Volatility Index: VIX vs. GVIX
|
|
|
- Maximilian Garrett
- 10 years ago
- Views:
Transcription
1 I. II. III. IV. Volatility Index: VIX vs. GVIX "Does VIX Truly Measure Return Volatility?" by Victor Chow, Wanjun Jiang, and Jingrui Li (214) An Ex-ante (forward-looking) approach based on Market Price of Options; NOT an Ex-post (backward-looking) Statistical Estimation. NOT just Indexes, BUT Tradable Financial Instruments (See CBOE sites). Negatively Correlated with Underlying Index s Returns and thus Provide a good Market Risk Hedging Vehicle for Portfolio Management. The Difference between GVIX and VIX indexes (GV-Spread) provides a good Forward-Looking Indicator about "Market Sentiment" 1
2 Outlines 1. The Definition of Volatility 2. The Assumption of Symmetric Return Distribution 3. Geometric Brownian Motion: Foundation of the VIX 4. Core Derivation of VIX 5. Holding-Period Return, Log-Return, and Option Prices 6. Formulation of VIX 7. VIX is NOT a Volatility Index in general 8. GVIX is the True Volatility of Log-Returns 9. The GV-Spread (Empirical Evidence) 1. Correlation Matrix of GV-Spread and Distribution Moments 11. GV-Spread is Mean Reverting 2
3 Definition of Volatility Volatility(σ) µ μ = E(x); σ = E(x μ) 2 = E(x 2 ) [μ] 2 3
4 IS NOT BASED ON THE VOLATILITY DEFINITION. CBOE VIX Formulation BUT BASED ON THE ASSUMPTION OF SYMMETRIC RETURN DISTRIBUTION 4
5 The Assumption of Symmetric Return Distribution BELL CURVE STANDARIZED BELL CURVE Two- Moment Distribution x = μ x + σ x z z = x μ x σ x y = μ y + σ y z x ~ N(μ x, σ x ); y ~ N(μ y, σ y ) z = y μ y σ y z ~ N(,1) 5
6 Geometric Brownian Motion: Foundation of the VIX Diffusion Process ds t S t = μdt + σdz t d[ln(s t )] = f (S t )ds t f"(s t)s t 2 σ 2 dt = 1 S t (μs t dt + σs t dz t ) 1 2 σ2 dt 1. Z = 2. Z t is almost surely everywhere continuous 3. Z t has independent increments with (Z t Z s ) ~ N(, t s) (for s < t) Taylor Expansion (Stop@2 nd Order) & Ito Calculus Log returns follow a symmetric distribution = (μ 1 2 σ2 ) dt + σdz t d[ln(s t )] = (μ 1 2 σ2 ) dt + σdz t A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. 6
7 put-call symmetry "Classic put-call symmetry (Bowie and Carr 1994; Bates 1997) relates the prices of puts and calls at strikes that are unequal but equidistant logarithmically to the forward price. For example, it implies that if a forward price M follows geometric Brownian motion under an appropriate pricing measure, and M = 1, then a 2-strike call on M has time- price equal to two times the price of the 5-strike put at the same expiry. " (see Peter Carr and Roger Lee, Put- Call Symmetry: Extension and Applications, Mathematical Finance, Vol. 19, No. 4 (October 29), ) 7
8 Core Derivation of VIX 1. Given that ds t S t = μdt + σdz t, and Solve for the volatility Sum to T-period of time { d[ln(s t )] = (μ 1 2 σ2 ) dt + σdz t σ 2 dt = 2 { ds t S t d[ln(s t )]} σ 2 = 1 T T σ2 dt = 2 T [ ds t T S t ln ( S T )] 4. Volatility Index (VIX) VIX 2 = E(σ 2 ) = σ 2 = 2 T [E ( ds t T S t ) E [ln ( S T )]] VIX in fact captures the difference between the expected holding-period return and the expected log-return over a T-period of time (e.g. 3-day) 8
9 Holding-Period Return, Log-Return, and Option Prices 1. Holding-Period Return R T = S T 2. Log-Return r T = [ln( S T ) ln( )] = ln ( S T ) Taylor Expansion with remainder. The difference between the two returns ln( S T ) = ln( ) + S T + 1 K 2 (S T K) + dk + 1 K 2 (K S T) + dk R T r T = [ 1 K 2 (S T K) + dk + 1 K 2 (K S T) + dk ] 5. The expected difference E(R T ) E(r T ) = e rt { 1 K 2 C T(K)dK + 1 K 2 P T(K)dK} 6. Expected Log-Return E [ln ( S T )] = E(R S T ) + e rt { 1 K 2 C T (K)dK + 1 K 2 P T (K)dK } 9
10 Recall Under No-arbitrage Volatility Index Taylor Expansion nd Order) CBOE VIX Formulation Formulation of VIX T VIX 2 = E(σ 2 ) = σ 2 = 2 T [ E (ds t S t ) E [ln ( S T )]] [ln ( S T )] = E(R S T ) + e rt { 1 K 2 C T (K)dK + 1 K 2 P T (K)dK } T E ( ds t ) = rt, and E(R T ) = e rt 1 S t VIX 2 = 2 T {rt (ert 1) + e rt [ 1 K 2 C T(K)dK + 1 K 2 P T(K)dK]} = 2 T {rt (F 1) ln ( K ) + e rt [ 1 K K K 2 C T (K)dK + 1 K K 2 P T (K)dK ]} [rt ( F 1) ln ( K )] = [ln ( F ) ( F 1)] 1 2 K K K 2 (F 1) K VIX 2 = 2erT T [ 1 K K 2 C T(K)dK + 1 K K 2 P T(K)dK] 1 2 T (F 1) K VIX 2 = 2erT T 1 Q(K 2 i ) K i 1 2 K i i T (F 1) K 1
11 VIX is NOT a Volatility Index in general Key Component of VIX is e rt [ 1 K 2 C T(K)dK + 1 K 2 P T(K)dK] It is the expected return difference. Taylor Expansion (Stop@ N th Order) The expected return difference is Key Component of VIX is E(R T ) E(r T ) = e rt { 1 K 2 C T(K)dK + 1 K 2 P T(K)dK} (1 + R T ) = S T = exp [ln ( S T )] = 1 + N κ=1 1 κ κ! [ln (S T )] + o [ln ( S N T )] E(R T ) E(r T ) = 1 2 E(r T 2 ) E(r T 3 ) E(r T 4 ) + o[e(r 4 T )] 1 2 E(r T 2 ) E(r T 3 ) E(r T 4 ) + o[e(r 4 T )] Let V T = E(r T 2 ), W T = E(r T 3 ), and X T = E(r T 4 ) VIX is a Moment-Combination VIX = 1 T [V T + W T 3 + X T 12 + o(x T)] 2[(e rt 1) rt] 11
12 GVIX is the True Volatility of Log-Returns Definition of Variance μ = E(x), σ 2 = E(x μ) 2 V = E(x 2 ) = E(x 2 ) [E(x)] 2 = V μ 2 GVIX = 1 T V T (μ T ) 2 The Generalized Volatility Index (GVIX) μ T = ln ( K ) + ( F 1) e rt [ 1 K K 2 C T(K)dK + 1 K K 2 P T(K)dK] V T = ln 2 ( K ) + 2ln ( K ) ( F K 1) K [1 ln ( K + 2e rt S )] [ K 2 C T (K)dK + K K S [1 + ln ( K )] K 2 P T (K)dK] 12
13 GV-Spread (Empirical Evidence) Volatility Indexes: VIX vs. GVIX K. Victor Chow, PhD, CFA The Spread VIX 2 GVIX 2 1 T (μ T 2 + W T 3 + X T 12 ) GVIX > VIX indicates that W T < W T = ln 3 ( K ) + 3ln 2 ( K ) ( F [2ln ( K 1) + 3e rt S ) ln 2 ( K [ S )] K K 2 C T (K)dK [2ln ( ) + ln 2 ( S K )] K K K K 2 P T (K)dK] 13
14 VIX 2 GVIX 2 1 T (μ T 2 + W T 3 + X T 12 ) A. GVIX a VIX a (Spread) B. 1 3 Ŵ a 14
15 Correlation Matrix of GV-Spread and Distribution Moments V a Ŵ a X a daily (annualized) ex-ante second moment (Volatility) daily (annualized) ex-ante third moment (Skewness) daily (annualized) ex-ante fourth moment (Kurtosis) 15
16 GV-Spread is Mean-Reverting Volatility Indexes: VIX vs. GVIX K. Victor Chow, PhD, CFA The $Spread Chart (214) Zivot-Andrews Unit-Root Test 16
Notes on Black-Scholes Option Pricing Formula
. Notes on Black-Scholes Option Pricing Formula by De-Xing Guan March 2006 These notes are a brief introduction to the Black-Scholes formula, which prices the European call options. The essential reading
Black-Scholes Equation for Option Pricing
Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic.
WDS'09 Proceedings of Contributed Papers, Part I, 148 153, 2009. ISBN 978-80-7378-101-9 MATFYZPRESS Volatility Modelling L. Jarešová Charles University, Faculty of Mathematics and Physics, Prague, Czech
Merton-Black-Scholes model for option pricing. Peter Denteneer. 22 oktober 2009
Merton-Black-Scholes model for option pricing Instituut{Lorentz voor Theoretische Natuurkunde, LION, Universiteit Leiden 22 oktober 2009 With inspiration from: J. Tinbergen, T.C. Koopmans, E. Majorana,
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative
Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13
Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.
Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.
Hedging Exotic Options
Kai Detlefsen Wolfgang Härdle Center for Applied Statistics and Economics Humboldt-Universität zu Berlin Germany introduction 1-1 Models The Black Scholes model has some shortcomings: - volatility is not
Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008
: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of
A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting Model
Applied Mathematical Sciences, vol 8, 14, no 143, 715-7135 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/11988/ams144644 A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting
Vanna-Volga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong 2011. January 2011. last update: Nov 27, 2013
Vanna-Volga Method for Foreign Exchange Implied Volatility Smile Copyright Changwei Xiong 011 January 011 last update: Nov 7, 01 TABLE OF CONTENTS TABLE OF CONTENTS...1 1. Trading Strategies of Vanilla
The Black-Scholes pricing formulas
The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
Monte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
Valuation of Asian Options
Valuation of Asian Options - with Levy Approximation Master thesis in Economics Jan 2014 Author: Aleksandra Mraovic, Qian Zhang Supervisor: Frederik Lundtofte Department of Economics Abstract Asian options
Option Portfolio Modeling
Value of Option (Total=Intrinsic+Time Euro) Option Portfolio Modeling Harry van Breen www.besttheindex.com E-mail: [email protected] Introduction The goal of this white paper is to provide
VIX, the CBOE Volatility Index
VIX, the CBOE Volatility Index Ser-Huang Poon September 5, 008 The volatility index compiled by the CBOE (Chicago Board of Option Exchange) has been shown to capture nancial turmoil and produce good volatility
Explicit Option Pricing Formula for a Mean-Reverting Asset in Energy Markets
Explicit Option Pricing Formula for a Mean-Reverting Asset in Energy Markets Anatoliy Swishchuk Mathematical & Computational Finance Lab Dept of Math & Stat, University of Calgary, Calgary, AB, Canada
An Analytical Pricing Formula for VIX Futures and Its Empirical Applications
Faculty of Informatics, University of Wollongong An Analytical Pricing Formula for VIX Futures and Its Empirical Applications Song-Ping Zhu and Guang-Hua Lian School of Mathematics and Applied Statistics
ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida
ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic
The Black-Scholes-Merton Approach to Pricing Options
he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining
where N is the standard normal distribution function,
The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at
Decomposition of life insurance liabilities into risk factors theory and application
Decomposition of life insurance liabilities into risk factors theory and application Katja Schilling University of Ulm March 7, 2014 Joint work with Daniel Bauer, Marcus C. Christiansen, Alexander Kling
Online Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre Collin-Dufresne and Vyacheslav Fos
Online Appendix Supplemental Material for Insider Trading, Stochastic Liquidity and Equilibrium Prices by Pierre Collin-Dufresne and Vyacheslav Fos 1. Deterministic growth rate of noise trader volatility
Implied Volatility Surface
Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 16) Liuren Wu Implied Volatility Surface Options Markets 1 / 18 Implied volatility Recall
The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role
The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role Massimiliano Politano Department of Mathematics and Statistics University of Naples Federico II Via Cinthia, Monte S.Angelo
Sensex Realized Volatility Index
Sensex Realized Volatility Index Introduction: Volatility modelling has traditionally relied on complex econometric procedures in order to accommodate the inherent latent character of volatility. Realized
Path-dependent options
Chapter 5 Path-dependent options The contracts we have seen so far are the most basic and important derivative products. In this chapter, we shall discuss some complex contracts, including barrier options,
Barrier Options. Peter Carr
Barrier Options Peter Carr Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU March 14th, 2008 What are Barrier Options?
Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem
Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial
OPTION PRICING FOR WEIGHTED AVERAGE OF ASSET PRICES
OPTION PRICING FOR WEIGHTED AVERAGE OF ASSET PRICES Hiroshi Inoue 1, Masatoshi Miyake 2, Satoru Takahashi 1 1 School of Management, T okyo University of Science, Kuki-shi Saitama 346-8512, Japan 2 Department
Chapter 2: Binomial Methods and the Black-Scholes Formula
Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the
Which Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios
Which Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios Riaz Ahmad Course Director for CQF, 7city, London Paul Wilmott Wilmott Associates, London Abstract:
Cointegration Pairs Trading Strategy On Derivatives 1
Cointegration Pairs Trading Strategy On Derivatives Cointegration Pairs Trading Strategy On Derivatives 1 By Ngai Hang CHAN Co-Authors: Dr. P.K. LEE and Ms. Lai Fun PUN Department of Statistics The Chinese
Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation
EPJ Web of Conferences 68, 0 00 06 (2014) DOI: 10.1051/ epjconf/ 20146800006 C Owned by the authors, published by EDP Sciences, 2014 Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson
THE BLACK-SCHOLES MODEL AND EXTENSIONS
THE BLAC-SCHOLES MODEL AND EXTENSIONS EVAN TURNER Abstract. This paper will derive the Black-Scholes pricing model of a European option by calculating the expected value of the option. We will assume that
How the Greeks would have hedged correlation risk of foreign exchange options
How the Greeks would have hedged correlation risk of foreign exchange options Uwe Wystup Commerzbank Treasury and Financial Products Neue Mainzer Strasse 32 36 60261 Frankfurt am Main GERMANY [email protected]
The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models
780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon
Does Implied Volatility Predict Realized Volatility?
Uppsala University Autumn 2013 Department of Economics Bachelor s thesis Does Implied Volatility Predict Realized Volatility? An Examination of Market Expectations BY EMMANUEL LATIM OKUMU 1 AND OSCAR NILSSON
Understanding Options and Their Role in Hedging via the Greeks
Understanding Options and Their Role in Hedging via the Greeks Bradley J. Wogsland Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 Options are priced assuming that
Black-Scholes. Ser-Huang Poon. September 29, 2008
Black-Scholes Ser-Huang Poon September 29, 2008 A European style call (put) option is a right, but not an obligation, to purchase (sell) an asset at a strike price on option maturity date, T. An American
American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options
American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.
Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6
Lecture 15 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 Black-Scholes Equation and Replicating Portfolio 2 Static
Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration
CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put:
Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/)
Hedging Barriers Liuren Wu Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/) Based on joint work with Peter Carr (Bloomberg) Modeling and Hedging Using FX Options, March
1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM)
Copyright c 2013 by Karl Sigman 1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM) For an introduction to how one can construct BM, see the Appendix at the end of these notes A stochastic
Some Practical Issues in FX and Equity Derivatives
Some Practical Issues in FX and Equity Derivatives Phenomenology of the Volatility Surface The volatility matrix is the map of the implied volatilities quoted by the market for options of different strikes
Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas
Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas James R. Garven Latest Revision: 27 April, 2015 Abstract This paper provides an alternative derivation of the
Lecture 4: The Black-Scholes model
OPTIONS and FUTURES Lecture 4: The Black-Scholes model Philip H. Dybvig Washington University in Saint Louis Black-Scholes option pricing model Lognormal price process Call price Put price Using Black-Scholes
Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
Lisa Borland. A multi-timescale statistical feedback model of volatility: Stylized facts and implications for option pricing
Evnine-Vaughan Associates, Inc. A multi-timescale statistical feedback model of volatility: Stylized facts and implications for option pricing Lisa Borland October, 2005 Acknowledgements: Jeremy Evnine
3 Results. σdx. df =[µ 1 2 σ 2 ]dt+ σdx. Integration both sides will form
Appl. Math. Inf. Sci. 8, No. 1, 107-112 (2014) 107 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/080112 Forecasting Share Prices of Small Size Companies
Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory
Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory Samuel W. Malone April 19, 2002 This work is supported by NSF VIGRE grant number DMS-9983320. Page 1 of 44 1 Introduction This
QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS
QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for
Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington
Option Pricing with S+FinMetrics PETER FULEKY Department of Economics University of Washington August 27, 2007 Contents 1 Introduction 3 1.1 Terminology.............................. 3 1.2 Option Positions...........................
How To Price Garch
2011 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (2011) (2011) IACSIT Press, Singapore A Study on Heston-Nandi GARCH Option Pricing Model Suk Joon Byun KAIST Business
BROWNIAN MOTION DEVELOPMENT FOR MONTE CARLO METHOD APPLIED ON EUROPEAN STYLE OPTION PRICE FORECASTING
International journal of economics & law Vol. 1 (2011), No. 1 (1-170) BROWNIAN MOTION DEVELOPMENT FOR MONTE CARLO METHOD APPLIED ON EUROPEAN STYLE OPTION PRICE FORECASTING Petar Koĉović, Fakultet za obrazovanje
Modeling the Implied Volatility Surface. Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003
Modeling the Implied Volatility Surface Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003 This presentation represents only the personal opinions of the author and not those of Merrill
Geometric Brownian Motion, Option Pricing, and Simulation: Some Spreadsheet-Based Exercises in Financial Modeling
Spreadsheets in Education (ejsie) Volume 5 Issue 3 Article 4 November 01 Geometric Brownian Motion, Option Pricing, and Simulation: Some Spreadsheet-Based Exercises in Financial Modeling Kevin D. Brewer
Volatility Index (VIX) and S&P100 Volatility Index (VXO)
Volatility Index (VIX) and S&P100 Volatility Index (VXO) Michael McAleer School of Economics and Commerce University of Western Australia and Faculty of Economics Chiang Mai University Volatility Index
Foreign Exchange Symmetries
Foreign Exchange Symmetries Uwe Wystup MathFinance AG Waldems, Germany www.mathfinance.com 8 September 2008 Contents 1 Foreign Exchange Symmetries 2 1.1 Motivation.................................... 2
Financial Time Series Analysis (FTSA) Lecture 1: Introduction
Financial Time Series Analysis (FTSA) Lecture 1: Introduction Brief History of Time Series Analysis Statistical analysis of time series data (Yule, 1927) v/s forecasting (even longer). Forecasting is often
Studying the Properties of the Correlation Trades
MPRA Munich Personal RePEc Archive Studying the Properties of the Correlation Trades Gea Cayetano King s College London 2007 Online at http://mpra.ub.uni-muenchen.de/22318/ MPRA Paper No. 22318, posted
Consistent Pricing of FX Options
Consistent Pricing of FX Options Antonio Castagna Fabio Mercurio Banca IMI, Milan In the current markets, options with different strikes or maturities are usually priced with different implied volatilities.
An Empirical Analysis of Option Valuation Techniques. Using Stock Index Options
An Empirical Analysis of Option Valuation Techniques Using Stock Index Options Mohammad Yamin Yakoob 1 Duke University Durham, NC April 2002 1 Mohammad Yamin Yakoob graduated cum laude from Duke University
Finite Differences Schemes for Pricing of European and American Options
Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes
Portfolio insurance a comparison of naive versus popular strategies
Jorge Costa (Portugal), Raquel M. Gaspar (Portugal) Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 5, Issue 1, 2014 Portfolio insurance a comparison of naive versus popular
Investors and Central Bank s Uncertainty Embedded in Index Options On-Line Appendix
Investors and Central Bank s Uncertainty Embedded in Index Options On-Line Appendix Alexander David Haskayne School of Business, University of Calgary Pietro Veronesi University of Chicago Booth School
Option Pricing. 1 Introduction. Mrinal K. Ghosh
Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified
Risk management of CPPI funds in switching regime markets.
Risk management of CPPI funds in switching regime markets. Donatien Hainaut October, 1 NSA-CRST. 945 Malako Cedex, France. mail: [email protected] Abstract The constant proportion portfolio insurance
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in
Schonbucher Chapter 9: Firm Value and Share Priced-Based Models Updated 07-30-2007
Schonbucher Chapter 9: Firm alue and Share Priced-Based Models Updated 07-30-2007 (References sited are listed in the book s bibliography, except Miller 1988) For Intensity and spread-based models of default
Diusion processes. Olivier Scaillet. University of Geneva and Swiss Finance Institute
Diusion processes Olivier Scaillet University of Geneva and Swiss Finance Institute Outline 1 Brownian motion 2 Itô integral 3 Diusion processes 4 Black-Scholes 5 Equity linked life insurance 6 Merton
Asian Option Pricing Formula for Uncertain Financial Market
Sun and Chen Journal of Uncertainty Analysis and Applications (215) 3:11 DOI 1.1186/s4467-15-35-7 RESEARCH Open Access Asian Option Pricing Formula for Uncertain Financial Market Jiajun Sun 1 and Xiaowei
Parameter Estimation for Black-Scholes Equation. Peter Gross Advisor: Dr. Jialing Dai. Final Report URA Spring 2006
Parameter Estimation for Black-Scholes Equation Peter Gross Advisor: Dr. Jialing Dai Final Report URA Spring 2006 Abstract The Black-Scholes equation is a hallmark of mathematical finance, and any study
Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model
Brunel University Msc., EC5504, Financial Engineering Prof Menelaos Karanasos Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model Recall that the price of an option is equal to
Some Research Problems in Uncertainty Theory
Journal of Uncertain Systems Vol.3, No.1, pp.3-10, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences
Markov modeling of Gas Futures
Markov modeling of Gas Futures p.1/31 Markov modeling of Gas Futures Leif Andersen Banc of America Securities February 2008 Agenda Markov modeling of Gas Futures p.2/31 This talk is based on a working
Introduction to Arbitrage-Free Pricing: Fundamental Theorems
Introduction to Arbitrage-Free Pricing: Fundamental Theorems Dmitry Kramkov Carnegie Mellon University Workshop on Interdisciplinary Mathematics, Penn State, May 8-10, 2015 1 / 24 Outline Financial market
The Black-Scholes Model
Chapter 4 The Black-Scholes Model 4. Introduction Easily the best known model of option pricing, the Black-Scholes model is also one of the most widely used models in practice. It forms the benchmark model
Review of Basic Options Concepts and Terminology
Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some
Black-Scholes and the Volatility Surface
IEOR E4707: Financial Engineering: Continuous-Time Models Fall 2009 c 2009 by Martin Haugh Black-Scholes and the Volatility Surface When we studied discrete-time models we used martingale pricing to derive
Mathematical Finance
Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
Betting on Volatility: A Delta Hedging Approach. Liang Zhong
Betting on Volatility: A Delta Hedging Approach Liang Zhong Department of Mathematics, KTH, Stockholm, Sweden April, 211 Abstract In the financial market, investors prefer to estimate the stock price
Math 526: Brownian Motion Notes
Math 526: Brownian Motion Notes Definition. Mike Ludkovski, 27, all rights reserved. A stochastic process (X t ) is called Brownian motion if:. The map t X t (ω) is continuous for every ω. 2. (X t X t
Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
Option Pricing with Lévy Processes
Department of Finance Department of Mathematics Faculty of Sciences Option Pricing with Lévy Processes Jump models for European-style options Rui Monteiro Dissertation Master of Science in Financial Mathematics
Using the SABR Model
Definitions Ameriprise Workshop 2012 Overview Definitions The Black-76 model has been the standard model for European options on currency, interest rates, and stock indices with it s main drawback being
On Market-Making and Delta-Hedging
On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing What to market makers do? Provide
Option Pricing. Chapter 9 - Barrier Options - Stefan Ankirchner. University of Bonn. last update: 9th December 2013
Option Pricing Chapter 9 - Barrier Options - Stefan Ankirchner University of Bonn last update: 9th December 2013 Stefan Ankirchner Option Pricing 1 Standard barrier option Agenda What is a barrier option?
Pricing and hedging of FX plain vanilla options
Pricing and hedging of FX plain vanilla options An empirical study on the hedging performance of a dynamic Black-Scholes delta hedge with updating implied volatility under the assumption of Heston and
Option Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
The interest volatility surface
The interest volatility surface David Kohlberg Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2011:7 Matematisk statistik Juni 2011 www.math.su.se Matematisk
