.0 m The focus pont at x =3m maxmum elevaton mnmum elevaton Physcal Exp. by Nng et al. 2008 0.5653 t=9.2s Present result 1 st order 0.5707 t =9.147s 0.4444 t=8.557s Present result 1 st + 2 nd order 0.5717 t =9.147s 0.4439 t=8.557s

Bobber Devce n Extreme Waves Input velocty under case 2 1 st +2 nd order Tan: 13.0m 0.48m 1m wth the water depth: h=0.5m The ntal poston of the apex of Bobber n the tan s 3.0m=the focus pont 0.24m 0.35m The radus of the hemsphercal base: a=0.15m, the heght of cylndrcal secton: b=0.15m and non-unform mesh: 425 22 40=374,000 and the refned regons=0.02m The mass of the Bobber = the volume of the hemsphercal m=ρ2 a3/3=7.068g,whch s a lttle larger than the ntal mmersed volume Wave gauges: 3.48m,3.68m and the front sde of the Bobber A tme step=0.0003s and CPU near 25 days up to t=12s b Intal free surface a

Heave force N Heave force N Surface elevaton m Surface elevaton m Case 2: Case 3: 0.60 0.55 0.50 Case 2 0.65 0.60 0.55 0.50 Case 3 0.45 0.40 0.00 2.00 4.00 6.00 8.00 10.00 12.00 tme s 0.45 0.40 0.00 4.00 8.00 12.00 tme s Tme hstory of wave run-up on the front sde of the Bobber 20.00 10.00 0.00-10.00-20.00 Case 2 0.00 4.00 8.00 12.00 tme s 30.00 20.00 10.00 0.00-10.00-20.00-30.00 Case 3 0.00 4.00 8.00 12.00 tme s Tme hstory of the heave force on the Bobber

Vertcal dsplacement m Vertcal dsplacement m Vertcal velocty m/s Vertcal velocty m/s Case 2: Case 3: 0.40 0.60 0.20 Case 2 0.30 Case 3 0.00-0.20-0.40 0.00 4.00 8.00 12.00 tme s 0.00-0.30-0.60 0.00 4.00 8.00 12.00 tme s Tme hstory of the vertcal velocty of the Bobber 0.08 0.04 0.00-0.04-0.08 Case 2 0.00 4.00 8.00 12.00 tme s 0.10 0.05 0.00-0.05-0.10 Case 3 0.00 4.00 8.00 12.00 tme s Tme hstory of the dsplacement of the Bobber

Case 2: Case 3: The Manchester Bobber

Improved Resoluton of Free Surface Ln et. al. Two step proecton method Fnte dfference Fast marchng partcle level set Partal cell + LRS local relatve statonary method Non-unform structured rectangular mesh

Volent Sloshng: Model Requrements Fnte Volume Invscd Compressble Flow Change of State Thermodynamcs Ar/Water Accurate model of Free Surface

Compressble Flow Equatons Fnte Volume Euler Equatons

1D Shoc Tube Problem wth Cavtaton Intal Condtons LEFT STATE ρ = 995.5450 g/m3 u = -10 m/s p = 0.9 bar T = 303.15 K e = 126.01699 J/g K RIGHT STATE ρ = 995.5450 g/m3 u = 10 m/s p = 0.9 bar T = 303.15 K e = 126.01699 J/g K

1D Shoc Tube wth Cavtaton: Flow solver wth no change of state thermodynamcs 1 Δt

1D Shoc Tube wth Cavtaton: Flow solver wth no change of state thermodynamcs 1 Δt

1D Shoc Tube wth Cavtaton: Flow solver wth no change of state thermodynamcs 1 Δt

Physcs of Aerated Water

Change of State Thermodynamcs Equaton of State for Water Tat Equaton of State for Ar Ideal Gas

Change of State Thermodynamcs Equaton of State for Saturated Two Phase Mxture

Oldenbourg Polynomals Propertes of Mxtures

Modellng Change of State Thermodynamcs For p: replace EoS by Call Thermoρ, e, p, c, α Wthn SUBROUTINE Thermo: Enter wth ρ, e Solve saturated mxture equaton for T usng Secant Method Calculate ρsat_lqud and ρsat_vapour If ρ > ρsat_lqud then use Tat EoS for water Ifρ < ρsat_vapour then use Ideal gas EoS Else use saturated mxture relatons wth p = psat Calculate mxture speed of sound, c Calculate water vapour tracton, α Return wth p, c and α

1D Shoc Tube wth Cavtaton: Flow solver wth change of state thermodynamcs 10 Δt

1D Shoc Tube wth Cavtaton: Flow solver wth change of state thermodynamcs 10 Δt

1D Shoc Tube wth Cavtaton: Flow solver wth change of state thermodynamcs 120Δt

1D Shoc Tube wth Cavtaton: Flow solver wth change of state thermodynamcs 120Δt

1D Shoc Tube wth Cavtaton: Flow solver wth change of state thermodynamcs 120Δt

Schmdt et. al. Results ECCOMAS CFD 2006

Further Mult-component Test Problems

The Sugmura Problem: Mult-component RCM

Hgh Performance Computng Mult-core hgh spec des-top PC NEC SX-8 vector supercomputer UK Natonal Supercomputng facltes Graphcal Processor Unt GPU NVIDIA Tesla C-870 wth 2 GPU boards NVIDIA CUDA software development t SDK Rac of NVIDIA Tesla S1070 systems url: http://www.nvda.com/obect/cuda_home.html

Executon tme n seconds for 20,000 tme steps 32x32 64x64 128x128 RADIX 36.36 53.97 110.46 TILED 40 142.41 1140.96 UNTILED 41.52 164.92 1895.97 SX8 219.03 1746.27 Three problem szes wth number of real partcles used beng 32x32, 6x64, 128x128 Code : SX8: means executed on 1 processor of the NEC SX8, all others executed on one board of the NVIDIA Tesla C-870 GPU worstaton.

2D Dambrea wth Obstacle usng a Smoothed Partcle Hydrodynamcs Code

Conclusons 2D shallow water and fully 3D cut cell free surface capturng codes have been developed for the smulaton of volent wave loadngs on fxed and floatng bodes such as seawalls and wave energy devces. A number of test cases have been used to valdate the codes. The underlyng method s generc and can be appled to any applcaton area nvolvng free surfaces and statonary/movng bodes ncludng complant bodes e.g. LPG carrer n steep waves.

Further Wor and Issues Full flud-structure-nteracton capablty wth wave loads and derved motons under regular and extreme wave condtons ncludng movng cargo and resolve volent sloshng ssues n both physcs and numercs. Extensons of our wor on wave energy converters, greenwater overtoppng of fxed and floatng vessels and scour. More use of GPUs.

Further Detals and Publcaton References http://www.docm.mmu.ac.u/cmmfa/ d.m.causon@mmu.ac.u