Investment Science Chapter 3
|
|
|
- Brett Howard
- 10 years ago
- Views:
Transcription
1 Ivestmet Scece Chapte 3 D. James. Tztzous <[email protected]> 3. se P wth 7/.58%, P $5,, a 7 84, to obta $ Obseve that sce the et peset value of X s P, the cash flow steam ave at by cyclg X s equvalet to oe obtae by ecevg paymet of P evey peos sce k,...,. Let /. The P P k. k Solvg explctly fo the geometc sees, we have that P Deotg the aual woth by, we must have P. P, so that solvg fo P as a fucto of P a substtutg the esult to the equato fo, we ave at P.
2 Ivestmet Scece Chapte 4 Solutos to Suggeste Poblems D. James. Tztzous <[email protected]> 4. Oe fowa ate f, s s % 4. Spot pate se. Hece, fo example,. ll values ae [ sk k ] /k f,k s [ ].6 6 /5 f,k 6.3%.5 f, f,3 f,4 f,5 f,
3 4.3 Costucto of a zeo se a combato of the two bos: let x be the umbe of 9% bos, a y teh umbe of 7% bos. Select x a y to satsfy 9x 7y, x y. The fst equato makes the et coupo zeo. The seco makes the face value equal to. These equatos gve x 3.5, a y 4.5, espectvely. The pce s P Istataeous ates a e st t e st t e ft,t t t f t,t st t st t t t b t lm t t sttst t tt c We have [stt] t st s t l xt tt, stt s tt, [stt]. Hece, l xt l x stt, a fally that xt xe stt. Ths s ageemet wth the vaace popety of expectato yamcs. Ivestg cotuously gve the same esult as vestg a bo that matues at tme t. 4.6 Dscout coveso
4 The scout factos ae fou by successve multplcato. Fo example,,,, The complete set s.95,.893,.77,.77, o taxes Let t be the tax ate, x be the umbe of bo puchase, c be the coupo of bo, p be the pce of bo. To ceate a zeo coupo bo, we eque, fst, that the afte tax coupos match. Hece whch euces to x tc x tc, x c x c. Next, we eque that the afte tax fal cash flows match. Hece p x p x p. sg ths last elato the equatofo fal cash flow, we f Combg these equatos, we f that fte pluggg the gve values, we f that x x. p c p c p c c. p Real zeos We assume that wth coupo bos thee s a captal gas tax at matuty. We eplcate the zeocoupo bo s afte-tax cash flows usg bos a. Let x be the amout of bo eque 3
5 a,,,3,4,5, NP V b Yea Cash Flow 4 Dscout PV Pue uato P λ P λ λ P λ P λ λ x k s k /m k k x k s k /meλ/m k, k k x k s k m /meλ/m k s k /me λ/m, k k x k s k /m k, m k k x k k m sk /m k k x k s k /m k D. Ths D exactly coespos to the ogal efto of uato as a cash flow weghte aveage of the tmes of cash paymets. No mofcato facto s eee eve though we ae wokg scete tme. 4.4 otgage vso a P k k k k, 6 k,
6 Soluto of HW3 Poblem 6. X outlay ths case t s equal to the epost. X amout eceve, equal to the etue epost plus the poft fom shotg. Thus, X X X X The total etu, R X/X X X X/X Thus, R X X X Poblem 6. Let a a b be the outcomes of two e olls. The Zab. y epeece, we kow: [ ] [ ] [ ] ab a b 6 va[ Z] ab [ ab] a b [ a] [ b] a b [ a] [ b] Poblem 6.3 sg the aswe of the Poblem 6.4: a α 9 / 3 b α α 9 / / % c α α.4 Poblem 6.4 Let α equal the pecet of vestmet stock, the the pecet stock s -α. Now, poblem becomes mze
7 , 4 / 4 / * * α α α α α α α α α α α α α α α α ω ω ω ω ω ω j j j : take evatves espect to α Thus pecetage of asset -α The mea ate of etu of ths potfolo s * * α α ]/ [ ] / [ ] / [ Poblem 6.5 oey veste fo cocet yea fom ow mllo Reveue expecte uless t as 3 mllo Chaces of a5% Ra Isuace $.5 pe ut oey obtae fom suace f t as $ pe ut Let o. of uts of suace bought u a.now total moey veste, X moey veste o. of uts of suace bought *^6.5*u
8 Reveue obtae X 3*^6 *u Now sce thee ae 5% chaces of a we have total eveue:- X 3*^ 6u *.5.5*^6.5u Total Retu X/X.5*3,,.5*u/,,.5u Now ate of etu ate of etu X/X-.5*^6.5u - *^6.5*u/ *^6.5*u 5,/,,.5*u b. To get the mmum vaace we wll have to buy all the 3 mllo uts whch wll gve us a vaace of. We have to mze Va Hece u 3*^ 6 uts. Va Theefoe ^6.5-/ *^6.5*3*^6.5/.5. % Poblem 6.6 The effcet set at mmum-vaace pot assets
9 Sce assets ae ucoelate, The, µ µ µ ω µ ω ω µ µ ω ω ω µ ω ω L L Va Theefoe, Va 4 4 ω ω Va Poblem 6.7 Covaace matx V xpecte ates of etu
10 a mum vaace potfolo cose that w w 3 by symmety akowtz fomulato: jw j w w w w 3 j λ µ. Fo solvg the system of equatos. we omt the last omalzg costat. The,,, w, w, w that satsfes we omalze the obtae soluto { v v v } to the soluto { } the costat. System wth 6 vaables a 6 equatos: 3 w w w 3 λ µ y usg calculato: w w w 3 λ µ b λ, µ System wth 3 vaables a 3 equatos: v v v y usg calculato: v v v 3 w w w
11 c Gve that thee s a sky-fee pat, thee s a sgle fu of sky assets such that ay effcet potfolo ca be costucte as a combato of the fu a the sk-fee stumet. y usg equato 6., we get a system of 3 equatos wth 3 vaables. whee v k f k. f, k,.., v v v v v v 3 w w w Poblem 6.8 a Va α ST.. α j j j L α α α µ α L α j j µ α j L α µ fo each So, j µ α j j α fo each
12 b Va α ST.. α α ~ ~ j j j L α α α µ α λ α L α j j µ λ α j L α µ ~ L α λ fo each So, j µ α j j λ α α ~ fo each Poblem 6.9 eetg Wheel Cose a geeal bettg wheel wth segmets. The payoff fo a $ bet o a segmet s. Suppose you bet a amout / o segmet fo each. Show that the amout you w s epeet of the outcome of the wheel. What s the sk-fee ate of etu fo the wheel? pply ths to the wheel xample 6.7 Sol:
13 Data: segmets fom segmet to segmet mout eceve fom segmet fo each $ veste Facto of segmet veste / W a xpecte etu fo segmet, R / $ mout to w f the outcome equal to segmet : xpecte etu fo segmet tmes the facto veste segmet R * W R * * $ Fo ay outcome o the wheel the amout we wll w wll be $. Rsk-fee ate of etu fo the wheel: Fo ay outcome of the wheel, the amout that we wll w wll be $., X $ amout eceve The amout veste wll be X R X X $ R Poblem 6. Deve Soluto λw. k k f ta, j w jww j f /
14 ta, /, /, j j j j j j j j kj f j j j f k k w w w w w w w w w, k, Sce, we have:, > j j j w w, j j kj f j j j f k w w w w, f k j j kj j j j f w w w w lets eote j j j f w w w, λ f k k w λ
15 Poblem ssume that the expecte ate of etu o the maket potfolo s 3% a the ate of etu o T-bllsthe sk-fee ate s 7%.The staa evato of the maket s 3%.ssume that the maket potfolo s effcet a What s the equato of the captal maket le? fomulato expecte ate of etu [ [ sk-fee ate expecte ate of etu fom maket-sk fee ate]/ staa evato of maket ] * staa evato expecte ate of etu fom maket.3 sk-fee ate.7 staa evato of maket.3 expecte ate of etu /.3 *staa evato.7.5 staa evato b f expecte etu of 39% s ese, what s the staa evato of ths posto? expecte etu.39 staa evato posto.64 If you have $, to vest, how shoul you allocate t to acheve the above posto? xpecte etu s.39 we ca get x.7 -x.3 x - sk fee asset - maket potfolo c If you vest $3 the sk-fee asset a $7 the maket potfolo, how much moey shoul you expect to have at the e of the yea? 3.77*.38 Poblem 7. small wol
16 Cose a wol whch thee ae oly two sky assets, a, a a sk fee asset F. Te two sky assets ae equal supply the maket; that s, ½. The followg fomato s kow: F a F a geeal expesso fo,, Sce the maket has oly two sky assets a, the the expecte ate of etu a the vaace of the maket epe solely o the expecte ate of etu a the vaace of the assets a. - - Sce a ae equal amouts the maket -.5 [cov, ]/ cov, cov, - - [ - ]/[ - - ] [ ]/ [ ]/ [cov, ]/ cov, cov, - - [ - ]/[ - - ] [ ]/ [ ]/ bccog to CP, what ae the umecal values of a f - f - f f [ [ ]/ ] - f f [.4./.5.4..][.8-.].. - f f [ [ ]/ ] - f f
17 [../.5.4..][.8-.]..6 Poblem ous o etus Cose a uvese of just thee secutes. They have expecte ates of etu of %, %, a %, espectvely. Two potfolos ae kow to le o the mmum-vaace set. They ae efe by the potfolo weghts w [.6,.,.], v [.8, -.,.4]. It s also kow that the maket potfolo s effcet. a Gve ths fomato, what ae the mmum a maxmum possble values fo the expecte ate of etu o the maket potfolo? b Now suppose you ae tol that w epesets the mmum-vaace potfolo. Does ths chage you aswes to pat a? a aket potfolo ca t cota egatve amout of secuty.! #"$&% *, -#./ -#. -#.%-#. - #34 *,! -#. %-#. %-#. -#. 4 - # -#.5 *,6 -#. -#. 4 -#. 4 %-#. - # #.5 3#3 xpecte ate of etu o the maket potfolo: : * 9 :;< > :? * 9 : "! "$!% *,!-#@ -#./ -#. -#.-%-#. - *,! -#@ -#. %-#. %-#.- -#.- *,6!-#@ -#. -#. -#.- %-# #.- -#.- 4 Fom.8.4 a.53 3, we kow
18 b If gve potfolo s the mmum-vaace potfolo, ate of etu of potfolo s the mmum ate of etu of maket potfolo. Rate of etu of potfolo Theefoe, the expecte ate of etu of maket potfolo became Poblem 7.4 Quck CP evato Deve the CP fomula fo Chapte 6. [Ht: Note that w cov,.] pply 6.9 both to asset k a to the maket tself. Soluto k k k f by usg quato 6.9 quato 6-9 fom the textbook λw k,,. k k f We apply the above equato both to asset k a to maket. So we get [ w w ] f λ a λ [ w w ] f Fom the ht: [ w w ] cov, a [ w w ] cov, Substtutg above equatos we get: λ f
19 λ f lmatg λ fom the above two equatos a solvg, we get: f λ. Theefoe, f f. Fom the textbook, β. Substtutg, we obta β Whch s the eque captal asset pcg CP fomula. f f Poblem 7.5 β / j j x cov x j j j cotbutes accog to ts weght j j j / Theefoe β x x Poblem 7.6 Poblem 7.6 Smplela I Smplela, thee ae oly two sky stocks, a, whose etals ae lste below: - Numbe of shaes outstag: o : o : 5 - Pce pe shae o : $.5 o : $. - xpecte ate of etu o : 5% o : % - Staa evato of etu o : 5% o : 9% Futhemoe, the coelato coeffcet betwee the etus of stocks a s ab/3. Thee s also a sk fee asset, a Smplela satsfes the CP exactly.
20 a. xpecte ate of etu of the maket potfolo aket Captalzato - Stock : *.55 - Stock : 5*.3 - Total: 45 We ca euce the espectve weghts the maket potfolo: - Stock : /3 5/45 - Stock : /3 So the expecte ate of etu of the maket potfolo s: m.5*/3.*/3 m3% b. Staa evato Vam a * a b * b * a* b* ab* a* b Vam/3 *.5 /3 *.9 */3*/3*/3*.5*.9 Vam.8 m.9 c. eta of stock acova,m/ m we kow that: Hece: So the eta of stock s: a.5/.9 a.96 m/3*a/3*b Cova,m Cova, /3*a/3*b Cova,m /3*Cova,a/3*Cova,b Cova,m /3* a /3* ab* a* b Cova,m /3*.5 /3*/3*.5*.9 Cova,m.5. Rsk Fee sset Smplela Relato 7. gves us: a-f a*m- f So: f a- a*m / - a f.5-.96*.3 / -.96 f 6.5% Poblem 7.7
21 Zeo-beta assets Let w be the potfolo weghts of sky assets coespog the mmum-vaace pot the feasble ego. Let w be ay othe potfolo o the effcet fote. Defe a to be the coespog etus. a Thee s a fomula of the fom ². F. [Ht: Cose the potfolos - w w, a cose small vaatos of the vaace of such potfolos ea. Let w o w α α α α a w a w α α α α α. α be two potfolos o the the effcet fote. α α α 4α 4 α th potfolo ca be costucte base b Coespog to the potfolo w thee s a potfolo w z o the mmumvaace set that has zeo beta wth espect to w ; that s,,z. Ths potfolo ca be expesse as w z - w w. F the pope value of.
22 4 4 z * * ecause 4 : Set the : the VP, s w Sce - : that t ca be coclue the thee potfolos, y lea combato of a w the the weghte combato of zeo, s If pot potfolo. the mmum vaace be Let w α α α α β β β β β β β β β α α β β α β β β β α α α α z z z z z z z z z z z z z z z z z z z z z z z z z α c Show the elato of the thee potfolos o a agam that clues the feasble ego.
23 w z w wz z If thee s o sk-fee asset, t ca be show that othe assets ca be pce accog to the fomula z β z whee the subscpt eotes the maket potfolo a z s the expecte ate of etu o the potfolo that has zeo beta wth the maket potfolo. Suppose that the expecte etus o the maket a the zeo-beta potfolo ae 5% a 9% espectvely. Suppose that a stock has a coelato coeffcet wth the maket of.5. ssume also that the staa evato of the etus of the maket a stock ae 5% a 5% espectvely. F the expecte etu of stock. z 5% 9% 5% 5% ρ.5 z β.9. %.5*.5* z
24 Poblem 7.8 lecto Wzas, Ic. has a ew ea fo poucg TV sets, a t s plag to ete the evelopmet stage. Oce the pouct s evelope whch wll be at the e of yea, the compay expects to sell ts ew pocess fo a pce p, wth expecte value p $ 4. Howeve, ths sale pce wll epe o the maket of TV sets at the tme. y examg the stck hstoes of vaous TV compaes, t s eteme that the fal sales pce p s coelate wth the maket etu us [ p p ] $ Μ. To evelop the pocess, WI must vest a eseach a evelopmet poject. The cost c of the poject wll be kow shotly afte th poject s begu. The cuet estmate s that the cost wll be ethe c$ o c$6, a each of these s equally lkely. Ths ucetaty s ucoelate wth the fal pce a s also ucoelate wth the maket. ssume that the sk fee ate s f 9% a the expecte etu of the maket 33%. a What s the expecte ate of etu of ths poject? b What s the beta of ths poject? Ht: p p [ p p ] c c Is ths a acceptable poject base o a CP cteo? I patcula what s the excess ate of etu o - above the pecte by the CP? Soluto: p c p p. Due to the fact that p,c ae epeet we c c c p.565 * 4. c a have 35 b [ ] p c p c p p c [ p p ].5.5 The: β. 5 c ase o the CP the expecte etu s: c c Μ c c
25 f β β The expecte excess ate of etu s:.7 f f f Thus we coclue that, base o the CP moel, the poject s ot acceptable sce t gves smalle etu ate tha CP. Nevetheless, the ffeece s oly. theefoe the fal ecso shoul ot be base oly o the CP cteo. f Poblem 7.9 Fomulato: Gav s poblem Pove to Gav Joes that the esults he obtae egs. 7.5 a 7.7 wee ot accets. Specfcally, fo a fu wth etu f - m show that both CP moels gve the pce of $ woth of fu assets as $. We have to pove that the fomulas, cetaty equvalet fom of the CP & the CP as a pcg fomula both wll gve the same esults fo pcg a asset P by appopately scoutg the fal etu Q. we have to o ths fo the case metoe fo Gav Joes egs. 7.5 & 7.7 of the book,.e. fo a asset combato of two secutes wth weghts a -. The etu fo a asset mxtue Q wth above weghts s gve by please ote that Q o wth a ba o top s epesete as Q o.e., bolface Q P f - lso fo the covaace we ca wte, cov Q, cov P f -,. P- fom cetaty equvalet fom of the CP, we have, P [/ f ] * [ Q- {cov Q, * - f / } Substtutg a fom above, P [/ f ]*[ P f - {P- * - f / }] [/ f ]* P [ f - { - * - f }]
26 expag a cacelg out commo tems, P [/ f ]* f P. hece the poof.
27 Poblem 8. smple potfolo Someoe who beleves that the collecto of all stocks satsfes a sgle-facto moel wth the maket potfolo sevg as the facto gves you fomato o thee stocks whch makes up a potfolo. I ato, you kow that the maket potfolo has a expecte ate of etu of % a a staa evato of 8%. The sk-fee ate s 5%. a What s the potfolo s expecte ate of etu? b ssumg the facto moel s accuate, what s the staa evato of ths ate of etu? aket Rate of etu Staa evato % 8% Rsk fee ate 5% Stock eta Staa evato of aom eo tem Weght pofolo. 7.% %.8.3% 5% C.% 3% a The equato fo a sgle-facto moel fo stock etus s: β f m f So, solvg we have: R.* % R.8* % R3.* % Sce R potfolo R potfolo.7*..6*.5.* % b Staa Devatos: w potfolo We kow that: 3 b f e b w b Solvg, we have:.*..5*.8.3*^ e w e
28 .8^ % e.^*.7^.5^*.3^.3^*.^.3% Potfolos staa evato 84.6%*3.4%.3%^ % Poblem 8. Two stocks ae beleve to satsfy the two-facto moel a f f a 3f 4f I ato thee s a sk-fee asset wth a ate of etu o %. It s kow that -ba 5% a -ba %. What ae the values of,, a fo ths moel? Sce thee s a sk-fee asset wth ate-of-etu of %:. sg the elatoshp: f a b j f j the -ba b j j Yels: Poblem 8.3 Suppose thee ae aom vaables x, x, x a let V be the coespog covaace matx. ege vecto of V s a vecto v v, v, v such that Vv λv fo some λ calle a egevalue of V. The aom vaable v x v x v x s a pcple compoet. The fst pcple compoet s the oe coespog to the lagest egevalue of V, the seco to the seco lagest, a so foth. goo caate fo the facto a oe-facto moel of asset etus, s the fst pcple compoet extacte fom the etus themselves: that s, by usg the pcple egevecto of the covaace matx of the etu. F the fst pcple compoet fo the ata of example 8.. Does ths facto whe omalze esemble the etu o the maket potfolo? [Note: Fo ths pat, you ee a egevecto calculato as avalable most matx opeato packages.]
29 Fom the example 8. we have the followg ata Yea Stock Stock Stock 3 Stock 4 aket Rskless veage Va Cov β α e-va Fom the above fst we calculate the aveages, vaace a fally the covaace fo the above ata I the covaace we have to ve the value that s obtae fom the excel solve by 9* to ajust the bas. sg the above Covaace values the Covaace matx s costucte Fom the excel we get t as Covaace matx Fom the above matx we have to calculate the ege values
30 To f the ege values we solve usg xcel the followg equato: et V λ. Ths equato has seveal oots. We ae teeste the lagest ege value. We get the lagest ege value 3.6 The coespog ege vecto s fou to be V [ ] Sce ths s the omalze fom we have the ege vecto as V Poblem 8.4 Let, fo,,,, be epeet samples of a etu of mea µ a vaace. Defe the estmates. ˆ ˆ s µ µ Show that s. Soluto. the expectato by the leaty of ˆ ˆ ˆ ˆ ˆ the expectato by popetes of ˆ ˆ µ µ µ µ µ µ µ s Sce Y Y V Y, the
31 s µ µ µ µ. q.e.. Poblem 8.5 a Show that ˆ s epeet of a ˆ ˆ ˆ va ˆ va * va ˆ. sce va a ˆ va * Fom, va * It shows that ˆ s epeet of b Show that how ˆ epes o va ˆ va * ˆ * va ˆ... ssume that the etu ae omally stbute,
32 4 4 va * Theefoe, 4 va ˆ The, ˆ oe ata oes ot help to estmate the mea moe pecsely but t mpoves the estmato of the volatlty. Poblem 8.6 eco of aual pecetage ates of etu of the stock S s show the followg table. Reco of Rates of Retu: oth Pecet ateof etu oth Pecet ateof etu a stmate the athmetc mea ate of etu, expesse pecet pe yea. b stmate the athmetc staa evato of these etus, aga as pecet pe yea. c stmate the accuacy of the estmates fou pats a a b. How o you thk the aswes to woul chage s you ha yeas of weekly ata stea of mothly ata? See execse 5. Peo moth umbe of peos 4 ˆ
33 a ˆ ˆ ˆ y ˆ.% b s 4 ˆ s y % c The accuacy of the estmatos s eteme by takg the followg staa evatos: ccuacy of the mea estmato ˆ % whee sce we ae ealg wth yealy staa evatos ccuacy of the vaace estmato stev s whee 4 a s the mothly. mothly stev s yealy * stev s mothly.6.6% % Sce we ae quag the staa evato wth uts as pecet, the we ee to multply by to get the aswe as a pecet a ot pecet squae
34 xecse 8-5 poves that the accuacy of the mea estmato s epeet of the umbe of peos,. s a esult, the accuacy of the mea estmato woul ot chage by usg yeas of weekly ata stea of yeas of mothly ata. The accuacy of the staa evato estmato howeve, s epeet o the umbe of peos. The accuacy woul cease wth moe peos to estmate the staa evato. Poblem 8.7 Gav Joes fgue out a cleve way to get 4 samples of mothly etus just ove oe yea stea of oly samples; he takes ovelappg samples; that s, the fst sample coves Ja. to Feb. a the seco sample coves Ja. 5 to Feb. 5, a so foth. He fgues that eo hs estmate of, the mea mothly etu, wll be euces by ths metho. alyze Gav s ea. How oes the vaace of hs estmate compae wth that of the usual metho of usg oovelappg mothly etus? Soluto Hea othly ate of etu Half mothly ate of etu / 4 / / / 4 / / / y y y y V V ρ ρ Fom the ht: ρ ρ Cov * ] [ ] [ ] [ ] [ * ] [!, ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ Fom the ht: ρ ae ucoelate- epeet. / / V ρ ρ ρ Fom the fomula above
35 / / 4 / 4 / 3* / * / / / / * / / * / ] [ ] [ ] [ ] [ ] [ ] [ ] [ ρ ρ ρ ρ ρ ρ ρ Fom the page 5 a the ht: 4 4 ] / *4 [4 4 4] 3 cov... 3 cov, cov 4... [ V V V V V Hea V T he esult s equal to page 5 8. Poblem 8.8 We use the geeal moel wth ppe whee P s a mx matx, s a -mesoal vecto, a P a e ae m-mesoal vectos. The vecto p s a set of obsevato values a e s a vecto of eos havg mea. The eo vecto has covaace matx Q. The the estmate of s vtpvqptpvqp whee v s the vese of a matx a t s the taspose of a matx. a If thee s a sgle asset a just oe measuemet of the fom pe, we must show that p. Soluto: Suppose that pe, the P a Q ae scalas wth tpp. Thus vpvqppvqpqvqpp.
36 b Suppose we have two ucoelate measuemets wth values p a p havg vaaces a espectvely. We ee to show that Soluto: Hee we have [// ^ / ^]p/ ^ p/ ^. Pt ptp p a Q s the matx wth etes Q ^, Q, Q, Q ^ wth the vese of Q, vq, gve by the etes Puttg these to the above fomula we get vq/ ^ vq vq vq/ ^ [// ^ / ^]p/ ^ p/ ^. c We cose example 8.5. Thee ae measuemets of the fom pe pe 3p3e3 4p4e4 f *f f *f 3f 3*f 4f 4*f whee the e s ae ucoelate a whee cove,f.5 ^. ssumg the s ae kow exactly, f the best estmates of the s. Soluto: Fst we ote that the vese of a x matx s gve wth etes a, b, c,. Iv[/a-bc]
37 Whee s the matx wth etes, -b, -c, a a. Fo pat c we use the above fomula state at the begg wth We also use the fomula Pt. ef -f whee e a ae the expecte values of the etu fo secuty usg the equlbum moel a the maket espectvely, f s the sk fee ate, a e / fo the vaace of the eo the measuemet of e. We have as well that cove, f.5 ^ whee the eos e fo the measuemets h ae ucoelate. Fo stock we have h5. a e3.5 as compute example 8.5. So pt a Q s the matx wth etes Q3.^, QQ.53.^, a Q.4^. Isetg these to the above fomula we get Note that the fst ety fo Q s / 3.7%. Fo stock we have h4.34% a e3.99% usg. a we also compute pt a Q s the matx wth etes Q3.75^, QQ.53.75^, a Q.74^ whee.74. /. Isetg these to the above fomula we get 4.%.
38 Fo stock 3 we have h.9% a e7.3% usg 3.4 a we also compute pt a Q s the matx wth etes Q4.7^, QQ.54.7^, a Q3.76^ whee /. Isetg these to the above fomula we get 4.5%. Fo stock 4 we have h5.9% a e.7% usg 3.68 a we also compute pt5.9.7 a Q s the matx wth etes Q.63^, QQ.5.63^, a Q.86^ whee /. Isetg these to the above fomula we get.9%.
39 Poblem vesto has a utlty fucto x x^/4 fo salay. He has a ew job offe whch pays $8, wth a bous. The bous wll be $, $,, $,, $3,, $4,, $5,, o $6,, each wth equal pobablty. What s the cetaty equvalet of ths job offe? Cetaty quvalet x x^/4 Salay $8, wth bous ous $, $,, $,, $3,, $4,, $5,, $6, p of each /7 F the cetaty equvalet Salay $8,, $9,, $,, $,, $,, $3,, $4, x /7 $6.8 $7.3 $7.78 $8. $8.6 $8.99 $9.34 x /7$7.77 x $8.54 Nee to f value C such that C $8.5 Cx^/4 $8.5 C $8.5^4 C $8,6.4 The value C above s the Cetaty quvalet.
40 Poblem Suppose a vesto has expoetal utlty fucto x -e -ax a a tal wealth level of W. The vesto s face wth a oppotuty to vest a amout w W a obta a aom payoff x. Show that hs evaluato of ths cemetal vestmet s epeet of W. To evaluate the cemetal vestmet, we wll compae the vestmet vesus ot makg the vestmet. [ W w x ] mae, a [ W ] s the expecte value of the utlty fucto f the vestmet s s the expecte value of the utlty fucto of wealth f the vestmet s ot mae. [ W w x ] > [ W ] a W w x aw [ e ] > [ e ] aw a xw aw [ e e ] > [ e ] aw a xw aw [ e ] [ e ] > [ e ] a xw [ ] < e The tal wealth, W, s o loge pat of the equato; oly the vestmet w a the payoff x ae. Ths shows that the evaluato s epeet of W.
41 Poblem 3 3 Suppose x s utlty fucto wth ow-patt sk aveso coeffcet ax Let Vx C bx. What s the sk aveso coeffcet of V? ax - x/ x V x b x V x b x av b x/b x av x/ x Theefoe the sk aveso coeffcet -ax
42 Poblem 4 The ow-patt elatve sk aveso coeffcet s x x * x / x Show that the sk aveso coeffcets ae costat fo x l x a x * x x / x x - / x So, x x * - / x / / x - / x / / x - costat x * x - x 3 * x - -* x - So, x - costat
43 Poblem 5 youg woma uses the fst poceue escbe Secto 9.4 to euce he utlty fucto x ove the age <x<. She uses the omalzato,. To check he esult, she epeats the whole poceue ove the age <x<, whee < < <. The esult s a utlty fucto Vx, wth V, V. If the esults ae cosstet, a V shoul be equvalet; that s, Vxaxb fo some a> a b. F a. Gve:, fom to V, fom to Vxaxb a> F: a a b Soluto: b b b b b b b b b a b a V b a V a a a a a b b a V b a V
44 Poblem 6 The HR fo hypebolc absolute sk aveso class of utlty fuctos s efe by γ γ ax x b, b>. γ γ Show how the paametesγ, a a b ca b chose to obta the followg specal cases o a equvalet fom. a Lea o sk eutal: x x Let λ so we have axx the a, b. b Quaatc: x x cx Let λ so we wll have.5ax^.5b^abx/-b So ab c xpoetal: x e λ - ax lm b x γ the b a Powe: x cx ax x lm x x γ γ γ ax x b γ γ e Logathmc: x l x γ x cx the a b γ γ γ ax x b γ γ γ * γ λ ax b γ γ γ γ γ γ γ γ γ γx γ x γ γ ax b γ γ γ x x γ γ, a, b the x l x γ γ x ax b γ γ γ γ γ x The ow-patt sk aveso coeffcet s,
45 a b x b x a a b ax a b ax a x x x a b ax a x b ax a x γ γ γ γ γ γ γ γ γ γ
46 Poblem 7 The vetue captalst vetue captalst wth a utlty fucto xsqtx cae out the poceue of xample 9.3. F a aalytcal expesso fo C as a fucto of e, a fo e as a fucto of C. Do the values Table 9. of the example agee wth these expessos? Vetue captalst xsqtx Lottey outcomes, ethe $ o $9 pecevg $ vaes Fo pethe two outcomes.5, [x]$5. Cetaty equvalet, C$4 Ce p e C alytcal expesso fo C as a fucto of e s fou: Fo ths poblem, we ca solve C fo C. Fom ths, we wll have a equato wth a ukow, vaable pobablty p. Sce we kow the pobabltes the table, we ca calculate the expecte values tems of pobablty a vce vesa. Substtutg pobabltes as a fucto of expecte values to the cetaty equvalet equato yels the ese cetaty equvalet as a fucto of expecte values. To f the seco pat of the poblem, we smply solve the equato fom the fst pat fo expecte values to get expecte value as a fucto of cetaty equvalet. Fally, we compae these two equatos to the table by substtutg values fom the table fo C a e to eteme that the equatos ema tue statemets. If they wee ot tue, the table a equatos woul ot agee. CSqtCe[x] Fo a ueteme pobablty value fo the $ lottey outcome, Cp*- p*9 Fom the table ep*-p*9 ep9-9*p9-8*p Sce we ae lookg fo a expesso fo C as a fucto of e, we ca solve the last equato fo p a substtute ths to the equato fo C to f the aswe. e9-8*p e-9-8*p
47 p9-e/8 a equato fo C Cp*-p*9SqtC C[p*-p*9]^ Sqt 9Sqt93 C[p*-p*3]^[p3*-p]^p3-3*p^3-*p^4*p^-*p9 Substtutg fo p C4*[9-e/8]^-*[9-e/8]9 4*[9-e^]/64-*9-e/89 4/64*[e^-8*e8]-8*e/89 /6*e^-8*e8-6/64*e/644/6 /6*e^-8/6*e8/6-6/64*e/644/6 /6*e^6/6*e9/6/6*e^6*e9/6*e3^ So, Ce[e3^]/6 alytcal expesso fo e as a fucto of C s fou: CSqtCe[x] Cp*-p*9SqtC Sqt 9Sqt93 p9-e/8 CSqtC9-e/8[-9-e/8]*39-e/83-[3*9-e]/8 9-e/83-7/83*e/89-e4-73*e/8 *e6/8e3/4 SqtCe3/4 4*SqtC-3e So, ec4*sqtc-3 Do the values of Table 9. xample 9.3 agee wth these expessos? Substtutg values fom table to these equatos C6.6[6.63^]/65.76, the same value as the table e5.764*sqt , the same value as the table Fom these obsevatos, the values the table agee wth these equatos.
48 Poblem 8 Thee s a useful appoxmato to cetaty equvalet that s easy to eve. secooe expaso ea x x gves ] [ x Va x x x X x x X x x x x O the othe ha, f we let c oate the cetaty equvalet a assume t s close to x, we ca use the fst-oe expaso X C X X C sg these appoxmatos, show that X X C X C s the efto " ] " [ " ] [ X X Va X X C X X X Va X X X C X Va X X C X C
49 Poblem 9 vesto wth ut wealth maxmzes the expecte value of the utlty fucto x ax bx / a obtas a mea-vaace effcet potfolo. fe of hs wth wealth W a the same utlty fucto oes the same calculato, but gets a ffeet potfolo etu. Howeve, chagg b to b oes yel the same esult. What s the value of b? I geeal; [x] [ax /bx ] a[x] /b[x ] a[x] /bva[x] [x] I ths stuato, f the aom payoff of the potfolo of the vesto wth ut wealth s R, t woul maxmze: [R] a[r] /bva[r] [R] Smlaly, f the vesto wth wealth W puchases the same potfolo, the payoff wll be WR a R shoul maxmze: [x ] a[rw] /b va[rw] [RW] aw[r] /b W va[r] W [R] W[a[R] /b Wva[R] [R] ] If b b b/w s substtute the fal equato fo the seco vesto, the same R wll solve the expecte value of the utlty fucto as the R usg ut wealth.
50 Poblem Suppose a vesto has utlty fucto. Thee ae sky assets wth ate of etu,,,, a oe sk-fee asset wth ate of etu f. The vesto has tal wealth W. Suppose that the optmal potfolo fo ths vesto has aom payoff x*. Show that [ x* - f ] fo,,,.. Fom 9.4 p. 43 we kow that [ x* ] P. If thee s a sk-fee asset wth ate of etu R, the R a P. Thus, [ x*] R > [ x*] f. If thee s a asset wth total etu R, the R a P. Thus, [ x* R ] > [ x* ] > [ x* ] [ x*] f [ x* ] - [ x* f ] [ x* - x* f ] [ x* - f ]
51 Poblem W W W thus W W W W W W λ λ λ λ λ The pce of moey back guaatee vestmet P $,5
52 Poblem Fomulato: The followg s a geeal esult fom matx theoy: Let be mx matx. Suppose that the equato x p ca acheve o p except p. The thee s a vecto y > wth T y. se ths esult to show that f thee s o abtage, thee ae postve state pces; that s, pove the postve state pce theoem Secto 9.9. [Ht: If thee ae S states a N secutes, let be a appopate S xn matx] Soluto: Let costuct a matx... S p... S p S 3 p N N... SN p N. Hee j s ve of the secuty j the state. Let take vecto 3... N as vecto of weghts of the secutes the potfolo.... S p... S p S3 p N N... SN p N 3... * Hee D s ve state a P N s pce of the potfolo. Now lets assume that P N o P N < a thee s some k s.t. D k >. I ths case we have abtage because wth o egatve pce thee s a possblty to get ve oe of the states. I oe to avo the abtage we ee to coclue that f P N the fo all D. It meas that system * ca acheve wth T. ccog to the algeba we have that y > s.t. N D D D 3... P N T y... S p y... S p T y y3 ** N N... SN pn y S
53 ecause y S we ca ve all y by y S a efe them as state pce. xpesso ** wll looks lke: ψ... S p ψ... S p T ψ ψ 3 whee ψ > N N... SN pn y solvg ths we have fo each state that p S j ψ j whch meas that fo each state we costucte a postve state pce ψ s.t. p S j ψ j. j j
54 Poblem 3 * Fom the above execse, we have [ x ] the4 quaatc case, we have x-cx. We eote by the k, whee s the sk fee ate. I R the etu of the WR, potfolo, a usg the fact that tal captal s W we get k [ ] equvaletly [ cwr R R ], so R R cw [ R R R R] cw [ cov R, R R R R ], so, R R cwr R R cw [ cov R, R ], a equvaletly R R γcov R, R, whee γ CWR. If we apply ths elato to the potfolo, we obta Cov R, R R R γ Cov R, R γva R, so R R R R β R Va R a so, the poblem s solve. R,
55 Poblem 9.4. t the tack t the hose ace oe Satuay afteoo Gav Joes stues the acg fom a coclues that the hose No btage has a 5% chace to w a s poste at 4 to os. Fo evey olla Gav bets, he eceves $5 f the hose ws a othg f t loses. He ca ethe bet o ths hose o keep moey hs pocket Gav eces that he has a squae-oot utlty fo moey. a What facto of hs moey shoul Gav bet o No btage? b What s the mple wg payoff of a $ bet agast No btage? Soluto: a If we eote by α facto of hs moey m G. J. shoul bet we ee 3 max [ ] m 4 αm α m 4 4 So we ee the st evatve to be equal to zeo, that s, m 3 m α m 4 αm 8 α m 7 Solvg ths equato we obta α b Imple wg payoff of a $ bet agast No btage s 5.5 4
56 Poblem 5 Geeal sk-eutal pcg We ca tasfom the log-optmal pcg fomula to a sk-eutal pcg equato. Fom the log-optmal pcg equato we have P R * Whee R* s the etu o the log-optmal potfolo. We ca the efe a ew expectato opeato by Rx x. R * Ths ca be egae as the expectato of a atfcal pobablty. Note that the usual ules of expectato hol. Namely: a If x s ceta, the x x. Ths s because * R R. ax by a x b y. b Fo ay aom vaables x a y, thee hols c Fo ay oegatve aom vaable x, thee hols x. sg ths ew expectato opeato, wth the mple atfcal pobabltes, show that the pce of ay secuty s P. R Ths s sk eutal pcg. Fom the ules b, we kow * R R ccog to the efto of the opeato, fo ay vaable x, Rx x, assume R * /R as a vaable, we ca get R * R * * R R R Fom the log-optmal pcg equato we have: P 3 R * So, P y3 R * R * R y R * R * y R
16. Mean Square Estimation
6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble
Finance Practice Problems
Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.
Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions
Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of
A multivariate Denton method for benchmarking large data sets
09 A multaate Deto metho fo bechmakg lage ata sets ee Bkke, Jacco Daalmas a No Mushkua The ews epesse ths pape ae those of the autho(s) a o ot ecessaly eflect the polces of tatstcs Nethelas Dscusso pape
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
Learning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV)
Leaig Objectives Chapte 2 Picig of Bods time value of moey Calculate the pice of a bod estimate the expected cash flows detemie the yield to discout Bod pice chages evesely with the yield 2-1 2-2 Leaig
A Markov Chain Grey Forecasting Model: A Case Study of Energy Demand of Industry Sector in Iran
0 3d Iteatoal Cofeece o Ifomato ad Facal Egeeg IED vol. (0) (0) IACSIT ess, Sgapoe A Makov Cha Gey Foecastg Model: A Case Study of Eegy Demad of Idusty Secto Ia A. Kazem +, M. Modaes, M.. Mehega, N. Neshat
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
Bank loans pricing and Basel II: a multi-period risk-adjusted methodology under the new regulatory constraints
Baks ad Bak Systems, Volume 4, Issue 4, 2009 Domeco Cuco (Italy, Igo Gafacesco (Italy Bak loas pcg ad Basel II: a mult-peod sk-usted methodology ude the ew egulatoy costats Abstact Ude the ew Basel II
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
Randomized Load Balancing by Joining and Splitting Bins
Radomzed Load Baacg by Jog ad Spttg Bs James Aspes Ytog Y 1 Itoducto Cosde the foowg oad baacg sceao: a ceta amout of wo oad s dstbuted amog a set of maches that may chage ove tme as maches o ad eave the
Answers to Warm-Up Exercises
Aswes to Wam-Up Execses E8-1. Total aual etu Aswe: ($0 $1,000 $10,000) $10,000 $,000 $10,000 0% Logstcs, Ic. doubled the aual ate of etu pedcted by the aalyst. The egatve et come s elevat to the poblem.
Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version
Moey Math fo Tees Itoductio to Eaig Iteest: 11th ad 12th Gades Vesio This Moey Math fo Tees lesso is pat of a seies ceated by Geeatio Moey, a multimedia fiacial liteacy iitiative of the FINRA Ivesto Educatio
Annuities and loan. repayments. Syllabus reference Financial mathematics 5 Annuities and loan. repayments
8 8A Futue value of a auity 8B Peset value of a auity 8C Futue ad peset value tables 8D Loa epaymets Auities ad loa epaymets Syllabus efeece Fiacial mathematics 5 Auities ad loa epaymets Supeauatio (othewise
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
The Time Value of Money
The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
Keywords: valuation, warrants, executive stock options, capital structure, dilution. JEL Classification: G12, G13.
Abstact he textbook teatmet fo the aluato of waats takes as a state aable the alue of the fm ad shows that the alue of a waat s equal to the alue of a call opto o the equty of the fm multpled by a dluto
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
FINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)
Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
Mathematics of Finance
CATE Mathematcs of ace.. TODUCTO ths chapter we wll dscuss mathematcal methods ad formulae whch are helpful busess ad persoal face. Oe of the fudametal cocepts the mathematcs of face s the tme value of
EFFICIENT GENERATION OF CFD-BASED LOADS FOR THE FEM-ANALYSIS OF SHIP STRUCTURES
EFFICIENT GENERATION OF CFD-BASED LOADS FOR THE FEM-ANALYSIS OF SHIP STRUCTURES H Ese ad C Cabos, Gemasche Lloyd AG, Gemay SUMMARY Stegth aalyss of shp stuctues by meas of FEM eques ealstc loads. The most
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS... 1 ANNUITIES SOFTWARE ASSIGNMENT... 2 WHAT IS AN ANNUITY?... 2 EXAMPLE 1... 2 QUESTIONS...
ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS... 1 ANNUITIES SOFTWARE ASSIGNMENT... WHAT IS AN ANNUITY?... EXAMPLE 1... QUESTIONS... EXAMPLE BRANDON S
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
Opinion Makers Section
Goupe de Taal Euopée Ade Multctèe à la Décso Euopea Wog Goup Multple Ctea Decso Adg Sée 3, º8, autome 008. Sees 3, º 8, Fall 008. Opo Maes Secto Hamozg poty weghts ad dffeece judgmets alue fucto mplemetato
I = Prt. = P(1+i) n. A = Pe rt
11 Chapte 6 Matheatcs of Fnance We wll look at the atheatcs of fnance. 6.1 Sple and Copound Inteest We wll look at two ways nteest calculated on oney. If pncpal pesent value) aount P nvested at nteest
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof [email protected] http://people.virginia.
Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof [email protected] http://people.vrga.edu/~as5k/
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
Time Value of Money. (1) Calculate future value or present value or annuity? (2) Future value = PV * (1+ i) n
Problem 1 Happy Harry has just bought a scratch lottery tcket ad wo 10,000. He wats to face the future study of hs ewly bor daughter ad vests ths moey a fud wth a maturty of 18 years offerg a promsg yearly
SIMULATION OF THE FLOW AND ACOUSTIC FIELD OF A FAN
Cofeece o Modellg Flud Flow (CMFF 9) The 14 th Iteatoal Cofeece o Flud Flow Techologes Budapest, Hugay, Septembe 9-1, 9 SIMULATION OF THE FLOW AND ACOUSTIC FIELD OF A FAN Q Wag 1, Mchael Hess, Bethold
Valuation of Floating Rate Bonds 1
Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned
Generalized Difference Sequence Space On Seminormed Space By Orlicz Function
Ieaoa Joa of Scece ad Eee Reeach IJSER Vo Ie Decembe -4 5687 568X Geeazed Dffeece Seece Sace O Semomed Sace B Ocz Fco A.Sahaaa Aa ofeo G Ie of TechooCombaoeIda. Abac I h aewe defe he eece ace o emomed
The dinner table problem: the rectangular case
The ie table poblem: the ectagula case axiv:math/009v [mathco] Jul 00 Itouctio Robeto Tauaso Dipatimeto i Matematica Uivesità i Roma To Vegata 00 Roma, Italy tauaso@matuiomait Decembe, 0 Assume that people
FI3300 Corporate Finance
Leaning Objectives FI00 Copoate Finance Sping Semeste 2010 D. Isabel Tkatch Assistant Pofesso of Finance Calculate the PV and FV in multi-peiod multi-cf time-value-of-money poblems: Geneal case Pepetuity
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
Continuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
How To Value An Annuity
Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%
The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0
Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may
ANNEX 77 FINANCE MANAGEMENT. (Working material) Chief Actuary Prof. Gaida Pettere BTA INSURANCE COMPANY SE
ANNEX 77 FINANCE MANAGEMENT (Workg materal) Chef Actuary Prof. Gada Pettere BTA INSURANCE COMPANY SE 1 FUNDAMENTALS of INVESTMENT I THEORY OF INTEREST RATES 1.1 ACCUMULATION Iterest may be regarded as
INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS
INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS Vesion:.0 Date: June 0 Disclaime This document is solely intended as infomation fo cleaing membes and othes who ae inteested in
Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost
Ameica Joual of Applied Scieces (8: 3-7, 005 ISS 546-939 005 Sciece Publicatios Peiodic Review Pobabilistic Multi-Item Ivetoy System with Zeo Lead Time ude Costaits ad Vayig Ode Cost Hala A. Fegay Lectue
An Approach of Degree Constraint MST Algorithm
I.J. Ifomato Techology a Compute Scece, 203, 09, 80-86 Publhe Ole Augut 203 MECS (http://www.mec-pe.og/) DOI: 0.585/jtc.203.09.08 A Appoach Degee Cotat MST Algothm Sajay Kuma Pal Depatmet Compute Sc. a
AMB111F Financial Maths Notes
AMB111F Financial Maths Notes Compound Inteest and Depeciation Compound Inteest: Inteest computed on the cuent amount that inceases at egula intevals. Simple inteest: Inteest computed on the oiginal fixed
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
Time Value of Money: The case of Arithmetic and Geometric growth and their Applications
CHAPTER TE SPECIAL TOPICS I FIACE Time Value of Moey: The cae of Aithmetic a Geometic owth a thei Applicatio I. Itouctio Kowlee of how iteet compou i a coetoe of fiace a i iteal i fiacial eciio at the
The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.
Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the
Report 52 Fixed Maturity EUR Industrial Bond Funds
Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:
Perturbation Theory and Celestial Mechanics
Copyght 004 9 Petubaton Theoy and Celestal Mechancs In ths last chapte we shall sketch some aspects of petubaton theoy and descbe a few of ts applcatons to celestal mechancs. Petubaton theoy s a vey boad
4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
Optimizing Multiproduct Multiconstraint Inventory Control Systems with Stochastic Period Length and Emergency Order
585858585814 Joual of Uceta Systes Vol.7, No.1, pp.58-71, 013 Ole at: www.us.og.uk Optzg Multpoduct Multcostat Ivetoy Cotol Systes wth Stochastc Peod Legth ad egecy Ode Ata Allah Talezadeh 1, Seyed Tagh
CLOSE RANGE PHOTOGRAMMETRY WITH CCD CAMERAS AND MATCHING METHODS - APPLIED TO THE FRACTURE SURFACE OF AN IRON BOLT
CLOSE RANGE PHOTOGRAMMETR WITH CCD CAMERAS AND MATCHING METHODS - APPLIED TO THE FRACTURE SURFACE OF AN IRON BOLT Tim Suthau, John Moé, Albet Wieemann an Jens Fanzen Technical Univesit of Belin, Depatment
Lecture 7. Norms and Condition Numbers
Lecture 7 Norms ad Codto Numbers To dscuss the errors umerca probems vovg vectors, t s usefu to empo orms. Vector Norm O a vector space V, a orm s a fucto from V to the set of o-egatve reas that obes three
How Much Should a Firm Borrow. Effect of tax shields. Capital Structure Theory. Capital Structure & Corporate Taxes
How Much Should a Fim Boow Chapte 19 Capital Stuctue & Copoate Taxes Financial Risk - Risk to shaeholdes esulting fom the use of debt. Financial Leveage - Incease in the vaiability of shaeholde etuns that
Craig George Leslie Hopf and Gurudeo Anand Tularam. Science Environment Engineering and Technology (ENV),
Joual of Mathematcs ad Statstcs 0 (3): 390-400 204 ISSN: 549-3644 204 Hof ad Tulaam Ths oe access atcle s dstbuted ude a Ceatve Commos Attbuto (CC-BY) 3.0 lcese do:0.3844/jmss.204.390.400 Publshed Ole
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
Relaxation Methods for Iterative Solution to Linear Systems of Equations
Relaxato Methods for Iteratve Soluto to Lear Systems of Equatos Gerald Recktewald Portlad State Uversty Mechacal Egeerg Departmet [email protected] Prmary Topcs Basc Cocepts Statoary Methods a.k.a. Relaxato
est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.
9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,
A CPN-based Trust Negotiation Model on Service Level Agreement in Cloud Environment
, pp.247-258 http://dx.do.og/10.14257/jgdc.2015.8.2.22 A CPN-based Tust Negotato Model o Sevce Level Ageemet Cloud Evomet Hogwe Che, Quxa Che ad Chuzh Wag School of Compute Scece, Hube Uvesty of Techology,
CONCEPT OF TIME AND VALUE OFMONEY. Simple and Compound interest
CONCEPT OF TIME AND VALUE OFMONEY Simple and Compound inteest What is the futue value of shs 10,000 invested today to ean an inteest of 12% pe annum inteest payable fo 10 yeas and is compounded; a. Annually
Ilona V. Tregub, ScD., Professor
Investment Potfolio Fomation fo the Pension Fund of Russia Ilona V. egub, ScD., Pofesso Mathematical Modeling of Economic Pocesses Depatment he Financial Univesity unde the Govenment of the Russian Fedeation
Basic Financial Mathematics
Financial Engineeing and Computations Basic Financial Mathematics Dai, Tian-Shy Outline Time Value of Money Annuities Amotization Yields Bonds Time Value of Money PV + n = FV (1 + FV: futue value = PV
2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES
. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an
How do bookmakers (or FdJ 1 ) ALWAYS manage to win?
How do bookakers (or FdJ ALWAYS aage to w? Itroducto otatos & varables Bookaker's beeft eected value 4 4 Bookaker's strateges5 4 The hoest bookaker 6 4 "real lfe" bookaker 6 4 La FdJ 8 5 How ca we estate
PCA vs. Varimax rotation
PCA vs. Vamax otaton The goal of the otaton/tansfomaton n PCA s to maxmze the vaance of the new SNP (egensnp), whle mnmzng the vaance aound the egensnp. Theefoe the dffeence between the vaances captued
Additional File 1 - A model-based circular binary segmentation algorithm for the analysis of array CGH data
1 Addtonal Fle 1 - A model-based ccula bnay segmentaton algothm fo the analyss of aay CGH data Fang-Han Hsu 1, Hung-I H Chen, Mong-Hsun Tsa, Lang-Chuan La 5, Ch-Cheng Huang 1,6, Shh-Hsn Tu 6, Ec Y Chuang*
Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes
Covero of No-Lear Stregth Evelope to Geeralzed Hoek-Brow Evelope Itroducto The power curve crtero commoly ued lmt-equlbrum lope tablty aaly to defe a o-lear tregth evelope (relatohp betwee hear tre, τ,
Fundamentals of Mass Transfer
Chapter Fudametals of Mass Trasfer Whe a sgle phase system cotas two or more speces whose cocetratos are ot uform, mass s trasferred to mmze the cocetrato dffereces wth the system. I a mult-phase system
Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li
Iteratoal Joural of Scece Vol No7 05 ISSN: 83-4890 Proecto model for Computer Network Securty Evaluato wth terval-valued tutostc fuzzy formato Qgxag L School of Software Egeerg Chogqg Uversty of rts ad
- Models: - Classical: : Mastermodel (clay( Curves. - Example: - Independent variable t
Compue Gaphcs Geomec Moelg Iouco - Geomec Moelg (GM) sce e of 96 - Compue asssace fo - Desg: CAD - Maufacug: : CAM - Moels: - Classcal: : Masemoel (cla( cla, poopes,, Mock-up) - GM: mahemacal escpo fo
Chapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
Reinsurance and the distribution of term insurance claims
Resurace ad the dstrbuto of term surace clams By Rchard Bruyel FIAA, FNZSA Preseted to the NZ Socety of Actuares Coferece Queestow - November 006 1 1 Itroducto Ths paper vestgates the effect of resurace
Electric Potential. otherwise to move the object from initial point i to final point f
PHY2061 Enched Physcs 2 Lectue Notes Electc Potental Electc Potental Dsclame: These lectue notes ae not meant to eplace the couse textbook. The content may be ncomplete. Some topcs may be unclea. These
Integrated Workforce Planning Considering Regular and Overtime Decisions
Poceedgs of the 2011 Idusta Egeeg Reseach Cofeece T. Dooe ad E. Va Ae, eds. Itegated Wofoce Pag Cosdeg Regua ad Ovetme Decsos Shat Jaugum Depatmet of Egeeg Maagemet & Systems Egeeg Mssou Uvesty of Scece
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts
Optmal replacemet ad overhaul decsos wth mperfect mateace ad warraty cotracts R. Pascual Departmet of Mechacal Egeerg, Uversdad de Chle, Caslla 2777, Satago, Chle Phoe: +56-2-6784591 Fax:+56-2-689657 [email protected]
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
