Zeitschrift Kunststofftechnik Journal of Plastics Technology
|
|
|
- Rafe Charles
- 10 years ago
- Views:
Transcription
1 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. Zetschft Kststofftechk Joal of Plastcs Techolog Pof. D. Tm A. Osswald, D. Iva Lóez-Gómez, Polme Egeeg Cete, Uvest of Wscos, Madso, USA D. Iva Lóez-Gómez, Oma A. Estada, Plastc ad Rbbe Isttte ICIPC, Medell, Colmba egeecht/haded : ageomme/acceted: Modelg ad Smlato of Polme Pocessg sg the Radal Fctos Method Ths ae descbes the alcato of the Radal Fctos Method to model ad smlate olme ocessg. The coled sstem of eeg ad moto eqatos fo lama two-dmesoal flows stead state of comessble o-ewtoa flds s cosdeed. The eslts delveed b RFM ae comaed wth mecal eslts of othe methods, ad wth aaltcal soltos based o smlfed mathematcal models. The cases eseted ae: o-sothemal esse flow thogh a slt fo o- ewtoa flds ad o-sothemal owe law flow the caledeg ocess. Ato/atho Pof. D. Tm A. Osswald Polme Egeeg Cete 1513 Uvest Avee Uvest of Wscos-Madso Madso, WI D. Iva Lóez-Gómez, Oma A. Estada Plastc ad Rbbe Isttte ICIPC Ca 495 S-19 Medell, Colmba E-Mal-Adesse: [email protected] Websete: Tel.: E-Mal-Adesse: [email protected] Websete: Tel.: Fa: Wsseschaftlche Abetskes de Uvestäts- Pofessoe de Kststofftechk achvete, ezesete Iteetzetschft des Wsseschaftlche Abetskeses Kststofftechk WAK achval, evewed ole Joal of the Scetfc Allace of Polme Techolog Cal Hase Velag Zetschft Kststofftechk/Joal of Plastcs Techolog 3 7
2 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. MODELIG AD SIMULATIO OF POLYMER PROCESSIG USIG THE RADIAL FUCTIOS METHOD Ivá Lóez-Gómez a b a, b, Oma Estada a, Tm Osswald b Plastc ad Rbbe Isttte ICIPC, Medell, Colomba. Polme Egeeg Cete, Uvest of Wscos - Madso, USA. Ths ae descbes the alcato of the Radal Fctos Method to model ad smlate olme ocessg. The coled sstem of eeg ad moto eqatos fo lama two-dmesoal flows stead state of comessble o-ewtoa flds s cosdeed. The eslts delveed b RFM ae comaed wth mecal eslts of othe methods, ad wth aaltcal soltos based o smlfed mathematcal models. The cases eseted ae: osothemal esse flow thogh a slt fo o-ewtoa flds ad osothemal owe law flow the caledeg ocess. 1 ITRODUCTIO Mathematcal modelg attemts to mmc the actal ocess wth eqatos b meas of mateal, eeg ad mometm balaces, alog wth a sees of assmtos that smlf the model. The moe comle the mathematcal model, the moe accatel t eesets the actal solto. Evetall, the comlet s so hgh that we mst esot to mecal smlato to model the ocess. Fo the atcla case of olme flows, the modelg eslts hghl olea atal dffeetal eqatos de to the o-ewtoa ad vscoelastc behavo of olmes. Addtoall, ma ocesses, eeg ad moto eqatos ae stogl coled, de to hgh Bkma B ad Péclet P é mbes, obtag models that ae dffclt to solve. mecal soltos fo the atal dffeetal eqatos that descbe olme flows have bee stded b meas of fo wdel kow methods: Fte Dffeeces FDM, Fte Volmes FVM, Fte Elemets FEM ad Boda Elemets BEM. Howeve, these methods have ot bee comletel satsfacto to solve olme ocessg models, eqg the eloato of othe alteatves. FEM, FDM ad FVM ae methods that eqe the geeato of meshes o fom gds. These meshes ae comosed of odes ad elemets, eqg a 6 1
3 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. comle fomlato to descbe the coectve elato betwee odes ad the heach betwee the elemets [4]. Those methods ae atclal lmted fo solvg oblems wth domas that sffe hgh defomatos, becase the meshes ad gds devate accetabl the eslts [8]. Hgh defomato domas ae commol fod olme ocessg, sch as that ecoteed tw scew etso. The Boda Elemet Method BEM s a owefl tool fo the solto of atal dffeetal eqatos scece ad egeeg. Oe of the advatages of ths method s the edcto of the sace dmesos b oe t fo homogeeos oblems. Howeve, the beefts of sg BEM dmsh fo olea o o-homogeeos oblems sch as the smlato of o- ewtoa flds, becase fomato of the doma s eqed to solve the volme tegals [19, 18] comlcatg the e-ocess. Whe dealg wth hghl o-lea behavo of olmes, the alcato of BEM s lmted. I the last 15 eas, meshless methods based o adal bass fctos have attacted atteto to solve PDEs. I the begg, the adal bass fctos wee develoed to teolate mltvaate data ad mltdmesoal oblems. I 199, Kasa [1] oosed the se of RBFs fo the solto of atal dffeetal eqatos. A smmetcal coeffcets mat s obtaed whe ths method s aled. The comtatoal mlemetato of Kasa s method s athe staghtfowad de to the smle stcte of the RBF fomlato, makg t sefl ot ol to mathematcas, bt to othe ses as well [5]. Ma- De ad Tae [17] sed the techqe to model o-ewtoa fld flow o shea thg ad vscoelastc lqds. The ma advatage of the adal fctos method RFM s that t s a techqe that does ot eed doma o boda meshes as eqed wth FEM ad BEM, o homogeeos gd ots as FDM, to solve atal dffeetal eqatos. Essetall, t s a meshless techqe based o collocato methods. The method has ove to be ve accate comaed to othe mecal techqes, eve fo a small mbe of collocato ots [1]. The se of collocato methods wth adal bass fctos fo the solto of atal dffeetal eqatos has bee stded b ma athos sch as Kasa [1, 14], Che [3], Fasshae [7, 8, 9], Fake [1], Powe [1], Schaback [3] ad Wedlad [5]. KASA S USYMMETRIC METHOD Collocato techqes ae based o the fact that a feld vaable a cotos sace ca be aomated wth lea teolato coeffcets ad bass fctos evalated o dscete ots skled wth the doma. I ths wa, f some vales of the feld ae kow, a vale at a ot of the doma ca be estmated [5]. The bass fctos of Kasa s method ae the adal bass fctos RBF [, 3, 1, 13]. The fomlato s: 6
4 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. F, = α 1 whee s the dstace betwee the odes ad, eesets the mbe of collocato ots ad s the adal bass fcto. If we al a dffeetal oeato L o eq. 1 we ca teolate the solto fo the oeated feld: { } α L{ F, } = L I ths wa, oeated felds ca be teolated allowg the solto of atal dffeetal eqatos PDEs, ad hece oblems that ae modeled b meas of PDEs.[7, 8,, 5, 6, 16]. Thee ae ma tes of adal bass fctos of global sot that ca be sed, sch as Polhamoc Sle SP, Polhamoc Th - Plate Sle TPS, Mltqadcs MQ, Wedlads, Gassa ad othes [, 3, ]. Fake [11] evalated some adal bass fctos fom the teolato accac ot of vew, fdg the best eslts sg the Polhamoc Th - Plate Sle TPS. TPS s gve b: a = l 3 3 RFM I POLYMER PROCESSIG Whe solvg the eeg ad moto eqatos that defe a olme flow, fo dffeet ma state vaables mst be smltaeosl solved fo: temeate, esse ad the two comoets of veloct, as show esectvel 4, 5, 6 ad 7. T = = T α 4 = = β 5 λ 6 ξ 7 Addtoall, the adal bass fctos ca be sed to estmate the devatves of oetes that ae a fcto of the ma vaables. I ths atcla case, the 6 3
5 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. vscost feld deeds o the temeate ad the defomato ate, theefoe, we ca wte:, = δ 8 δ δ I the above eqatos, v, T ad ae the adal bass fctos to teolate kow felds, that ma ot be the same wth the am of bette accac. Ths deeds o the dffeetal oeatos volved the goveg eqatos [6]. The coeffcets α, β, λ, ξ ad δ ae the teolato coeffcets fo temeate, esse, -comoet of veloct, -comoet of veloct ad vscost, esectvel. Fall, s the mbe of ots o the boda ad wth the doma ad s the mbe of ots wth the doma ad o the Dchlet esse bodaes. 3.1 Eeg Eqato A geeal stead-state eeg balace fo olme flows -D domas cldg heat geeated b vscos dssato ad the tasot of eeg b covecto s eseted 11 ad ts fomlato tems of Radal Bass Fctos ad teolato coeffcets eq 1. ρc T T 4 6 = k T γ T T ρc k T α = γ 1 The boda codtos mst also be wtte RFM fom. Dchlet ad ema boda codtos ae cosdeed. The Dchlet boda codto s descbed b eq.13 ad ts eesetato RFM b eq. 14. The ema boda codto s descbed b eq.15 ad ts eesetato RFM b eq. 16, whee s the t vecto omal to the boda the vct of ode. T Γ D = Ta ; 13
6 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 6 5 a T = T α 14 q T T k Γ ; = 15 q k T = α Cott ad Moto Eqatos I a smla fasho as wth the eeg eqato, we ca also aomate the cott eqato ad the eqato of moto sg adal bass fctos. The cott eqato fo a comessble fld eseted eq. 17 ca be aomated sg the RFM b e-wtg t as eq. 18. = 17 = ξ λ 18 Fo the eqato of moto, bod foces ad the tasot of mometm b covecto ae eglected, de to the low Reolds mbe of olme flows. The vscost s cosdeed as a fcto of ate of defomato ad temeate. The ad comoets of the moto eqato ae eseted eqs 19 ad ad the eesetato RBFs eqs 1 ad. = 19 = = β ξ λ ρ 1 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele.
7 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 6 6 = β λ ξ ρ Fo the oblems dscssed ths wok, Dchlet boda codtos of veloct ad esse ae cosdeed. The Dchlet veloct boda codtos ae gve b eqs. 3 ad 4 ad the ae aomated sg RBFs eqs. 5 ad 6 D a Γ ; = 3 D a Γ ; = 4 a = λ 5 a = ξ 6 The esse Dchlet boda codto, fo a fll develoed veloct ofle, ca be wtte as D a Γ ; = 7 D Γ ; = 8 D Γ ; = 9 I tems of RBF the eesetatos ae: a = β 3 = λ 31 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele.
8 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. ξ = 3 The eeg ad moto eqatos have olea tems. The eesetato b meas of RBF, as eqatos 1, 18, 1 ad, allows the leazato sch a wa that the esltg sstem of eqatos ca be solved sg a method fo the solto of lea sstems fo each ste a teatve ocess. I o case, the sstem coveges b meas of a Jacob teato o sg the ewto-rhaso method. Althogh the Jacob teato method eqes a hghe mbe of teatos to covege, the comtg tme s less tha the eqed fo the ewto-rhaso method, de to the fact that the latte seds hgh comtatoal esoces bldg the Jacoba mat. 3.3 Rheologcal Models The ewtoa, eq.33, Powe Law, eq.34 ad Caea, eq.35 models ae sed to eeset the fld vscost. = a T 33 = a m 1 T γ 34 a A = T 1 Ba c Tγ 35 The Ahes model s sed to calclate the temeate shft facto: a T = e U 1 1 R T T ef 36 The magtde of the defomato ate s calclated sg the secod vaat of the defomato ate teso: 1 1 γ = γ : γ = II
9 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. 4 APPLICATIOS I POLYMER PROCESSIG 4.1 o-sothemal esse flow betwee aallel lates of ewtoa ad o-ewtoa flds I ma flows olme ocessg, vscos dssato s sgfcat B > 1, wth a esltg temeate se that affects the flow thogh a temeate deedet vscost. To smlate ths heomeo, the coled moto ad eeg eqatos of a slt flow wee solved, cosdeg the heat geeato fo vscos dssato wth a doma of sze.15m.15m. I Fg.1 the geomet ad the locato of the coodate sstem ae llstated. Fo the smlato, two dffeet tes of ode dstbtos wee sed: a tagla dstbto ad a adom dstbto, both wth 74 odes, as dected Fg.. The adom dstbto s actall a sem-adom dstbto becase a mmal dstace betwee odes s mosed ode to avod lea deedeces betwee the eqatos of ve close odes, ad to gaatee a good dstbto ove the whole doma. Fo ths atcla case, the mmm 4 dstace betwee odes s.8 1 m. Fge 1: Geomet of the esse flow betwee aallel lates T h T L The boda codtos fo the mometm balace ae: v, = m/s 38 v,.15 = m/s 39, = = Pa 4.15, = L = 15 Pa 41 Ad fo the eeg balace: T, = T = C 4 T, = T = C 43 h 8 6 L h
10 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. [m].1.5 T, T L, = = a. Aaged Dstbto 74 odes [m] [m] b. Radom Dstbto 74 odes [m] Fge : Dstbto of odes fo esse flow betwee aallel lates The solto was obtaed sg a secod-ode TPS to teolate the esse ad temeate felds, ad a thd-ode TPS to teolate the veloct feld. To comae the eslts, a solto sg the FDM s fomlated. The FDM solto s cosdeed as the efeece, becase t ses a oe-dmesoal fomlato ad a hgh mbe of odes to aoach the solto 1 odes. The FDM solto s fomlated wth the followg eqatos: P v v = 44 L T k γ = 45 The fld has a dest ρ = 7 kg/m 3, a secfc heat C = 1 J/kg-K ad a themal codctvt k =.8 W/m-K. Fo the heolog, fo dffeet cases ae cosdeed: CASE 1: = µ. The vale of the vscost s assmed eqal to a costat, ths case = Pa-s. CASE : = f T. The vscost has a ewtoa behavo ad the temeate deedece s descbed b the Ahes eqato, eq.36, wth U = J/mol, µ = Pa-s ad T ef = 493 K. CASE 3: = f γ The vscost esets o-ewtoa behavo, whch s eeseted b meas of the Caea model, eq.35, wth: A = Pa-s, B =.77 s ad c = 1 =.661.
11 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. CASE 4: = f γ, T. The vscost deeds o temeate ad ate of defomato. The shea thg behavo s modeled b meas of the Caea eqato ad the temeate shft facto s estmated sg the Ahes model. The aametes ae the same as cases ad 3. The eslts of the veloct felds ad the temeate felds fo the dffeet cases ae eseted Fgs. 3 ad 4 The soltos of FDM ad RFM ae ve smla, dcatg that RFM gves a coect aoach to the solto of osothemal flow, obtag the bggest dffeece whe the vscost s a fcto of both temeate ad ate of defomato. The aaged ad adom dstbtos delveed good eslts, dcatg that the adom dstbto s feasble as log as a mmm dstace betwee odes s ket. [m] RFM adom RFM aaged FDM solto =ft =µ v[m/s] Fge 3: Veloct feld fo a o-sothemal esse flow betwee aallel lates fo ewtoa ad o-ewtoa flds [m] RFM adom RFM aaged FDM solto =ft =µ 1 6 =fγ =fγ =ft,γ =fγ,t Temeate [ C] Fge 4: Temeate feld fo a o-sothemal esse flow betwee aallel lates fo ewtoa ad o-ewtoa flds
12 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. 4. Caledeg ocess fo ewtoa ad shea thg olme melts I the caledeg ocess, vaables sch as the fal thckess of the sheet ad the foce eeted b the melt o the olls ae motat to calclate. Soltos sg lbcato aomato have bee oosed wth good eslts fo sothemal ewtoa ad owe-law flows. Howeve, fo moe accate soltos ad ode to cosde vscos heatg, mecal aoaches ae eqed. Ths oblem s a ecellet eamle of alcato of RFM olme ocessg comaed wth tadtoal mecal methods. The comlet of the geomet makes a Fte Dffeece mlemetato dffclt. The hgh ato betwee the bak sze o fed-sheet thckess ad the betwee olls makes the geeato of a accetable FEM dffclt. The covectve tasot of eeg dg caledeg eqes wdg techqes fo the solto sg FEM ad FDM. The o-lea behavo of vscost makes the mlemetato of a boda elemets solto dffclt sce t eqes a mesh. RFM s a good alteatve becase t does ot eqe meshes o wdg techqes ad t woks well wth hghl o-lea oblems. h f =h, 5h,1h o 5h Smlated doma =4.77 m =4.77 m R=3mm h =.mm Fge 5: Schematc dagam of a caledeg ocess fed wth a fte sheet. To comae wth lbcato aomato, the same dmesos ad ocess codtos sed b Agassat et al. [1], schematcall dected Fg. 5 ae cosdeed. The oblem was fst solved fo a ewtoa fld µ = 1 Pa-s wth bak o fed-sheet-thckess to atos, h f /h, of, 5, 1 ad 5. The collocato ots fo h f / h = 1 ae show Fg. 6. The boda codtos ae gve b the veloct o the oll sfaces, a zeo esse at the etace ad et sfaces as well as a zeo omal stess at the etace sface gve b / =. Ths boda codto s mosed b settg the veloct of the fst two collocato ots of each ow eqal to each othe. Fthemoe, ths oblem mst be maall teated, sce the fal sheet thckess s ot kow a o. Hece, a sheet seaato ad thckess s assmed fo the fst solto. Ths eslts a esse feld wth ealstc oscllatos close to the ed of the sheet dcatg that the gessed sheet seaato ot does ot 6 11 h 1
13 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. cocde wth the actal oe. Afte the fst solto, the seaato ot s moved lookg fo the edcto of the oscllato. Afte some teatos the coect sheet thckess ad seaato ot ae acheved, alog wth a smooth esse dstbto. mm mm Fge 6: Geomet ad collocato ots fo the caledeg oblem wth a bak to ato of mm mm mm Fge 7: RFM solto of the veloct feld dg caledeg of a ewtoa melt fo a bak to ato of
14 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. Fg. 7 esets a samle veloct feld fo the ewtoa case wth a bak-to- ato of 1. As ca be see, the veloctes look lasble ad eset a ecclato atte that s edcted b lbcato aomato model ad t s ageemet wth eemetal wok doe the ast [4]. Fg. 8 esets the esse dstbto alog the -as fo a ewtoa solto sg seveal bak-to- atos. The soltos ae eseted wth the edctos sg McKelve s lbcato aomato model. Both soltos ae good ageemet. Pesse MPa RFM solto Hdodamc lbcato aomato h f /h = mm Fge 8: Comaso of lbcato aomato solto ad RFM solto of the esse ofles betwee the olls fo seveal vales of bak, o fed sheet, to ato fo ewtoa vscost model. The same collocato ots ad geomet fo a bak-to- ato, h f /h, of 5 wee sed to solve fo the veloct felds ad esse dstbtos fo o- ewtoa shea thg olme melts. A owe law model wth a cosstec de, m, of 1 4 Pa-s ad seveal owe law dces,, of.7,.5 ad.3 wee sed. The esse dstbto alog the -as fo the shea thg melt s eseted Fg. 9 fo vaos owe law dces ad Fg. 1 fo a owe law de of.3. Aga, the RFM eslts wee comaed to soltos sg lbcato aomato. As ca be see, the ageemet s ecellet. The FEM eslts eseted b Agassat [1] ae also ageemet wth the RFM. The FEM eslts edct a slghtl hghe esse tha the lbcato aomato edcto, wheeas the RFM esse edctos ae slghtl lowe. 6 13
15 Pesse MPa Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. Pesse MPa RFM solto Hdodamc lbcato aomato. =.7 =.5 = mm 1 1 Fge 9: Comaso of lbcato aomato solto ad RFM solto of the esse ofles betwee the olls fo a bak-to- ato of 1, ad seveal owe law dces sg owe law vscost model RFM Solto Hdodamc Lbcato Aomato mm 1 1 Fge 1: Comaso of lbcato aomato solto ad RFM solto of the esse ofle betwee the olls sg a owe law vscost model wth a owe law de, of.3. Fall, the o-sothemal case s cosdeed. The same collocato ots ad geomet fo a bak-to- ato, h f /h, of 5 wee sed to solve fo veloct, temeate ad esse dstbtos fo o-ewtoa shea thg olme melts, cldg vscos dssato ad cosdeg the vscost as a fcto of temeate. A owe law model wth a cosstec de, m, of 1 4 Pa-s ad a owe law de,, of.5 was sed. The temeatevscost deedece was modeled sg Ahes eqato, eq.36 wth U = 4 J/mol ad Tef = 473 K. The covectve tem as well as the heat geeated b vscos dssato ae cosdeed fo the solto of the eeg eqato. Fg. 13 dects the temeate feld delveed b RFM fo the osothemal case. De to vscos heatg, the temeate ceases 5.5K the 14 6
16 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. ego of the. The cease of heat edces the vscost magtde ad theefoe, deceases the esse. Fge 14 esets a comaso betwee the o-sothemal ad sothemal soltos fo esse dstbto alog the -as. The effect of vscos heatg o the solto ca ot be eeseted sg the lbcato aomato fo cases whee the vscost s cosdeed as a fcto of temeate. mm mm Fge 11: RFM ate of defomato ofle 1/s ts betwee the olls sg a owe law vscost model wth a owe law de,, of.5. mm mm /s Pa s 6 Fge 1: RFM vscost ofle Pa-s ts betwee the olls sg a owe law vscost model wth a owe law de,, of
17 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. Y mm X mm Fge 13: RFM temeate ofle betwee the olls sg a owe law vscost model wth a owe law de,, of.5. cosdeg vscos heatg. Pesse MPa RFM sothemal solto RFM o sothemal solto mm Fge 14: Comaso of o-sothemal ad sothemal RFM soltos of the esse ofle betwee the olls sg a owe law vscost model wth a owe law de of o C
18 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. 5 COCLUSIOS The eslts of ths wok allow s to cosde RFM as a omsg techqe to solve olme ocessg oblems. The Radal Fctos Method ca solve adeqatel o-sothemal, o-ewtoa flows, cldg the heomeo of heatg b vscos dssato ad the covectve tasot of eeg. Those chaactestcs ae commo olmec flows whch volve hghl o-lea behavo ad stog deedece betwee eeg ad mometm balaces. RFM has the advatage of beg elatvel eas to mlemet, becase t allows fomlatg the goveg eqatos tems of the mtve vaables makg the comtatoal model moe destadable. It does ot eqe the geeato of meshes o gds ad ca se adom dstbto of odes as log as a mmm dstace betwee odes s ket. The method has ove to be stable fo hghl o-lea oblems. The mlemetato s the same deedetl of the mbe of dmesos of the oblem, de to the fact that t s ol based o the dstace betwee odes. The teolato ad etaolato of felds ca be doe wth the same coeffcets delveed b the solto of the PDEs, eldg ease ost-ocessg stes. The bggest dsadvatage of the method s that t solves PDEs wth fll smmetc matces eqg hgh comtg esoces. Seveal alteatves have bee develoed to move ths lmtato, sch as the smmetc fomlato [, 8, 16], the se of sbdomas [7], the se of comact sot adal bass fctos [3] ad the se of secal dstbto of odes that geeates matces that ae eas to smlf [15]. 6 Refeeces [1] Agassat, J. Polme Pocessg: Pcles ad Modelg. Hase Pblshes, ew Yok - USA, 1991, [] Bhma, M. RBFs. I Acta meca, Cambdge Uvest Pess, [3] Che, C., Ho, C., ad Schaback, R. [4] Dg, H., Sh, C., Yeo, K., ad X, D. Scetfc Comtg wth RBFs. Uvest of Las Vegas - evada, 3. mecal comtato of thee-dmesoal Icomessble vscos flows the mtve vaable fom b local mltqadc dffeetal qadate method. Comte Methods Aled Mechacs ad Eg Sbmtted
19 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. [5] Estada, O., ad Lóez, I. [6] Estada, O., Lóez, I., ad Roldá, C. Collocato method solto wth RBFs of the D eeg eqato, ATEC 5. SPE - Socet of Plastcs Egees. Estdo Eemetal Del Comotameto de Algas Fcoes de Base Radal RBF Paa la Solcó de Ecacoes Dfeecales Pacales, Poas de Los Poblemas de Feómeos de Tasote, Emleado Fcoes de Peba. Go de Ivestgacó Alcada de Polímeos - ICIPC, Medellí - Colomba, 5. [7] Fasshae, G. Solvg atal dffeetal eqatos b collocato wth RBFs. I Sface Fttg ad Mltesolto Methods ashvlle - USA., 1996, A.L. Mehate, C. Rabt, ad L.L. Schmake, Edtos. [8] Fasshae, G Solvg dffeetal eqatos wth RBFs: Mltlevel methods ad smoothg. Advaces Comtatoal Mathematcs , [9] Fasshae, G ewto teato wth mltqadcs fo the solto of olea PDEs. Comte ad Mathematcs wth Alcatos 43, [1] Fake, C., ad Schaback, R. Solvg atal dffeetal eqatos b collocato sg RBFs. Aled Mathematcs ad Comtato , [11] Fake, J. Scatteed data teolato: Test of some methods. Mathematcs of Comtato , 181. [1] Kasa, E. Mltqadcs - a scatteed data aomato scheme wth alcato to comtatoal fld damcs -. Comtes ad Mathematcs wth Alcatos , [13] Kasa, E., ad Calso, R. RBFs: A class of g-fee, scatteed data aomatos. Comtatoal Fld Damcs Joal ,
20 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. [14] Kasa, E., Powe, H., Fasshae,G., ad Lg, L. [15] Kaageoghs, A., Che, C., ad Smls, Y. [16] Lasso, E., ad Fobeg, B. [17] Ma-D,., ad Tae, R. [18] Ma-D,., ad Ta- Cog,. [19] Ma-D,., ad Ta- Cog, T. [] Moat, C., ad Beatso, R. [1] Powe, H., ad Baaco, V. A volmetc tegal RBF method fo tme-deedet atal dffeetal eqatos.. fomlato. Eg. Aalss wth Boda Elemets 81 4, A Mat Decomosto Algothm. PART I: Aomato of Fctos ad the Devatves. Uvest of Cs ad Deatmet of Mathematcal Sceces. Uvest of evada., Las Vegas - evada - USA ad Cs - Geca., 4. A mecal std of some RBFs based solto methods fo elltcs PDEs. Comtg o-ewtoa fld flow wth adal bass fcto etwoks. Iteatoal Joal of mecal Methods Flds 48 5, A effcet dect RBF-based method fo mecal solto of PDEs. mecal Methods fo Patal Dffeetal Eqatos 1 5, A effectve RBF-boda tegal aoach fo the aalss of atal covecto flow. Joal mecal Methods Flds 46 4, RBF Collocato. Deatmet of Mathematcs ad Statstcs. Uvest of Cateb.: Cateb - ew Zeelad,. Comaso aalss betwee smmetc ad smmetc RBF collocato methods fo the mecal solto of atal dffeetal eqatos. Comtes ad Mathematcs wth Alcatos 43, [] Sale, B. Mesh - fee comtatoal fld damcs: A RBF collocato method aoach. I XXI U.I.T. atoal Cofeece o Heat Tasfe Ude, Itala, 3, Uoe Italaa Temofldodamca. 6 19
21 Ivá Lóez / Modelg ad Smlato of Polme Pocessg sg RFM 7 Cal Hase Velag, Müche cht z Vewedg Itaet- d Iteet-Agebote sowe elektosche Vetele. [3] Schaback, R., ad Wedlad, H. Boda Elemet Techolog XIII. C.A.B. C. S. Che, ad D. W. Pee eds., Edto., 1999, ch. Usg comactl soted RBFs to solve atal dffeetal eqatos, [4] Uküe, W. Betag z Emttlg des Dckvelafes d de Fleβvogäge m Walzesalt be de Kaledeveabetg vo PVC-hat z Fole. PhD thess, RWTH-Aache, 197. [5] Wedlad, H. Comtatoal Asects of RBF Aomato, Tocs Mltvaate Aomato ad Iteolato. K. Jette ad othes, 5. [6] Zeokat, M., Ddel, K., ad Chaaf, A. [7] Zeokat, M., Powe, H., ad Che, C. A [8] Zhag, X., L, X., Sog, K., ad L, M. Elct ad mlct meshless methods fo lea advecto dffso - te atal dffeetal eqato. Ite. Joal fo mecal Methods Eg. 48, A mecal method fo heat tasfe oblems sg collocato ad RBFs. Joal fo mecal Methods Eg , Least-sqaes collocato meshless method. Ite. Joal mecal Methods Eg. 51 1, Ke wods: Radal bass fctos, smmetc collocato, olea flow oblems, vscos dssato, o-ewtoa flds, Radal Fctos Method, Polme Pocessg. Cotact: Atho: Tm A. Osswald. Polme Egeg Cete, Uvest of Wscos- Madso, Madso-USA [email protected]. 6
Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)
Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of
Mesh Free Parallel Programming for Electromagnetic Problems
Joal of Mcowaves Optoelectocs ad lectomagetc Applcatos ol. No. Je 9 S Mes Fee Paallel Pogammg fo lectomagetc Poblems Aleade R. Foseca Mgel L. Medes Reato C. Mesqta lso J. Slva Depatameto de geaa létca
SIMULATION OF THE FLOW AND ACOUSTIC FIELD OF A FAN
Cofeece o Modellg Flud Flow (CMFF 9) The 14 th Iteatoal Cofeece o Flud Flow Techologes Budapest, Hugay, Septembe 9-1, 9 SIMULATION OF THE FLOW AND ACOUSTIC FIELD OF A FAN Q Wag 1, Mchael Hess, Bethold
Comparison of Particle Methods : SPH and MPS
3 th Iteatoal LS-DYNA Uses Cofeece Sesso: Fld Stcte Iteacto Compaso of Patcle Methods : SPH ad MPS Sao Toka Toka Smlato Reseach Copoato Abstact SPH (Smoothed Patcle Hydodyamcs) mplemeted LS-DYNA has bee
CSSE463: Image Recognition Day 27
CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)
A Markov Chain Grey Forecasting Model: A Case Study of Energy Demand of Industry Sector in Iran
0 3d Iteatoal Cofeece o Ifomato ad Facal Egeeg IED vol. (0) (0) IACSIT ess, Sgapoe A Makov Cha Gey Foecastg Model: A Case Study of Eegy Demad of Idusty Secto Ia A. Kazem +, M. Modaes, M.. Mehega, N. Neshat
Generalized Difference Sequence Space On Seminormed Space By Orlicz Function
Ieaoa Joa of Scece ad Eee Reeach IJSER Vo Ie Decembe -4 5687 568X Geeazed Dffeece Seece Sace O Semomed Sace B Ocz Fco A.Sahaaa Aa ofeo G Ie of TechooCombaoeIda. Abac I h aewe defe he eece ace o emomed
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Randomized Load Balancing by Joining and Splitting Bins
Radomzed Load Baacg by Jog ad Spttg Bs James Aspes Ytog Y 1 Itoducto Cosde the foowg oad baacg sceao: a ceta amout of wo oad s dstbuted amog a set of maches that may chage ove tme as maches o ad eave the
Wind Generator Modelling for Fault Ride- Through Studies
Wd Geeato Modellg fo Falt Rde- Thogh Stde D.-Ig. Mak Pölle Wd Geeato Modellg Geeal Cocept Sema: Wd Powe Itegato, Melboe/Atala, 2007 1 Wd Geeato Modellg Geeal Cocept Ma fctoal block of a wd geeato: Geeato
EFFICIENT GENERATION OF CFD-BASED LOADS FOR THE FEM-ANALYSIS OF SHIP STRUCTURES
EFFICIENT GENERATION OF CFD-BASED LOADS FOR THE FEM-ANALYSIS OF SHIP STRUCTURES H Ese ad C Cabos, Gemasche Lloyd AG, Gemay SUMMARY Stegth aalyss of shp stuctues by meas of FEM eques ealstc loads. The most
16. Mean Square Estimation
6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
Optimizing Multiproduct Multiconstraint Inventory Control Systems with Stochastic Period Length and Emergency Order
585858585814 Joual of Uceta Systes Vol.7, No.1, pp.58-71, 013 Ole at: www.us.og.uk Optzg Multpoduct Multcostat Ivetoy Cotol Systes wth Stochastc Peod Legth ad egecy Ode Ata Allah Talezadeh 1, Seyed Tagh
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions
Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of
Lecture 7. Norms and Condition Numbers
Lecture 7 Norms ad Codto Numbers To dscuss the errors umerca probems vovg vectors, t s usefu to empo orms. Vector Norm O a vector space V, a orm s a fucto from V to the set of o-egatve reas that obes three
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
Craig George Leslie Hopf and Gurudeo Anand Tularam. Science Environment Engineering and Technology (ENV),
Joual of Mathematcs ad Statstcs 0 (3): 390-400 204 ISSN: 549-3644 204 Hof ad Tulaam Ths oe access atcle s dstbuted ude a Ceatve Commos Attbuto (CC-BY) 3.0 lcese do:0.3844/jmss.204.390.400 Publshed Ole
A Closed-loop Supply Chain Equilibrium Model with Random Demands
00-090 A Closed-loo Sly Cha Eqlb odel th Rado Deads Yoes Hadoh Deatet of Bsess Adstato Uted Aab Eates Uvesty Al A UAE Yoeshadoh@aeaae Tel: +97 50 447-05 Agaha Salee The Hog og Polyteh Uvesty Deatet of
Opinion Makers Section
Goupe de Taal Euopée Ade Multctèe à la Décso Euopea Wog Goup Multple Ctea Decso Adg Sée 3, º8, autome 008. Sees 3, º 8, Fall 008. Opo Maes Secto Hamozg poty weghts ad dffeece judgmets alue fucto mplemetato
Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version
Moey Math fo Tees Itoductio to Eaig Iteest: 11th ad 12th Gades Vesio This Moey Math fo Tees lesso is pat of a seies ceated by Geeatio Moey, a multimedia fiacial liteacy iitiative of the FINRA Ivesto Educatio
Load and Resistance Factor Design (LRFD)
53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
Analytical and numerical analysis and simulation of heat transfer in electrical conductors and fuses
Uvestät de Budesweh Mühe Fakultät fü Elektotehk ud Ifomatostehk Aaltal ad umeal aalss ad smulato of heat tasfe eletal odutos ad fuses Audus Ilgevus Vostzede des Pomotosausshusses: Pof. D.-Ig. K. Lades.
Integrated Workforce Planning Considering Regular and Overtime Decisions
Poceedgs of the 2011 Idusta Egeeg Reseach Cofeece T. Dooe ad E. Va Ae, eds. Itegated Wofoce Pag Cosdeg Regua ad Ovetme Decsos Shat Jaugum Depatmet of Egeeg Maagemet & Systems Egeeg Mssou Uvesty of Scece
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute
Time Series Perturbation by Genetic Programming
Tme Sees Petbaton by Genetc Pogammng G. Y. Lee Assstant Pofess Deatment of Comte and Infomaton Engneeng Yong-San Unvesty San 5 -Nam-R Ung-Sang-E Yang-San-Sh Kyng-Nam Soth Koea [email protected] Abstact-
Maintenance Scheduling of Distribution System with Optimal Economy and Reliability
Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,
Finance Practice Problems
Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.
The Digital Signature Scheme MQQ-SIG
The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese
FINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID
CH. ME56 STTICS Ceter of Gravt, Cetrod, ad Momet of Ierta CENTE OF GITY ND CENTOID 5. CENTE OF GITY ND CENTE OF MSS FO SYSTEM OF PTICES Ceter of Gravt. The ceter of gravt G s a pot whch locates the resultat
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
Constrained Cubic Spline Interpolation for Chemical Engineering Applications
Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel
OPTIMAL KNOWLEDGE FLOW ON THE INTERNET
İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 5 Sayı:0 Güz 006/ s. - OPTIMAL KNOWLEDGE FLOW ON THE INTERNET Bura ORDİN *, Urfat NURİYEV ** ABSTRACT The flow roblem ad the mmum sag tree roblem are both fudametal
- Models: - Classical: : Mastermodel (clay( Curves. - Example: - Independent variable t
Compue Gaphcs Geomec Moelg Iouco - Geomec Moelg (GM) sce e of 96 - Compue asssace fo - Desg: CAD - Maufacug: : CAM - Moels: - Classcal: : Masemoel (cla( cla, poopes,, Mock-up) - GM: mahemacal escpo fo
ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN
Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl
Streamline Compositional Simulation of Gas Injections Dacun Li, University of Texas of the Permian Basin
Abstact Steamlie Comositioal Simulatio of Gas jectios Dacu L Uivesity of Texas of the Pemia Basi Whe esevoi temeatues ae lowe tha o F ad essue is lowe tha 5sia, gas ijectios, esecially whe ijectats iclude
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
An Algorithm For Factoring Integers
An Algothm Fo Factong Integes Yngpu Deng and Yanbn Pan Key Laboatoy of Mathematcs Mechanzaton, Academy of Mathematcs and Systems Scence, Chnese Academy of Scences, Bejng 100190, People s Republc of Chna
Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost
Ameica Joual of Applied Scieces (8: 3-7, 005 ISS 546-939 005 Sciece Publicatios Peiodic Review Pobabilistic Multi-Item Ivetoy System with Zeo Lead Time ude Costaits ad Vayig Ode Cost Hala A. Fegay Lectue
Mathematics of Finance
CATE Mathematcs of ace.. TODUCTO ths chapter we wll dscuss mathematcal methods ad formulae whch are helpful busess ad persoal face. Oe of the fudametal cocepts the mathematcs of face s the tme value of
Investment Science Chapter 3
Ivestmet Scece Chapte 3 D. James. Tztzous 3. se P wth 7/.58%, P $5,, a 7 84, to obta $377.3. 3. Obseve that sce the et peset value of X s P, the cash flow steam ave at by cyclg X s equvalet
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
Bank loans pricing and Basel II: a multi-period risk-adjusted methodology under the new regulatory constraints
Baks ad Bak Systems, Volume 4, Issue 4, 2009 Domeco Cuco (Italy, Igo Gafacesco (Italy Bak loas pcg ad Basel II: a mult-peod sk-usted methodology ude the ew egulatoy costats Abstact Ude the ew Basel II
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen
THE PRINCIPLE OF THE ACTIVE JC SCATTERER Seppo Uoukaie VTT Buildig ad Tapot Ai Hadlig Techology ad Acoutic P. O. Bo 1803, FIN 02044 VTT, Filad [email protected] ABSTRACT The piciple of fomulatig the
10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof [email protected] http://people.virginia.
Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof [email protected] http://people.vrga.edu/~as5k/
Finite-Difference-Frequency-Domain Simulation of Electrically Large Microwave Structures using PML and Internal Ports
Fte-ffeece-Fequecy-oa Sulato of Electcally Lage Mcowave Stuctues usg PML ad teal Pots vogelegt vo MSc Eg Podyut Kua Talukde aus Netakoa Bagladesh vo de Fakultät V - Elektotechk ud foatk - de Techsche Uvestät
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
A CPN-based Trust Negotiation Model on Service Level Agreement in Cloud Environment
, pp.247-258 http://dx.do.og/10.14257/jgdc.2015.8.2.22 A CPN-based Tust Negotato Model o Sevce Level Ageemet Cloud Evomet Hogwe Che, Quxa Che ad Chuzh Wag School of Compute Scece, Hube Uvesty of Techology,
A Parallel Transmission Remote Backup System
2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
Electric Potential. otherwise to move the object from initial point i to final point f
PHY2061 Enched Physcs 2 Lectue Notes Electc Potental Electc Potental Dsclame: These lectue notes ae not meant to eplace the couse textbook. The content may be ncomplete. Some topcs may be unclea. These
Annuities and loan. repayments. Syllabus reference Financial mathematics 5 Annuities and loan. repayments
8 8A Futue value of a auity 8B Peset value of a auity 8C Futue ad peset value tables 8D Loa epaymets Auities ad loa epaymets Syllabus efeece Fiacial mathematics 5 Auities ad loa epaymets Supeauatio (othewise
A Coverage Gap Filling Algorithm in Hybrid Sensor Network
A Coveage Ga Fllng Algothm n Hybd Senso Netwok Tan L, Yang Mnghua, Yu Chongchong, L Xuanya, Cheng Bn A Coveage Ga Fllng Algothm n Hybd Senso Netwok 1 Tan L, 2 Yang Mnghua, 3 Yu Chongchong, 4 L Xuanya,
Resource Management Model of Data Storage Systems Oriented on Cloud Computing
Resorce Maagemet Model of Data Storage Systems Oreted o Clod Comptg Elea Kaa, Yry Korolev Sat Petersbrg Electrotechcal Uversty "LETI" (ETU), Sat Petersbrg, Rssa {leaaa, yryg}@gmalcom Abstract Ths artcle
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines
(ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005
An Approach of Degree Constraint MST Algorithm
I.J. Ifomato Techology a Compute Scece, 203, 09, 80-86 Publhe Ole Augut 203 MECS (http://www.mec-pe.og/) DOI: 0.585/jtc.203.09.08 A Appoach Degee Cotat MST Algothm Sajay Kuma Pal Depatmet Compute Sc. a
Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field
Defnton of Weght evsted Gavtaton The weght of an object on o above the eath s the gavtatonal foce that the eath exets on the object. The weght always ponts towad the cente of mass of the eath. On o above
Order-Degree Curves for Hypergeometric Creative Telescoping
Ode-Degee Cuves fo Hyegeometc Ceatve Telescong ABSTRACT Shaosh Chen Deatment of Mathematcs NCSU Ralegh, NC 7695, USA schen@ncsuedu Ceatve telescong aled to a bvaate oe hyegeometc tem oduces lnea ecuence
I = Prt. = P(1+i) n. A = Pe rt
11 Chapte 6 Matheatcs of Fnance We wll look at the atheatcs of fnance. 6.1 Sple and Copound Inteest We wll look at two ways nteest calculated on oney. If pncpal pesent value) aount P nvested at nteest
MGB, MGC, MGBV8 WIRING DIAGRAMS
ATO-E www.autowire.com M, MC, MV DAAMS www.autowire.com A dmp CATO 00 A dmp CATO 00 ATO-E EEATO D F EEATO A AM F D E TO STCH FE M OVEDVE O - OFF STCH C C THOTTE STCH TASMSSO TEOCK STCH OVEDVE SOEOD E MOTO
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks
Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]
Efficient Traceback of DoS Attacks using Small Worlds in MANET
Effcet Traceback of DoS Attacks usg Small Worlds MANET Yog Km, Vshal Sakhla, Ahmed Helmy Departmet. of Electrcal Egeerg, Uversty of Souther Calfora, U.S.A {yogkm, sakhla, helmy}@ceg.usc.edu Abstract Moble
Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software
J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao
Analysis of one-dimensional consolidation of soft soils with non-darcian flow caused by non-newtonian liquid
Joural of Rock Mechacs ad Geotechcal Egeerg., 4 (3): 5 57 Aalyss of oe-dmesoal cosoldato of soft sols wth o-darca flow caused by o-newtoa lqud Kaghe Xe, Chuaxu L, *, Xgwag Lu 3, Yul Wag Isttute of Geotechcal
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011
Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory
ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. [email protected]. evrenziplar@yahoo.
ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs
Learning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV)
Leaig Objectives Chapte 2 Picig of Bods time value of moey Calculate the pice of a bod estimate the expected cash flows detemie the yield to discout Bod pice chages evesely with the yield 2-1 2-2 Leaig
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).
PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a
Thick-Walled Cylinders and Press Fits. 2004 by W.H.Dornfeld PressCylinder:
Thck-Walled Cylndes and Pess Fts 004 by W.H.Dnfeld PessCylnde: 1 Stesses n Thck-Walled Cylndes Thck-Walled cylndes have an aveage adus less than 0 tmes the wall thckness. σ σl They ae essuzed ntenally
Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering
Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,
Perturbation Theory and Celestial Mechanics
Copyght 004 9 Petubaton Theoy and Celestal Mechancs In ths last chapte we shall sketch some aspects of petubaton theoy and descbe a few of ts applcatons to celestal mechancs. Petubaton theoy s a vey boad
Green Master based on MapReduce Cluster
Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
The Time Value of Money
The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto
Episode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
OPTIMAL REDUNDANCY ALLOCATION FOR INFORMATION MANAGEMENT SYSTEMS
Relablty ad Qualty Cotol Pactce ad Expeece OPTIMAL REDUNDANCY ALLOCATION FOR INFORMATION MANAGEMENT SYSTEMS Ceza VASILESCU PhD, Assocate Pofesso Natoal Defese Uvesty, Buchaest, Roaa E-al: [email protected] Abstact:
VIDEO REPLICA PLACEMENT STRATEGY FOR STORAGE CLOUD-BASED CDN
Joural of Theoretcal ad Appled Iformato Techology 31 st Jauary 214. Vol. 59 No.3 25-214 JATIT & S. All rghts reserved. ISSN: 1992-8645 www.att.org E-ISSN: 1817-3195 VIDEO REPICA PACEMENT STRATEGY FOR STORAGE
