A Simple Inventory System
|
|
|
- Maurice King
- 10 years ago
- Views:
Transcription
1 A Simple Inventory System Section 1.3 Discrete-Event Simulation: A First Course
2 Section 1.3: A Simple Inventory System customers. demand items.. facility. order items.. supplier Distributes items from current inventory to customers Customer demand is discrete Simple one type of item
3 Inventory Policy Transaction Reporting Inventory review after each transaction Significant labor may be required Less likely to experience shortage Periodic Inventory Review Inventory review is periodic Items are ordered, if necessary, only at review times (s, S) are the min,max inventory levels, 0 s < S We assume periodic inventory review Search for (s, S) that minimize cost
4 Conceptual Model Inventory System Costs Holding cost: for items in inventory Shortage cost: for unmet demand Setup cost: fixed cost when order is placed Item cost: per-item order cost Ordering cost: sum of setup and item costs Additional Assumptions Back ordering is possible No delivery lag Initial inventory level is S Terminal inventory level is S
5 Specification Model Time begins at t = 0 Review times are t = 0, 1, 2,... l i 1 : inventory level at beginning of i th interval o i 1 : amount ordered at time t = i 1, (o i 1 0) d i : demand quantity during i th interval, (d i 0) Inventory at end of interval can be negative
6 Inventory Level Considerations Inventory level is reviewed at t = i 1 If at least s, no order is placed If less than s, inventory is replenished to S { 0 li 1 s o i 1 = S l i 1 l i 1 < s Items are delivered immediately At end of i th interval, inventory diminished by d i l i = l i 1 + o i 1 d i
7 Time Evolution of Inventory Level Algorithm l 0 = S; /* the initial inventory level is S */ i = 0; while (more demand to process ) { i++; if (l i 1 < s) o i 1 = S - l i 1 ; else o i 1 = 0; d i = GetDemand(); l i = l i 1 + o i 1 - d i ; } n = i; o n = S - l n ; l n = S; /* the terminal inventory level is S */ return l 1,l 2,...,l n and o 1,o 2,...,o n ;
8 Example 1.3.1: SIS with Sample Demands Let (s, S) = (20, 60) and consider n = 12 time intervals i : d i : l i 80 S 40 s i
9 Output Statistics What statistics to compute? Average demand and average order d = 1 n n i=1 d i ō = 1 n n o i. i=1 For Example data d = ō = 305/ items per time interval
10 Flow Balance A Simple Inventory System Average demand and order must be equal Ending inventory level is S Over the simulated period, all demand is satisfied Average flow of items in equals average flow of items out customers. d facility. ō supplier The inventory system is flow balanced
11 Constant Demand Rate Holding and shortage costs are proportional to time-averaged inventory levels Must know inventory level for all t Assume the demand rate is constant between review times l(t) 80 S 40 s t
12 Inventory Level as a Function of Time The inventory level at any time t in i th interval is l(t) = l i 1 (t i + 1)d i if demand rate is constant between review times l i 1 (i 1, l i 1 ) l(t) l i 1 d i l(t) = l i 1 (t i + 1)d i (i, l i 1 d i). i 1 l i 1 = l i 1 + o i 1 represents inventory level after review i t
13 Inventory Decrease Is Not Linear Inventory level at any time t is an integer l(t) should be rounded to an integer value l(t) is a stair-step, rather than linear, function l(t) l i 1 l i 1 d i (i 1, l i 1 ) l(t) = l i 1 (t i + 1)d i (i, l i 1 d i). i 1 i t
14 Time-Averaged Inventory Level l(t) is the basis for computing the time-averaged inventory level Case 1: If l(t) remains non-negative over i th interval i l + i = l(t)dt i 1 Case 2: If l(t) becomes negative at some time τ τ l + i = l(t)dt i 1 l i i = l(t)dt τ l + i l i is the time-averaged holding level is the time-averaged shortage level
15 Case 1: No Back Ordering No shortage during i th time interval iff. d i l i 1 i 1 i 0 l i 1 d i l i 1 l(t) t. (i 1, l i 1 ) (i, l i 1 d i) Time-averaged holding level: area of a trapezoid l + i = i i 1 l(t)dt = l i 1 + (l i 1 d i) 2 = l i d i
16 Case 2: Back Ordering Inventory becomes negative iff. d i > l i 1 i 1 τ i l i 1 d i 0 s l i 1 l(t) t. (i 1, l i 1 ) (i, l i 1 d i)
17 Case 2: Back Ordering (Cont.) l(t) becomes negative at time t = τ = i 1 + (l i 1 /d i) Time-averaged holding and shortage levels for i th interval computed as the areas of triangles l i τ l + i = i 1 i = τ l(t)dt = = (l i 1 )2 2d i l(t)dt = = (d i l i 1 )2 2d i
18 Time-Averaged Inventory Level Time-averaged holding level and time-averaged shortage level l + = 1 n n i=1 l + i l = 1 n n i=1 l i Note that time-averaged shortage level is positive The time-averaged inventory level is l = 1 n n 0 l(t)dt = l + l
19 Computational Model sis1 is a trace-driven computational model of the SIS Computes the statistics d, ō, l +, l and the order frequency ū ū = number of orders n Consistency check: compute ō and d separately, then compare
20 Example 1.3.4: Executing sis1 Trace file sis1.dat contains data for n = 100 time intervals With (s, S) = (20, 80) ō = d = ū = 0.39 l + = l = 0.25 After Chapter 2, we will generate data randomly (no trace file)
21 Operating Costs A facility s cost of operation is determined by: c item : unit cost of new item c setup : fixed cost for placing an order c hold : cost to hold one item for one time interval c short : cost of being short one item for one time interval
22 Case Study A Simple Inventory System Automobile dealership that uses weekly periodic inventory review The facility is the showroom and surrounding areas The items are new cars The supplier is the car manufacturer...customers are people convinced by clever advertising that their lives will be improved significantly if they purchase a new car from this dealer. (S. Park) Simple (one type of car) inventory system
23 Example 1.3.5: Case Study Materialized Limited to a maximum of S = 80 cars Inventory reviewed every Monday If inventory falls below s = 20, order cars sufficient to restore to S For now, ignore delivery lag Costs: Item cost is c item = $8000 per item Setup cost is c setup = $1000 Holding cost is c hold = $25 per week Shortage cost is c hold = $700 per week
24 Per-Interval Average Operating Costs The average operating costs per time interval are item cost: c item ō setup cost: c setup ū holding cost: c hold l + shortage cost: c short l The average total operating cost per time interval is their sum For the stats and costs of the hypothetical dealership: item cost: $ = $234, 320 per week setup cost: $ = $390 per week holding cost: $ = $1, 060 per week shortage cost: $ = $175 per week
25 Cost Minimization By varying s (and possibly S), an optimal policy can be determined Optimal minimum average cost Note that ō = d, and d depends only on the demands Hence, item cost is independent of (s, S) Average dependent cost is avg setup cost + avg holding cost + avg shortage cost
26 Experimentation Let S be fixed, and let the demand sequence be fixed If s is systematically increased, we expect: average setup cost and holding cost will increase as s increases average shortage cost will decrease as s increases average dependent cost will have U shape, yielding an optimum From results (next slide), minimum cost is $1550 at s = 22
27 Example 1.3.7: Simulation Results setup cost s holding cost s shortage cost total cost s s
INTEGRATED OPTIMIZATION OF SAFETY STOCK
INTEGRATED OPTIMIZATION OF SAFETY STOCK AND TRANSPORTATION CAPACITY Horst Tempelmeier Department of Production Management University of Cologne Albertus-Magnus-Platz D-50932 Koeln, Germany http://www.spw.uni-koeln.de/
Discrete-Event Simulation
Discrete-Event Simulation Prateek Sharma Abstract: Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the
1: B asic S imu lati on Modeling
Network Simulation Chapter 1: Basic Simulation Modeling Prof. Dr. Jürgen Jasperneite 1 Contents The Nature of Simulation Systems, Models and Simulation Discrete Event Simulation Simulation of a Single-Server
Section IV.1: Recursive Algorithms and Recursion Trees
Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller
CE2451 Engineering Economics & Cost Analysis. Objectives of this course
CE2451 Engineering Economics & Cost Analysis Dr. M. Selvakumar Associate Professor Department of Civil Engineering Sri Venkateswara College of Engineering Objectives of this course The main objective of
Operations Management
11-1 Inventory Management 11-2 Inventory Management Operations Management William J. Stevenson CHAPTER 11 Inventory Management 8 th edition McGraw-Hill/Irwin Operations Management, Eighth Edition, by William
Stochastic Inventory Control
Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the
Inventory Management - A Teaching Note
Inventory Management - A Teaching Note Sundaravalli Narayanaswami W.P. No.2014-09-01 September 2014 INDIAN INSTITUTE OF MANAGEMENT AHMEDABAD-380 015 INDIA Inventory Management - A Teaching Note Sundaravalli
The Lecture Contains: Application of stochastic processes in areas like manufacturing. Product(s)/Good(s) to be produced. Decision variables
The Lecture Contains: Application of stochastic processes in areas like manufacturing Product(s)/Good(s) to be produced Decision variables Structure of decision problem Demand Ordering/Production Cost
HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE
HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE Subodha Kumar University of Washington [email protected] Varghese S. Jacob University of Texas at Dallas [email protected]
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
Small Lot Production. Chapter 5
Small Lot Production Chapter 5 1 Lot Size Basics Intuition leads many to believe we should manufacture products in large lots. - Save on setup time - Save on production costs Costs associated with Lots
Modeling Stochastic Inventory Policy with Simulation
Modeling Stochastic Inventory Policy with Simulation 1 Modeling Stochastic Inventory Policy with Simulation János BENKŐ Department of Material Handling and Logistics, Institute of Engineering Management
A Programme Implementation of Several Inventory Control Algorithms
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume, No Sofia 20 A Programme Implementation of Several Inventory Control Algorithms Vladimir Monov, Tasho Tashev Institute of Information
Analysis of a Production/Inventory System with Multiple Retailers
Analysis of a Production/Inventory System with Multiple Retailers Ann M. Noblesse 1, Robert N. Boute 1,2, Marc R. Lambrecht 1, Benny Van Houdt 3 1 Research Center for Operations Management, University
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
Estimating the Average Value of a Function
Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and
Inventory Management and Risk Pooling. Xiaohong Pang Automation Department Shanghai Jiaotong University
Inventory Management and Risk Pooling Xiaohong Pang Automation Department Shanghai Jiaotong University Key Insights from this Model The optimal order quantity is not necessarily equal to average forecast
Inventory: Independent Demand Systems
Inventory: Independent Demand Systems Inventory is used in most manufacturing, service, wholesale, and retail activities and because it can enhance profitability and competitiveness. It is widely discussed
Supply Chain Inventory Management Chapter 9. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall 09-01
Supply Chain Inventory Management Chapter 9 09-01 What is a Inventory Management? Inventory Management The planning and controlling of inventories in order to meet the competitive priorities of the organization.
Single item inventory control under periodic review and a minimum order quantity
Single item inventory control under periodic review and a minimum order quantity G. P. Kiesmüller, A.G. de Kok, S. Dabia Faculty of Technology Management, Technische Universiteit Eindhoven, P.O. Box 513,
8. Time Series and Prediction
8. Time Series and Prediction Definition: A time series is given by a sequence of the values of a variable observed at sequential points in time. e.g. daily maximum temperature, end of day share prices,
Dependent vs Independent Demand. The Evolution of MRP II. MRP II:Manufacturing Resource Planning Systems. The Modules In MRP II System
MRP II:Manufacturing Resource Planning Systems IE 505: Production Planning Control Lecture Notes* Rakesh Nagi University at Buffalo * Adapted in part from Lecture Notes of Dr. George Harhalakis, University
Material Requirements Planning MRP
Material Requirements Planning MRP ENM308 Planning and Control I Spring 2013 Haluk Yapıcıoğlu, PhD Hierarchy of Decisions Forecast of Demand Aggregate Planning Master Schedule Inventory Control Operations
Purchasing Final. Ch.3 The Legal Aspects of Purchasing
Purchasing Final Ch.3 The Legal Aspects of Purchasing In business environments, ethical behavior is the foundation of trust. Purchasing agents are governed by the company s ethical policies, o The Uniform
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
large-scale machine learning revisited Léon Bottou Microsoft Research (NYC)
large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) 1 three frequent ideas in machine learning. independent and identically distributed data This experimental paradigm has driven
Factoring Algorithms
Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
Antti Salonen KPP227 KPP227 1
1 What is capacity? The maximum rate of output for a facility OR The rate at which output can be produced by an operating unit (machine, process, workstation, facility or an entire company). 2 Factors
Algorithms are the threads that tie together most of the subfields of computer science.
Algorithms Algorithms 1 Algorithms are the threads that tie together most of the subfields of computer science. Something magically beautiful happens when a sequence of commands and decisions is able to
Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes
Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical
Project procurement and disposal decisions: An inventory management model
Int. J. Production Economics 71 (2001) 467}472 Project procurement and disposal decisions: An inventory management model Keith A. Willoughby* Department of Management, Bucknell University, Lewisburg, PA
Discrete-Event Simulation
Discrete-Event Simulation 14.11.2001 Introduction to Simulation WS01/02 - L 04 1/40 Graham Horton Contents Models and some modelling terminology How a discrete-event simulation works The classic example
A Production Planning Problem
A Production Planning Problem Suppose a production manager is responsible for scheduling the monthly production levels of a certain product for a planning horizon of twelve months. For planning purposes,
VENDOR MANAGED INVENTORY
VENDOR MANAGED INVENTORY Martin Savelsbergh School of Industrial and Systems Engineering Georgia Institute of Technology Joint work with Ann Campbell, Anton Kleywegt, and Vijay Nori Distribution Systems:
Case Study. Implementing IAS 39 with Fairmat
Case Study Implementing IAS 39 with Fairmat Revision #3 In this tutorial we will show how international accounting standard 39 principles, which regulate how financial instruments must be accounted for
Polarization codes and the rate of polarization
Polarization codes and the rate of polarization Erdal Arıkan, Emre Telatar Bilkent U., EPFL Sept 10, 2008 Channel Polarization Given a binary input DMC W, i.i.d. uniformly distributed inputs (X 1,...,
Demand forecasting & Aggregate planning in a Supply chain. Session Speaker Prof.P.S.Satish
Demand forecasting & Aggregate planning in a Supply chain Session Speaker Prof.P.S.Satish 1 Introduction PEMP-EMM2506 Forecasting provides an estimate of future demand Factors that influence demand and
Chapter 11 Monte Carlo Simulation
Chapter 11 Monte Carlo Simulation 11.1 Introduction The basic idea of simulation is to build an experimental device, or simulator, that will act like (simulate) the system of interest in certain important
Important Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.
Supply, Demand, Equilibrium, and Elasticity
The Meaning of Supply Supply describes the available goods and services in an economy. In a freemarket economy like the United States, firms tend to be the economic agents producing goods and services
SINGLE-STAGE MULTI-PRODUCT PRODUCTION AND INVENTORY SYSTEMS: AN ITERATIVE ALGORITHM BASED ON DYNAMIC SCHEDULING AND FIXED PITCH PRODUCTION
SIGLE-STAGE MULTI-PRODUCT PRODUCTIO AD IVETORY SYSTEMS: A ITERATIVE ALGORITHM BASED O DYAMIC SCHEDULIG AD FIXED PITCH PRODUCTIO Euclydes da Cunha eto ational Institute of Technology Rio de Janeiro, RJ
Auto Assembly Analysis Operations Research April 8th 2010 Lindsay Orlando
Auto Assembly Analysis Operations Research April 8th 2010 Lindsay Orlando Abstract Rachel Rosecrantz, the manager of the assembly plant of Automobile Alliance, must make decisions in several different
$496. 80. Example If you can earn 6% interest, what lump sum must be deposited now so that its value will be $3500 after 9 months?
Simple Interest, Compound Interest, and Effective Yield Simple Interest The formula that gives the amount of simple interest (also known as add-on interest) owed on a Principal P (also known as present
1 The EOQ and Extensions
IEOR4000: Production Management Lecture 2 Professor Guillermo Gallego September 9, 2004 Lecture Plan 1. The EOQ and Extensions 2. Multi-Item EOQ Model 1 The EOQ and Extensions This section is devoted to
USB 3.0 CDR Model White Paper Revision 0.5
USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
Supply Chain Analysis Tools
Supply Chain Analysis Tools MS&E 262 Supply Chain Management April 14, 2004 Inventory/Service Trade-off Curve Motivation High Inventory Low Poor Service Good Analytical tools help lower the curve! 1 Outline
Offline sorting buffers on Line
Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: [email protected] 2 IBM India Research Lab, New Delhi. email: [email protected]
I. Basic concepts: Buoyancy and Elasticity II. Estimating Tax Elasticity III. From Mechanical Projection to Forecast
Elements of Revenue Forecasting II: the Elasticity Approach and Projections of Revenue Components Fiscal Analysis and Forecasting Workshop Bangkok, Thailand June 16 27, 2014 Joshua Greene Consultant IMF-TAOLAM
Universidad del Turabo MANA 705 DL Workshop Eight W8_8_3 Aggregate Planning, Material Requirement Planning, and Capacity Planning
Aggregate, Material Requirement, and Capacity Topic: Aggregate, Material Requirement, and Capacity Slide 1 Welcome to Workshop Eight presentation: Aggregate planning, material requirement planning, and
Recall this chart that showed how most of our course would be organized:
Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
The Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
Evaluating the Lead Time Demand Distribution for (r, Q) Policies Under Intermittent Demand
Proceedings of the 2009 Industrial Engineering Research Conference Evaluating the Lead Time Demand Distribution for (r, Q) Policies Under Intermittent Demand Yasin Unlu, Manuel D. Rossetti Department of
Draft 1, Attempted 2014 FR Solutions, AP Statistics Exam
Free response questions, 2014, first draft! Note: Some notes: Please make critiques, suggest improvements, and ask questions. This is just one AP stats teacher s initial attempts at solving these. I, as
Confidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 1 (Non-Calculator) Foundation Tier
Centre No. Candidate No. Paper Reference 1 3 8 0 1 F Paper Reference(s) 1380/1F Edexcel GCSE Mathematics (Linear) 1380 Paper 1 (Non-Calculator) Foundation Tier Friday 2 March 2012 Afternoon Time: 1 hour
Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.
Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
A MANAGER S ROADMAP GUIDE FOR LATERAL TRANS-SHIPMENT IN SUPPLY CHAIN INVENTORY MANAGEMENT
A MANAGER S ROADMAP GUIDE FOR LATERAL TRANS-SHIPMENT IN SUPPLY CHAIN INVENTORY MANAGEMENT By implementing the proposed five decision rules for lateral trans-shipment decision support, professional inventory
Forecasting irregular demand for spare parts inventory
Forecasting irregular demand for spare parts inventory Dang Quang Vinh Department of Industrial Engineering, Pusan National University, Busan 609-735, Korea [email protected] Abstract. Accurate demand
Glossary of Inventory Management Terms
Glossary of Inventory Management Terms ABC analysis also called Pareto analysis or the rule of 80/20, is a way of categorizing inventory items into different types depending on value and use Aggregate
Econ 201 Exam 1 F2002 Professor Phil Miller Name: Student Number:
Econ 201 Exam 1 F2002 Professor Phil Miller Name: Student Number: Multiple Choice (3 points each) Directions: Identify the letter of the choice that best completes the statement or answers the question.
6 Scalar, Stochastic, Discrete Dynamic Systems
47 6 Scalar, Stochastic, Discrete Dynamic Systems Consider modeling a population of sand-hill cranes in year n by the first-order, deterministic recurrence equation y(n + 1) = Ry(n) where R = 1 + r = 1
STRATEGIC CAPACITY PLANNING USING STOCK CONTROL MODEL
Session 6. Applications of Mathematical Methods to Logistics and Business Proceedings of the 9th International Conference Reliability and Statistics in Transportation and Communication (RelStat 09), 21
Static and dynamic analysis: basic concepts and examples
Static and dynamic analysis: basic concepts and examples Ragnar Nymoen Department of Economics, UiO 18 August 2009 Lecture plan and web pages for this course The lecture plan is at http://folk.uio.no/rnymoen/econ3410_h08_index.html,
Managing IT Projects. Chapter 2 The PMI Framework
Managing IT Projects Chapter 2 The PMI Framework The PMI Framework The Project Management Institute,USA is an internationally acclaimed organization Devoted to Creation & sharing of knowledge in the area
SIMPLIFIED PERFORMANCE MODEL FOR HYBRID WIND DIESEL SYSTEMS. J. F. MANWELL, J. G. McGOWAN and U. ABDULWAHID
SIMPLIFIED PERFORMANCE MODEL FOR HYBRID WIND DIESEL SYSTEMS J. F. MANWELL, J. G. McGOWAN and U. ABDULWAHID Renewable Energy Laboratory Department of Mechanical and Industrial Engineering University of
Chapter 12 Inventory Control and Management
Chapter 12 Inventory Control and Management Learning Outcomes Describe the functions and costs of an inventory system. Determine the order quantity and Economic Order Quantity. Determine the reorder point
SEEM 2440A/B Engineering Economics First term, 2011 12. Midterm Examination
SEEM 2440A/B Engineering Economics First term, 2011 12 Midterm Examination Instructions Exam Duration: 90 minutes Total Marks: 100 This examination paper comprises of THREE questions. Answer ALL questions.
Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia
Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times
Digital Signatures. Murat Kantarcioglu. Based on Prof. Li s Slides. Digital Signatures: The Problem
Digital Signatures Murat Kantarcioglu Based on Prof. Li s Slides Digital Signatures: The Problem Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies
CHAPTER 8 PROFIT MAXIMIZATION AND COMPETITIVE SUPPLY
CHAPTER 8 PROFIT MAXIMIZATION AND COMPETITIVE SUPPLY TEACHING NOTES This chapter begins by explaining what we mean by a competitive market and why it makes sense to assume that firms try to maximize profit.
1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.
1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal
Optimization of the physical distribution of furniture. Sergey Victorovich Noskov
Optimization of the physical distribution of furniture Sergey Victorovich Noskov Samara State University of Economics, Soviet Army Street, 141, Samara, 443090, Russian Federation Abstract. Revealed a significant
MOS 3330 Test 2 Review Problems & Solutions
MOS 3330 Test 2 Review Problems & Solutions General Information Test date, time, location: See the course outline See also the course web site: dan.uwo.ca/courses/3330 Test time conflict (due to having
Cloud Storage and Online Bin Packing
Cloud Storage and Online Bin Packing Doina Bein, Wolfgang Bein, and Swathi Venigella Abstract We study the problem of allocating memory of servers in a data center based on online requests for storage.
Algebra 1: Basic Skills Packet Page 1 Name: Integers 1. 54 + 35 2. 18 ( 30) 3. 15 ( 4) 4. 623 432 5. 8 23 6. 882 14
Algebra 1: Basic Skills Packet Page 1 Name: Number Sense: Add, Subtract, Multiply or Divide without a Calculator Integers 1. 54 + 35 2. 18 ( 30) 3. 15 ( 4) 4. 623 432 5. 8 23 6. 882 14 Decimals 7. 43.21
Chapter 12 Simulation 537
Simulation, CONTENTS 12.1 RISK ANALYSIS PortaCom Project What-If Analysis Simulation Simulation of the PortaCom Project 12.2 INVENTORY SIMULATION Butler Inventory Simulation 12.3 WAITING LINE SIMULATION
An Overview on Theory of Inventory
An Overview on Theory of Inventory Sandipan Karmakar Dept of Production and Industrial Engineering NIT Jamshedpur October 8, 015 1 Introduction Inventory is a stock of items kept by an organization to
Introduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
Likelihood Approaches for Trial Designs in Early Phase Oncology
Likelihood Approaches for Trial Designs in Early Phase Oncology Clinical Trials Elizabeth Garrett-Mayer, PhD Cody Chiuzan, PhD Hollings Cancer Center Department of Public Health Sciences Medical University
Batch Production Scheduling in the Process Industries. By Prashanthi Ravi
Batch Production Scheduling in the Process Industries By Prashanthi Ravi INTRODUCTION Batch production - where a batch means a task together with the quantity produced. The processing of a batch is called
Probability Generating Functions
page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Operations Research in Supply Chain Optimization
Operations Research in Supply Chain Optimization M.G. Speranza University of Brescia, Italy Department of Management Science & Technology Athens University of Economics and Business November 12, 20 The
INVENTORY Systems & Models
INVENTORY Systems & Models OPERATIONS MANAGEMENT Lecture 13 Prepared by: A.H.M Fazle Elahi, Lecturer, Dept. of ME, KUET Elements of an Inventory System: Specification of an Inventory System (Cont d) I.
Veri cation and Validation of Simulation Models
of of Simulation Models mpressive slide presentations Faculty of Math and CS - UBB 1st Semester 2010-2011 Other mportant Validate nput- Hypothesis Type Error Con dence nterval Using Historical nput of
2WB05 Simulation Lecture 8: Generating random variables
2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating
International Journal of Advances in Science and Technology (IJAST)
Determination of Economic Production Quantity with Regard to Machine Failure Mohammadali Pirayesh 1, Mahsa Yavari 2 1,2 Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University
11.1 Estimating Gross Domestic Product (GDP) Objectives
11.1 Estimating Gross Domestic Product (GDP) Objectives Describe what the gross domestic product measures. Learn two ways to calculate the gross domestic product, and explain why they are equivalent. 11.1
CSI 333 Lecture 1 Number Systems
CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...
