Size: px
Start display at page:

Download ""

Transcription

1 LoadBalancingforMinimizingExecutionTimeofaTargetJobon anetworkofheterogeneousworkstations DepartmentofElectricalandComputerEngineering S.-Y.LeeandC.-H.Cho Auburn,AL AuburnUniversity NOWs.Insuchanenvironment,partitioning(loadbalancing)atargetjobbasedononlythe executiontimeofatargetjobistobeminimized.jobarrivalrateandsizeare\random"ona Anetworkofworkstations(NOWs)maybeemployedforhighperformancecomputingwhere Abstract tominimizeexecutiontimeofatargetjobonasetofworkstationswheretheround-robinjob schedulingpolicyisadopted.ithasbeenveriedthroughcomputersimulationthattheproposed rstordermoments(means)ofsystemparametersisnotoptimal.inthispaper,itisproposed toconsiderthesecondordermoments(standarddeviations)alsoinloadbalancinginorder staticanddynamicloadbalancingschemescansignicantlyreduceexecutiontimeofatarget jobinanowsenvironment,comparedtocaseswhereonlythemeansoftheparametersare used. scheduling,standarddeviation,staticloadbalancing,stochasticmodel KeyWords:Dynamicloadbalancing,Executiontime,Networkofworkstation,Round-robinjob

2 tributedcomputingtoolinanincreasingnumberofcases[1][2].accordingly,usinganows Anetworkofworkstations(NOWs),orcomputers,isbeingemployedasahighperformancedis- 1 Introduction issueofloadbalancingingeneralisnotnew.manyresearchershaveinvestigatedvariousaspects balancinghasasignicanteectonperformanceonecanachieveonanowsenvironment.the ecientlyforspeedingupvariousapplicationshasbecomeanimportantissue.inparticular,load ofloadbalancingforquitelongatime[3][4][5][6][7][8][9][10]. (orheterogeneity)ofsystem,loadbalancingoverhead,speciccharacteristicsofajob,etc.in processorspeed,jobarrivalrateandsize,communicationamongjobs(orsubtasks),homogeneity Thereweremanyparametersandcharacteristicsconsideredinloadbalancing.Theyinclude mostofthepreviouswork[11][12],onlythemeansofsuchparameterswereusedinloadbalancing. However,aparametermayhavethesamemeanforallworkstations,butquitedierentavariance onadierentworkstationinaheterogeneousenvironment.also,inmanycases[13][14][15],the emphasiswasonbalancingjobdistributionratherthanminimizingexecutiontimeofatargetjob. onanindividualworkstation.thisismainlyduetothefactthateachworkstationisusuallyshared forms,especiallydedicatedtightly-coupledmultiprocessorsystems,i.e.,randomnessofjobarrival ThereisafeatureofNOWs,whichdistinguishesitfromotherhighperformancecomputingplat- workstationtime-dependent.thatis,thenumberofjobsonaworkstationistobemodelledasa Thisrandomnessinjobarrivalandsizemakesthenumberofjobssharing(theprocessoron)a bymultipleindependentuserswhosubmittheirjobsatanytime.also,thesizeofajobisrandom. ofworkcompletedineachjobduringatimeintervaldependson(e.g.,inverselyproportionalto) randomvariable.whentheprocessorissharedamongjobsinaround-robinfashion,theamount workstationdoesnotachievetheminimumpossibleexecutiontime.aswillbeshownlater,not distributing(loadbalancing)atargetjobconsideringonlythemeanofthenumberofjobsoneach thenumberofjobs(sharingtheprocessor)inthatinterval.onanetworkofsuchworkstations, takeintoaccountthestandarddeviationofthenumberofjobsoneachworkstationinadditionto onlythemeanbutalsothestandarddeviationofthenumberofjobsaectsexecutiontimeofajob itsmeaninloadbalancing. onaworkstation.therefore,inordertominimizeexecutiontimeofatargetjob,itisnecessaryto analyticallyanddemonstratedviasimulationthatthesecondordermomentsaswellastherst ordermomentsofparametersaretobeusedtominimizeexecutiontimeofatargetjobona Inthispaper,asarststeptowarddevelopinganecientloadbalancingscheme,itisshown networkofheterogeneousworkstations.workstationsareconsideredtobeheterogeneouswhenthe partitionedforloadbalancingandcommunicationisnotrequiredamongsubtasks. time-sharedbymultiplejobs.inthisearlystudy,itisassumedthatatargetjobcanbearbitrarily meanandstandarddeviationofthenumberofjobsvarywithworkstation.eachworkstationis Themaincontributionsofthisworkare(i)derivationofanalyticformulasofperformance 1

3 measuresusedinloadbalancing,(ii)designofstaticanddynamicloadbalancingschemesfor thestandarddeviationsaswellasthemeansofparameterscanoutperformthoseconsideringthe meansonly. minimizingexecutiontimeofatargetjob,and(iii)showingthataloadbalancingschemeutilizing derivedanalyticallyonasingleworkstation,whicharetobeusedforloadbalancingonmultiple workstations.insection4,theproposedstaticanddynamicloadbalancingstrategiesaredescribed. InSection2,astochasticmodelofworkstationsisdescribed.InSection3,asetofmeasuresis strategies.insection6,aconclusionisprovidedwithremarksonthefuturedirections. InSection5,resultsfromextensivecomputersimulationarediscussedtovalidatetheproposed Glossary 2 AStochasticModelofWorkstations Thefollowingnotationsareadoptedinthispaper. Wiworkstationi X thenumberofworkstations Xi thesizeofatargetjobtobedistributed Ai theportionofxassignedtowi thenumberofjobs(randomvariable)arrivedinanintervalonwi ni aithestandarddeviationofai themeanofai Ni themeanofni arrivinginthecurrentinterval thenumberofjobs(randomvariable)inanintervalonwi,excludingthose nithestandarddeviationofni Si thesizeofjob(randomvariable)arrivingatwi i sithestandarddeviationofsi theservicerate(computingpower)ofwi themeanofsi Ti ti executiontime(randomvariable)measuredinintervalsonwi themeanofti Or Oc overheadinvolvedinredistributingload overheadinvolvedincheckingloaddistribution thestandarddeviationofti Whenavariableistobedistinguishedforeachtimeinterval,asuperscriptwithparentheses E[Z]expectationofZ willbeused,e.g.,a(j) idenotesaiforthejthinterval.thesubscriptofarandomvariable,which 2

4 isusedtodistinguishworkstations,isomittedwhenthereisnoneedfordistinction,e.g.,asingle workstationorwhenitdoesnotvarywithworkstation. ServicePolicy Atimeintervalisaunitoftimeforschedulingjobs(sharingtheprocessor)onaworkstation.All timemeasuresareexpressedinintervals.itisassumedthateachworkstationadoptsaround-robin foreachjobinanintervalonworkstationi(denotedbywi)whereiistheservicerateofwi. schedulingpolicy.aworkstation(processor)spends,oneachjobinaninterval,anamountoftime Thosejobsarrivedinanintervalstarttobeserviced(processed)inthefollowingintervalwithout whichisinverselyproportionaltothenumber(ni)ofjobsinthatinterval.thatis,i niisallocated JobArrival anydistinctiondependingontheirarrivaltimes(aslongastheyarriveinthesameinterval).itis tobenotedthatniincludesalljobsarrivedbutnotcompletedbyii 1. Jobsaresubmittedatrandomtimeinstancesand,therefore,thenumberofjobsarrivinginan intervalmaybemodelledbyarandomvariabledenotedbyai.themeanandstandarddeviation JobSize ofaiaredenotedbyaiandai,respectively. standarddeviation(si).itisassumedthatthejobsizeisindependentofthejobarrivalrate. Overheads Thesizeofajobvarieswithjobandmayhaveacertaindistributionwithamean(Si)anda suchastheremainingportionofxionwi,andalsoaconstantoverhead,or,forredistributingthe Loadsonworkstationsarecheckedtodetermineifloadbalancingistobedone.Itisassumedthat, givenanumberofworkstations,thereisaxedamountofoverhead,oc,forcheckinginformation remainingxoverworkstationswhenitisdecidedtoperformloadbalancing. beestimatedfromagivennetworkofworkstations.also,nicanbedirectlymonitoredinpractice. thesystemparametersmaybeknowninsomecases.ortheirmeansandstandarddeviationscan Thejobarrivalrateandjobsizewillbereferredtoassystemparameters.Thedistributionsof distributionofeachofthesystemparameters. Itneedstobenotedthattheproposedloadbalancingschemesdonotassumeanyparticular loadbalancingschemesformultipleworkstations,arederived. 3Inthissection,certain(performance)measuresonasingleworkstation,tobeusedintheproposed PerformanceMeasuresonaWorkstation 3

5 characteristics(morespecically,themeansandstandarddeviationsofthesystemparameters)do notvarywithtimeonaworkstation,itissaidthattheworkstationisin\steadystate".when Thejobofwhichexecutiontimeistobeminimizedisreferredtoastargetjob.Whentheload theyvarywithtime,theworkstationissaidtobein\dynamicstate". Thenumberofjobs,n(j),mayberelatedtothejobarrivalrate,a(j),asfollows. 3.1NumberofJobs n(j)=1+a(j 1)+(n(j 1) 1)p(j 1) intervalandtherstterm(of1)correspondstothetargetjob. wherep(j 1)istheprobabilitythatajobinthe(j 1)thintervaliscarriedovertothejth (1) dependsonandthedistributionsofa(j)ands(j),fromequation1, NotingthatE[n(j)]=E[n(j 1)]=N,andlettingPdenotethesteadystatevalueofp(j)which Also,thestandarddeviationofn(j)canbederivedasfollows. N=1+ 1 P A (2) 3.2ExecutionTime n=qe[(n(j) N)2]= 1 P a (3) Inthejthinterval,thetargetjob(anyjob)isprocessedbytheamountof tintervalstocompletethetargetjob,txi=1 n(j)forallj.ifittakes Then,1 Let'sexpressn(j)asN+n(j).Then,E[n(j)]=0sinceE[n(j)]=N,andE[(n(j))2]=2n. n(i)=x: (4) asfollows. n(j)canbeapproximatedbyignoringthehigherordertermsbeyondthesecondorderterm BytakingE[](expectation)onbothsidesofEquation4withEquation5incorporatedinto, n(j)= 1 N+n(j)1N0@1 n(j) 1 N + n(j) N!21A (5) themeanofexecutiontimeofthetargetjob,t,canbederived. 4

6 NotethatTdependsonnotonlyNbutalsonbothofwhichinturndependonthestandard T= 1+2n NXN2 (6) deviationsaswellasthemeansofthesystemparameters,a,a,s,ands(andofcourse).note thatexecutiontimeofatargetjobonaworkstationwitharound-robinjobschedulingdecreases approximationusedtoobtaint,thestandarddeviation,x,ofxcanbeshowntoben thatisprocessed(completed)inthejthinterval.thenx(j)= asvariation(n)inthenumberofjobsincreases. Inordertoderivethestandarddeviationofexecutiontime,letX(j)denoteaportionofX N+n(j).Followingthesimilar amountoftargetjobprocessedovertintervals(whichisthemeanexecutiontimeofthetarget Now,assuming\uncorrelatedness"ofX(j)betweenintervals,thestandarddeviation,X,ofthe N2. job)canbeeasilyshowntobeptx.finally,thestandarddeviationofexecutiontimeofa targetjobmaybederived(approximated)bydividingxbythemeanprocessingspeedwhichis XTandusingEquation6.Thatis, t=xt X=pTq1+2n n NN2 (7) 4.1StaticLoadBalancing 4 LoadBalancingoverHeterogeneousWorkstations Intheproposedstaticloadbalancingscheme,atargetjobispartitionedsuchthatthefractionof XassignedtoWifori=1;;WisinverselyproportionaltotheexpectedexecutiontimeofX onwiwherewisthenumberofworkstationsavailableforx.lettidenoteexecutiontimeofthe targetjobonwi(i.e.,whenwionlyisemployedfortheentirex).then, Ti= i1+2ni NiX LetXidenotethesizeoftheportionofXtobeassignedtoWi.Then,Xiisdeterminedas N2i fori=1;;w: (8) follows. Xi= PWi=11Ti XTi isconstantforalli.thisloadbalancingstrategyassignsmoreworktoaworkstationwitha Notethat,evenwhenNiisthesameforalli,Xwouldnotbedistributedevenlyunlessni (9) 5

7 largervariationinthenumberofjobsonitwhentheaveragenumberofjobsisthesameforall rateof1+3=23onw2.therefore,alargerportionofthetargetistobeassignedtow2which and3).then,atargetjobwouldbeprocessedattheaveragerateof2onw1whileattheaverage workstations.supposethatn1=n2=2,n1=0,andn2>0(say,n2alternatesbetween1 hasalargervariationinthenumberofjobs. 4.2DynamicLoadBalancing point). ofatargetjob)andhowfrequentlyloaddistributionistobechecked(determinationofchecking Twoessentialissuesindynamicloadbalancingarehowloadshouldberedistributed(redistribution Redistribution LetXi:remdenotethesizeoftheremainingportionofatargetjobonWibeforeloadbalancingat 6.Thatis, completiontimeofthetargetjobwouldbemaxifti:remgwhereti:remiscomputedusingequation acheckingpoint.ifloadbalancing(redistribution)isnotdoneatthecheckingpoint,theexpected Ti:rem= i1+2ni NiXi:rem N2i fori=1;;w (10) Xrem=PIXi:rem,isredistributedoverWiaccordingtoEquation9.Thatis,X0i:rem= Now,ifloadbalancingistobedoneatthecheckingpoint,thetotalremainingjob,ofwhichsizeis PWi=11 Ti:rem Xrem foralli;jsinceloadhasbeenbalanced. wherex0i:remisthesizeoftargetjob(portion)tobeassignedtowiafterloadbalancing.the expectedexecutiontimeofx0i:remonwiisdenotedbyt0 i:rem.then,notethatt0 i:rem=t0j:rem Ti:rem Theexpectedreduction,T,inexecutiontimeofthetargetjobcanbeexpressedas whereoristheoverheadforredistribution. T=maxifTi:remg T01:rem Or (11) DeterminationofCheckingPoint executiontime,t)exceedsacertainthreshold,i.e.,tthreshold. Loadbalancing(redistribution)iscarriedoutonlywhentheexpectedbenet(reductionin whichanywiisidle(doesnotworkonthetargetjob)beforethetargetjobiscompletedonall Inordertominimizeexecutiontimeofatargetjob,itisnecessarytominimizethedurationin 6

8 stillworkonthetargetjob. Wi.Hence,theloaddistributionistobecheckedbeforeanyofWibecomesidlewhiletheothers Equation7.Areasonableestimateofthe\highlylikely"earliestcompletiontimeonWimaybe approximatedtobet0 Thestandarddeviation,t0i:rem,ofexecutiontimetocompleteX0i:remcanbederivedusing setasfollows. Then,thenextcheckingpoint,Tcheck,measuredwithrespecttothecurrentcheckingpointis i:rem ht0i:remwherehisatuningfactorcloseto1. Tcheck=minifT0 tionbeforeanyofwicompletesitsexecutionoftargetjob(x0i:rem).notethatonceawicompletes Thatis,intheproposeddynamicloadbalancingscheme,itisattemptedtocheckloaddistribu- i:rem ht0i:remg (12) 5X0i:remitwillnotbeutilizedforthetargetjobatleastuntilnextcheckingpoint. Anextensivecomputersimulationhasbeencarriedoutinordertoverifythereductioninexecution timeofatargetjob,whichcanbeachievedbyconsideringthesecondordermoments(standard SimulationResultsandDiscussion geneousworkstations. 5.1Simulation deviations)aswellasthemeansofsystemparametersforloadbalancingonanetworkofhetero- similartrendshavebeenobservedforallthreedistributions,onlytheresultsforthe(truncated) distributions,havebeenconsideredforeachofthejobinter-arrivaltimeandthejobsize.since Inthissimulation,threedierentdistributions,i.e.,exponential,uniform,andtruncatedGaussian eachwithadierentseed,andthenresults(executiontimeofatargetjob)wereaveraged. testedforawiderangeofeachparameter.theprogramwasrunmultipletimesineachtestcase, Gaussiandistributionareprovidedinthispaper.Theproposedloadbalancingschemeshavebeen \SE"(StaticEven)whichdistributesatargetjobevenlyinthestaticloadbalancingand\SM" \staticproposed"and\dynamicproposed",respectively)arecomparedtootherapproaches,i.e., Theproposedstaticanddynamicloadbalancingschemes(\SP"and\DP"whichreads (StaticMean)and\DM"(DynamicMean)whichuseonlythemeans(Ni)ofthenumberofjobs inthestaticanddynamicloadbalancing,respectively. totheexecutiontimeforeachcheckingpoint.ifloadisredistributed,or(redistributionoverhead) isalsoadded(foreachredistribution). Inthecasesofdynamicloadbalancing,theoverhead,Oc,forcheckingloaddistributionisadded 7

9 Executiontimeismeasuredinintervals.Inadditiontoexecutiontimeofatargetjob,themeasure of\relativeimprovement"isusedincomparison,whichisdenedasris=tsm TSP 5.2ResultsandDiscussion staticloadbalancingwheretsmandtspareexecutiontimesofatargetjobachievedbysmand SP,respectively.Similarly,therelativeimprovementisdenedforthedynamicloadbalancingas RID=TDM TDP anddp,respectively. Resultsforcaseswhereworkstationsareinthesteadystatearediscussedrst. wheretdmandtdpareexecutiontimesofatargetjobachievedbydm discussedinsection3.2,tclearlyshowsitsdependencyonnanddecreasesasnincreases. nfordierentninasteadystate.obviously,tincreasesasnincreases.moreimportantly,as InFigure1,executiontimeofatargetjobonasingleworkstationisplottedasafunctionof expected,theproposedloadbalancingschemes(spanddp)workbetterthantheotherschemes, comparedamongtheveloadbalancingschemesmentionedabove.first,itcanbeseenthat,as InFigure2,(parallel)executiontimeofatargetjobinsteadystatesontwoworkstationsis conrmingthatthesecondordermomentsofthesystemparametersaretobeconsideredinload balancinginordertominimizetheexecutiontimeofatargetjob.second,itneedstobenotedthat SPachievesshorterexecutiontimesthanDP.Thisisduetothefactthatinasteadystatetheload characteristicsdonotvaryinthelongtermandthereforetheone-timeinitialloadbalancing(by SP)isgoodenough,andthatDPpaystheoverheadofcheckingandbalancingduringexecution. inn,leadingtoashorterexecutiontime(refertoequation6).however,increasingshasan executiontime(figure2-(b)).thisisbecauseanincreaseinacausesalargerincreaseinnthan Third,anincreaseinaleadstoashorterexecutiontime(Figure2-(a))whilethatinstoalonger oppositeeect. analyzedinasteadystate.asshowninthegure,whentheoverheadsarerelativelylow,dpcan stillachieveashorterexecutiontimethanthatbysp.however,astheoverheadsbecomelarger, InFigure3,dependencyofexecutiontimeontheloadcheckingandredistributionoverheadsis thansp. theystarttoosetthegainbythedynamicloadbalancingandeventuallymakedpperformworse DMinFigure4-(b).Itcanbeseeninbothcasesthattherelativeimprovementincreasesasthe dierenceinaorsbetweentwoworkstationsbecomeslarger.thisisduetothefactthatthe TherelativeimprovementbySPoverSMisconsideredinFigure4-(a),andthatbyDPover agiandssiareaandsoftheithgroupofworkstations.itcanbeobservedthattherelative largerthedierenceis,thelessaccuratetheloadbalancingbysmbecomes. improvementbyspoversmincreaseswiththenumberofworkstations.itincreasesmorerapidly Eectsofthenumberofworkstations,W,areanalyzedforsteadystatesinFigure5where theloadbalancingbyspbecomesmore(relatively)accuratethanthatbysmasthedierence whenthedierenceineitheraorsislarger.again,theseobservationsstemfromthefactthat inthesecondordermomentsbetweengroupsofworkstationsgrows. 8

10 45 40 N=2 (A=1, S=20) N=3 (A=2, S=10) N=4 (A=3, S=5) 35 Execution time 30 Figure1:ExecutiontimeofXononeworkstationwhere=100andX= σ (%) n S_E S_M S_P D_M D_P S_E S_M S_P D_M D_P S2=20,andX=2000.(a)a1=53%,s1=30%,s2=48%,(b)a1=53%,a2=45%,s1=30% Figure2:Parallelexecutiontimeontwoworkstationswhere=100,A1=1,A2=2,S1=10, (b) Now,acasewhereasystemparametervarieswithtimeisconsidered,i.e.dynamicstate.In σ a2 (%) σ (%) thestaticschemes(spandsm).also,itisnotedthatdpwhichtakesa1intoaccountachieves Figure6,a1varieswithtimesuchthatitsdeviationfromthevalueusedbySPischanged(larger forcaseiwithlargeri).asexpected,thedynamicschemes(dpanddm)performbetterthan s2 ashorterexecutiontimecomparedtodm.theimprovementbydpoverdmtendstoincrease 6withthedeviation. astherstordermoments(means)ofsystemparametersbetakenintoaccountforloadbalancing Inthispaper,ithasbeenproposedthatthesecondordermoments(standarddeviations)aswell ConclusionandFutureStudy onatime-sharedheterogeneousparallel/distributedcomputingenvironment.theseloadbalancing schemeswhichattempttominimizeexecutiontimeofatargetjobhavebeentestedviacomputer simulation.ithasbeenveriedthatconsideringthesecondordermomentsalsoinbothstaticand 9 Execution time Execution time

11 S_E S_M S_P D_M D_P Execution time S2=30,X=2000,a1=90%,a2=0%,s1=96%,s2=96%. Figure3:Parallelexecutiontimeontwoworkstationswhere=100,A1=1,A2=2,S1=20, O c, O r σ s2 =1 % σ s2 =47 % σ s2 =95 % σ s2 =1 % σ s2 =46 % σ s2 =96 % Relative improvement (%) A1=0:5,A2=0:5,S1=40,S2=40,X=3000,a1=0%,s1=100%,(b)Relativeimprovement, 5 2 RID,byDPoverDMontwoworkstations.=100,A1=2,A2=2,S1=20,S2=20,X=16000, Figure4:(a)Relativeimprovement,RIS,bySPoverSMontwoworkstations. 4 a1=0%,s1=96%,oc=0:1,or=0: σ (%) σ a2 a_2 (%) (reductioninexecutiontimeofatargetjob)becomeslargerasthedierenceinthesecondorder NOWswitharound-robinjobschedulingpolicyadoptedineachworkstation.Theimprovement dynamicloadbalancingcanleadtoasignicantreductioninexecutiontimeofatargetjobona momentsbetweenworkstationsorgroupsofworkstationsincreases.thesimilarobservationshave application. schemesaresimpleandgeneral,andthereforearebelievedtohaveagoodpotentialforwide beenmadeforallofthethreedistributionsconsideredforeachsystemparameter.theproposed performanceanalysisforrealworkloadsonanows,etc. Thefuturestudyincludesconsiderationofcommunicationamongsubtasksandjobgranularity, 10 Relative improvement (%)

12 Relative improvement (%) σ a_g2 =50 %, σ s_g2 =0 % σ a_g2 =50 %, σ s_g2 =96 % σ a_g2 =76 %, σ s_g2 =0 % σ a_g2 =76 %, σ s_g2 =96 % 15 Ag1=0:5,Ag2=0:5,Sg1=40,Sg2=40,X=1500,ag1=50%,sg1=96%. Figure5:Relativeimprovement,RIS,bySPoverSMonmultipleworkstationswhere=100, W S_E S_M S_P D_M D_P Execution time 40 Figure6:Parallelexecutiontimeontwoworkstationswhere=100,A1=1,A2=2,S1=20,S2=30, References X=2000,a1=24%,a2=0%,s1=0%,s2=20%.a1varieswithtimewhereitsdeviationfrom thevalueusedbyspislargerforcaseiwithlargeri [2]Pf,\InSearchofClusters". [1]D.Culler,\ParallelComputerArchitecture",MorganKaufman,1999. [4]C.PolychronopoulosandD.Kuck,\GuidedSelf-SchedulingSchemeforParallelSupercomputers",IEEETransactionsonComputers,vol.36,no.12,pp1,425-1,439,December1987. [3]G.Cybenko,\DynamicLoadBalancingforDistributedMemoryMultiprocessors",J.Parallel anddistributedcomputing,vol.7,pp ,1989. [5]S.Ranka,Y.Won,andS.Sahni,\ProgrammingaHypercubeMulticomputer",IEEESoftware, pp69-77,september

13 [7]M.Cierniak,W.Li,andM.J.Zaki,\LoopSchedulingforHeterogeneity",Proc.ofthe4th [6]M.MaheswaranandH.Siegel,\ADynamicMatchingandSchedulingAlgorithmforHeterogeneousComputingSystems",Proc.HeterogeneousComputing'98,pp57-69,1998. [8]A.GerasoulisandT.Yang,\OntheGranularityandClusteringofDirectedAcyclictask IEEEInternationalSymposiumHigh-PerformanceDistributedComputing,pp78-85,August graphs",ieeetransactionsonparallelanddistributedsystems,vol.4,no.6,pp , [9]S.M.FigueiraandF.Berman,\ModelingtheSlowdownofData-ParallelApplicationsin [10]J.C.JacobandS.-Y.Lee,"TaskSpreadingandShrinkingonMultiprocessorSystemsand HomogeneousClustersofWorkstations",Proc.HeterogeneousComputerWorkshop,pp90-101, [11]E.P.MakatosandT.J.Leblanc,\UsingProcessorAnityinLoopSchedulingonShared- NetworksofWorkstations",IEEETransactionsonParallelandDistributedSystems,vol.10, no.10,pp ,october1999. [12]S.SubramaniamandD.L.Eager,\AnitySchedulingofUnbalancedWorkloads",Proc.Supercomputing'94,pp ,1994. no.4,pp ,april1993. MemoryMultiprocessors",IEEETransactionsonParallelandDistributedSystems,vol.5, [13]M.-Y.Wu,\OnRuntimeParallelSchedulingforProcessorLoadBalancing",IEEETransactionsonParallelandDistributedSystems,vol.8,no.2,pp ,February1997. [14]X.ZhangandY.Yan,\ModelingandCharacterizingParallelComputingPerformanceOnHeterogeneousNetworksofWorkstations",Proc.ofthe7thIEEESymp.ParallelandDistributed [15]B.-R.TsaiandK.G.Shin,\Communication-OrientedAssignmentofTaskModulesinHypercubeMulticomputers",Proc.ofthe12thInternationalConferenceonDistributedComputing Processing,pp25-34,October1995. Systems,pp38-45,

Tuition Reimbursement Program. Handbook

Tuition Reimbursement Program. Handbook EMPLOY EE Tuition Reimbursement Program Handbook For Employees... Ed u c a t i o n m a d e a f f o r d a b l e! A t t h e E r n e s t O r l a n d o L a w r e n c e B e r k e l e y N a t i o n a l L a b

More information

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1 5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

More information

Ďě Ž ť č ď ť ď ú ď ť ě Ě ň Ě ě ú ň ž ú ú Ú ú ú Ě ň é é ž ú ž Ť Ť Ť ú ň Ď ú ň ď Ě ú É ž ř ú ě ň ý Ě ň ý ň ň Ť ř ď ř ň ú Ť ě ř ě ý Š Ú Ú ň ň ú Ó Ú ň Ň Ů ž ú ň Č ř ř ú É ě ň ú Ž ý ú ú Ú Ú ť ž ž ď ý ž ď ž

More information

BMC ITSM Suite - nabité skúsenosťami. Juraj Izák, 13.10.2011

BMC ITSM Suite - nabité skúsenosťami. Juraj Izák, 13.10.2011 BMC ITSM Suite - nabité skúsenosťami Juraj Izák, 13.10.2011 MATERNA GmbH 2011 www.materna.com 1 Presenter Name Function E-mail Telephone Fax Mobile Ing. Juraj Izák Senior Consultant [email protected]

More information

G S e r v i c i o C i s c o S m a r t C a r e u ي a d e l L a b o r a t o r i o d e D e m o s t r a c i n R ل p i d a V e r s i n d e l S e r v i c i o C i s c o S m a r t C a r e : 1 4 ع l t i m a A c

More information

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

More information

How to Subnet a Network How to use this paper Absolute Beginner: Read all Sections 1-4 N eed a q uick rev iew : Read Sections 2-4 J ust need a little h elp : Read Section 4 P a r t I : F o r t h e I P

More information

R e t r o f i t o f t C i r u n i s g e C o n t r o l

R e t r o f i t o f t C i r u n i s g e C o n t r o l R e t r o f i t o f t C i r u n i s g e C o n t r o l VB Sprinter D e s c r i p t i o n T h i s r e t r o f i t c o n s i s t s o f i n s t a l l i n g a c r u i s e c o n t r o l s wi t c h k i t i n

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

List of Graduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016

List of Graduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016 1FP419 Business Valuation (in German) master Accounting German 3 no 1FP421 Business Valuation (in English) master Accounting English 3 no 1FU491 Financial reporting under IFRS and US GAAP - Comparsion

More information

Chapter 9 Project Cash Flow Analysis

Chapter 9 Project Cash Flow Analysis Chapter 9 Project Cash Flow Analysis 9.1: (c) Given: accounting and cash flow data Find: income tax rate to use in project year 1 Approach: find the taxable incomes and income taxes with and without project

More information

Data Center end users for 40G/100G and market dy nami c s for 40G/100G on S M F Adam Carter Ci s c o 1 W Now that 40GbE is part of the IEEE 802.3ba there will be a wid er array of applic ation s that will

More information

NoFreeLunchTheoremsforSearch DavidH.Wolpert([email protected]) SFI-TR-95-02-010 WilliamG.Macready([email protected]) TheSantaFeInstitute 1399HydeParkRoad SantaFe,NM,87501 February23,1996 possiblecostfunctions.inparticular,ifalgorithmaoutperformsalgorithmbonsome

More information

List of Graduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016

List of Graduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016 1FP419 Business Valuation (in German) master Accounting German 3 no 1FP421 Business Valuation (in English) master Accounting English 3 no 1FU491 Financial reporting under IFRS and US GAAP - Comparsion

More information

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for n! 179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

More information

How To Pay For An Ambulance Ride

How To Pay For An Ambulance Ride Chapter 9Ambulance 9 9.1 Enrollment........................................................ 9-2 9.2 Emergency Ground Ambulance Transportation.............................. 9-2 9.2.1 Benefits, Limitations,

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may

More information

Chapter. CPT only copyright 2009 American Medical Association. All rights reserved. 9Ambulance

Chapter. CPT only copyright 2009 American Medical Association. All rights reserved. 9Ambulance Chapter 9Ambulance 9 9.1 Enrollment........................................................ 9-2 9.2 Emergency Ground Ambulance Transportation.............................. 9-2 9.2.1 Benefits, Limitations,

More information

W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e

More information

All answers must use the correct number of significant figures, and must show units!

All answers must use the correct number of significant figures, and must show units! CHEM 10113, Quiz 2 September 7, 2011 Name (please print) All answers must use the correct number of significant figures, and must show units! IA Periodic Table of the Elements VIIIA (1) (18) 1 2 1 H IIA

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

UNIK4250 Security in Distributed Systems University of Oslo Spring 2012. Part 7 Wireless Network Security

UNIK4250 Security in Distributed Systems University of Oslo Spring 2012. Part 7 Wireless Network Security UNIK4250 Security in Distributed Systems University of Oslo Spring 2012 Part 7 Wireless Network Security IEEE 802.11 IEEE 802 committee for LAN standards IEEE 802.11 formed in 1990 s charter to develop

More information

Manage the acquisition of products from suppliers for which there exists a formal agreement.

Manage the acquisition of products from suppliers for which there exists a formal agreement. Manage the acquisition of products from suppliers for which there exists a formal agreement. Establish Supplier Agreements (SG 1) Supplier Requirements Supplier Agreements s Satisfy Supplier Agreements

More information

U S B Pay m e n t P r o c e s s i n g TM

U S B Pay m e n t P r o c e s s i n g TM U S B Pay m e n t P r o c e s s i n g T h a t s S m a r t P r o c e s s i n g TM USB was simple to enroll in. They had competitive rates and all the fees were listed clearly with no surprises. Everyone

More information

Online Department Stores. What are we searching for?

Online Department Stores. What are we searching for? Online Department Stores What are we searching for? 2 3 CONTENTS Table of contents 02 Table of contents 03 Search 06 Fashion vs. footwear 04 A few key pieces 08 About SimilarWeb Stepping up the Competition

More information

Parallels Mac Management v4.0

Parallels Mac Management v4.0 Parallels Mac Management v4.0 Deployment Guide July 18, 2015 Copyright 1999 2015 Parallels IP Holdings GmbH and its affiliates. All rights reserved. All other marks and names mentioned herein may be trademarks

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Robust Tests for the Equality of Variances Author(s): Morton B. Brown and Alan B. Forsythe Source: Journal of the American Statistical Association, Vol. 69, No. 346 (Jun., 1974), pp. 364-367 Published

More information

Cisco Security Agent (CSA) CSA je v í c eúčelo v ý s o f t w a r o v ý ná s t r o j, k t er ý lze p o už í t k v ynuc ení r ů zný c h b ezp ečno s t ní c h p o li t i k. CSA a na lyzuje c h o v á ní a

More information

PES INSTITUTE OF TECHNOLOGY B.E 5TH SEMESTER (AUTONOMOUS) - PROVISIONAL RESULTS JANUARY 2015 COMPUTER SCIENCE AND ENGINEERING BRANCH

PES INSTITUTE OF TECHNOLOGY B.E 5TH SEMESTER (AUTONOMOUS) - PROVISIONAL RESULTS JANUARY 2015 COMPUTER SCIENCE AND ENGINEERING BRANCH 1 1PI12CS002 A A A A A B A A NA S NA NA NA NA NA NA NA 25.0 25.0 9.04 2 1PI12CS004 B I B C B A A A NA NA NA S NA NA NA NA NA 21.0 21.0 8.14 3 1PI12CS005 B B C B B B A B A NA NA NA NA NA NA NA NA 25.0 25.0

More information

BLADE 12th Generation. Rafał Olszewski. Łukasz Matras

BLADE 12th Generation. Rafał Olszewski. Łukasz Matras BLADE 12th Generation Rafał Olszewski Łukasz Matras Jugowice, 15-11-2012 Gl o b a l M a r k e t i n g Dell PowerEdge M-Series Blade Server Portfolio M-Series Blades couple powerful computing capabilities

More information

BIG DATA IN TRANSPORT RESEARCH: LEGAL AND PRIVACY CHALLENGES

BIG DATA IN TRANSPORT RESEARCH: LEGAL AND PRIVACY CHALLENGES BIG DATA IN TRANSPORT RESEARCH: LEGAL AND PRIVACY CHALLENGES P R E S ENTATION T R A F I KF DOR A GE MEETING 2 0 1 5 AALBORG 29 TH OF AUGUST NT K R I S T I A N H E G N E R R E I N A U, K R I SJ TO IHA N

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

List of Undergraduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016

List of Undergraduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016 1FU301 Fundamentals of Accounting in English bachelor Accounting English 3 no 1FU361 Financial reporting under IFRS and US GAAP - Basic Concepts (in English) bachelor Accounting English 3 no 1BP260 Banking

More information

Electronegativity and Polarity

Electronegativity and Polarity and Polarity N Goalby Chemrevise.org Definition: is the relative tendency of an atom in a molecule to attract electrons in a covalent bond to itself. is measured on the Pauling scale (ranges from 0 to

More information

Der Bologna- P roz es s u nd d i e S t aat s ex am Stefan Bienefeld i na Service-St el l e B o l o g n a d er H R K Sem in a r D er B o l o g n a P ro z es s U m s et z u n g u n d M it g es t a l t u

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

AN ESTIMATION OF CLAIMS DISTRIBUTION NAWOJIRO ESHITA FOREWORD

AN ESTIMATION OF CLAIMS DISTRIBUTION NAWOJIRO ESHITA FOREWORD AN ESTIMATION OF CLAIMS DISTRIBUTION NAWOJIRO ESHITA FOREWORD There are two phases of difficulties in estimating a claims distribution. If we are going to estimate the claims distribution as accurately

More information

SwA Community s Assurance Process Reference Model - Mapping to Assurance Models

SwA Community s Assurance Process Reference Model - Mapping to Assurance Models Development Engineering DE 1 Establish assurance requirements DE 2 Create IT solutions with integrated business objectives and assurance Understand the operating environment and define the operating constraints

More information

Sputtering Targets for Microelectronics. Sputtering Targets for Semiconductor Applications

Sputtering Targets for Microelectronics. Sputtering Targets for Semiconductor Applications Sputtering Targets for Microelectronics Sputtering Targets for Semiconductor Applications Umicore Thin Film Products Umicore Thin Film Products, a globally active business unit within the Umicore Group,

More information

How To Solve A Sequential Mca Problem

How To Solve A Sequential Mca Problem Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 3, 2012 Changes in HA1 Problem

More information

EXPERIMENT 4 The Periodic Table - Atoms and Elements

EXPERIMENT 4 The Periodic Table - Atoms and Elements EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements

More information

Business and Economics Applications

Business and Economics Applications Business and Economics Applications Most of the word problems you do in math classes are not actually related to real life. Textbooks try to pretend they are by using real life data, but they do not use

More information

DryLin ZLW Belt Drive

DryLin ZLW Belt Drive Belt Drive +50º 0º DryLin toothed belt drives have been developed for the fast positioning of small loads. The linear units with toothed belt drive are corrosion resistant, light and compact, besides having

More information

Two River Views. A New Website at a New Home. Two River Community Bank Newsletter Fall 2015

Two River Views. A New Website at a New Home. Two River Community Bank Newsletter Fall 2015 T Rv V T Rv mm Bk Nl Fll 2015 A N W N Hm. W l x mg l l. Dg, l lk m v vg, k ll v l ll kg. Pl, mz ml v, mll z, g mll l. Skg, l. W v l l -vl g l v, g kg m m --g. I, ll l mvg m TRv.Bk. Ol -v gz lgl.k, g l

More information

SAMBA TRISTE As recorded by Baden Powell, 1963 (From the 1963 Album BADEN POWELL À VONTADE)

SAMBA TRISTE As recorded by Baden Powell, 1963 (From the 1963 Album BADEN POWELL À VONTADE) nratd sin th owr ab Editor by rad Larsn. http://powrtab.itarntwor.or SM SE s rordd by adn owll, (From th lbm DEN OELL À ONDE) ransribd by railonitar ords by illy lano Msi by adn owll J Q = tr ` Dm Cma

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

GE Healthcare Life Sciences

GE Healthcare Life Sciences GE Life Sciences Controlled Order Intake Process for GE s Whatman Cellulose-Based Chromatography Media: Affected Products and Alternatives Product Code Item Description Discontinued or Transferred to Alternative

More information

Enrolment Application Form

Enrolment Application Form PASSPORT SIZE PHOTOGRAPH OF APPLICANT INSTITUTE OF CULINARY ARTS Farm Calenick, Zevenrivieren Road, Banhoek, Stellenbosch PO Box 6314 U N I E D A L 7612, S OUTH AF RI C A T E L +27 (0) 21 885 1414 I F

More information

รายงานผลการด าเน นงาน เร อง โครงการศ นย เร ยนร การเกษตรพอเพ ยงป 2552 โดย

รายงานผลการด าเน นงาน เร อง โครงการศ นย เร ยนร การเกษตรพอเพ ยงป 2552 โดย รายงานผลการด าเน นงาน เร อง โครงการศ นย เร ยนร การเกษตรพอเพ ยงป 2552 โดย นายประพนธ ธ ปะเตม ย เกษตรอ าเภอ (น กว ชาการส งเสร มการเกษตรช านาญการ) ส าน กงานเกษตรอ าเภอบางบ วทอง จ งหว ดนนทบ ร รายงานผลการด าเน

More information

Version 1.0. General Certificate of Education (A-level) January 2012. Mathematics MPC4. (Specification 6360) Pure Core 4. Final.

Version 1.0. General Certificate of Education (A-level) January 2012. Mathematics MPC4. (Specification 6360) Pure Core 4. Final. Version.0 General Certificate of Education (A-level) January 0 Mathematics MPC (Specification 660) Pure Core Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together

More information

I n s t r u k c j a o b s ł u g i p r o g r a m u Program Finansowo-K się gowy w e r s j a 1. 1 p o d W i n d o w s. W y d a w n i c t w o " G I D E X " S Z C Z E C I N - m a j - 2 0 0 2 W y ł ą c z n

More information

Put the human back in Human Resources.

Put the human back in Human Resources. Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect

More information

So ware Zusammenfassung Details docusnap.intern

So ware Zusammenfassung Details docusnap.intern docusnap.intern Datum Autor Seitenanzahl 08.10.2012 Docusnap 16 Domäne: docusnap.intern Hersteller: - Kein Hersteller angegeben - So warename: StorageIM_Community_1_1_0 Version 1.1.0.0 Hersteller: administrator

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Chair of Software Engineering. Software Verification. Assertion Inference. Carlo A. Furia

Chair of Software Engineering. Software Verification. Assertion Inference. Carlo A. Furia Chair of Software Engineering Software Verification Assertion Inference Carlo A. Furia Proving Programs Automatically The Program Verification problem: Given: a program P and a specification S = [Pre,

More information

LARGE CLASSES OF EXPERTS

LARGE CLASSES OF EXPERTS LARGE CLASSES OF EXPERTS Csaba Szepesvári University of Alberta CMPUT 654 E-mail: [email protected] UofA, October 31, 2006 OUTLINE 1 TRACKING THE BEST EXPERT 2 FIXED SHARE FORECASTER 3 VARIABLE-SHARE

More information

From Quantum to Matter 2006

From Quantum to Matter 2006 From Quantum to Matter 006 Why such a course? Ronald Griessen Vrije Universiteit, Amsterdam AMOLF, May 4, 004 vrije Universiteit amsterdam Why study quantum mechanics? From Quantum to Matter: The main

More information

Covariances between gamma-ray energies

Covariances between gamma-ray energies Nuclear Instruments and Methods in Physics Research A 460 (2001) 289}296 Covariances between gamma-ray energies O. Helene*, Z.O. Guimaraes-Filho, V.R. Vanin, T.M. Pauliquevis Jr, I.D. Goldman, P.R. Pascholati

More information

Ciascuncorsoincludeunacombinazionedigitescolastiche;duegiorni. interieduemezzegiornateselezionatetraleseguentidestinazioni:

Ciascuncorsoincludeunacombinazionedigitescolastiche;duegiorni. interieduemezzegiornateselezionatetraleseguentidestinazioni: Ognann 4 000g v an udn p v n n da70pa v ngna a B S c hp ud a I ng Ec c 8bun ag np c g B L c annab amacc 70d v naz na ànn c,chdannunapp un àd a nuvam c z da u mnddu an c vabb am magg num d a unz dgnnaz

More information

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1. 1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

More information

Sustainable energy products Simulation based design for recycling

Sustainable energy products Simulation based design for recycling Sustainable energy products Simulation based design for recycling Markus A. Reuter (Prof. Dr. Dr. hc) Director: Technology Management, Outotec Oyj Aalto University (Finland), Central South University (China),

More information

Multicrystalline solar silicon production for development of photovoltaic industry

Multicrystalline solar silicon production for development of photovoltaic industry Multicrystalline solar silicon production for development of photovoltaic industry A.I. Nepomnyaschikh Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, E-mail: [email protected]

More information

STAPLES: AFTERMARKET STAPLES CROSS-REFERENCE GUIDE BRAND OEM # MODELS / FINISHERS DESCRIPTION COPYLITE #

STAPLES: AFTERMARKET STAPLES CROSS-REFERENCE GUIDE BRAND OEM # MODELS / FINISHERS DESCRIPTION COPYLITE # C N O N S: FTERMRKET S CROSS-REFERENCE GUIDE CNON 0251001 CNON F23 5705 000 CNON E 1 CNON G 1 FINISHER D1, FINISHER D2, FINISHER F2 FINISHER G1, FINISHER H2, R E1 R E2, R E3, R F1 R H1, R H2, R J1 R K1,

More information

Safe robot motion planning in dynamic, uncertain environments

Safe robot motion planning in dynamic, uncertain environments Safe robot motion planning in dynamic, uncertain environments RSS 2011 Workshop: Guaranteeing Motion Safety for Robots June 27, 2011 Noel du Toit and Joel Burdick California Institute of Technology Dynamic,

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

Final Report Certification for CRADA Number. Between. UT-Battelle, LLC. and. (Participant)

Final Report Certification for CRADA Number. Between. UT-Battelle, LLC. and. (Participant) Final Report Certification for CRADA Number NFB«M)1374 Between UT-Battelle, LLC and Carpenter Technology Corporation (Participant) Instructions: Mark the appropriate statement in 1a or 1b below with an

More information

Lecture 2 - Semiconductor Physics (I) September 13, 2005

Lecture 2 - Semiconductor Physics (I) September 13, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 2-1 Lecture 2 - Semiconductor Physics (I) September 13, 2005 Contents: 1. Silicon bond model: electrons and holes 2. Generation and recombination

More information

Faculty Teaching Qualifications Table

Faculty Teaching Qualifications Table aculty Table ollege: ducation Subject: ounseling Last Updated: July 2015 in ield May e cceptable Master s achelor s dditional Ph or d in ounselor ducation or closely related field Psychology ducation M.d.

More information

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica. A Classical Tax-Subsidy Problem Author(s): Gerard Debreu Source: Econometrica, Vol. 22, No. 1 (Jan., 1954), pp. 14-22 Published by: The Econometric Society Stable URL: http://www.jstor.org/stable/1909828.

More information

845 PRICE AUTHORIZATION ACKNOWLEDGEMENT/STATUS - VERSION 5010

845 PRICE AUTHORIZATION ACKNOWLEDGEMENT/STATUS - VERSION 5010 845 PRICE AUTHORIZATION ACKNOWLEDGEMENT/STATUS - VERSION 5010 This example represents a contract notification being sent by a Manufacturer to a Distributor eligible to service a contract to an end user

More information

The Configuration Management process area involves the following:

The Configuration Management process area involves the following: CONFIGURATION MANAGEMENT A Support Process Area at Maturity Level 2 Purpose The purpose of is to establish and maintain the integrity of work products using configuration identification, configuration

More information

ITINERARY 1 GOURMET OUTING 20 MINUTES AWAY FROM MONTRÉAL TOTAL DISTANCE: 57 KM

ITINERARY 1 GOURMET OUTING 20 MINUTES AWAY FROM MONTRÉAL TOTAL DISTANCE: 57 KM NJ OY AG AWAYAL ONG HMON É RÉ GI WI NROU! D m m m m w? M W R w! M W R R b b S É B S H 1 7 5 m H M W R b b b b b m mm w w 1 6 m m m w m B mb m M W R ; w w Y m m m C! IINRARY 1 GOURM OUING 20 MINUS AWAY

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

YTD Highlights. 1 st Half 2013 Results Presentation

YTD Highlights. 1 st Half 2013 Results Presentation 1H/13 Results Presentation August 30 th, 2013 YTD Highlights Sales resilience, backlog impacted by forex Sustainable net results Working capital control remains top priority Disposals program under way

More information

Networx SOW Status to date 10/28/09

Networx SOW Status to date 10/28/09 The Networx Statement of Work (SOW) Status report presents a high level overview of /Agency/Contractor progress in satisfying Agency SOW requirements. 1. Agency (L) stands for Large Agency that is part

More information

REQUEST FOR BID TREE TRIMMING and TREE REMOVAL for ELECTRIC LINE CLEARANCE

REQUEST FOR BID TREE TRIMMING and TREE REMOVAL for ELECTRIC LINE CLEARANCE REQUEST FOR BID TREE TRIMMING and TREE REMOVAL for ELECTRIC LINE CLEARANCE Sealed bids will be received by the Director of Public Service of the City of Wadsworth (herein referred to as the City ) at his

More information

Chapter 8 Atomic Electronic Configurations and Periodicity

Chapter 8 Atomic Electronic Configurations and Periodicity Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from

More information

UNITED STATES DEPARTMENT OF AGRICULTURE FOOD SAFETY AND INSPECTION SERVICE WASHINGTON, DC INFORMATION SYSTEM CERTIFICATION AND ACCREDITATION (C&A)

UNITED STATES DEPARTMENT OF AGRICULTURE FOOD SAFETY AND INSPECTION SERVICE WASHINGTON, DC INFORMATION SYSTEM CERTIFICATION AND ACCREDITATION (C&A) UNITED STATES DEPARTMENT OF AGRICULTURE FOOD SAFETY AND INSPECTION SERVICE WASHINGTON, DC FSIS DIRECTIVE 1306.2 9/28/11 INFORMATION SYSTEM CERTIFICATION AND ACCREDITATION (C&A) I. PURPOSE This directive

More information

How to read your Oil Analysis Report

How to read your Oil Analysis Report How to read your Oil Analysis Report A better understanding Petroleum Technologies Group, LLC. 4665 Broadmoor S.E. Ste#15 Grand Rapids, MI 49512 Phone # 616/698 9399 Fax # 616/698 9395 www.oil lab.com

More information

Time-line based model for software project scheduling

Time-line based model for software project scheduling Time-line based model for software project scheduling with genetic algorithms Carl K. Chang, Hsin-yi Jiang, Yu Di, Dan Zhu, Yujia Ge Information and Software Technology(IST), 2008 2010. 3. 9 Presented

More information

Overview of the Systems Security Engineering Capability Maturity Model (SSE-CMM)

Overview of the Systems Security Engineering Capability Maturity Model (SSE-CMM) Overview of the Systems Security Engineering Capability Maturity Model (SSE-CMM) S E C A T HK- 36 What is the Problem the SSE-CMM Solves? Costs Current process Improved process Process Improvement Current

More information

FORT WAYNE COMMUNITY SCHOOLS 12 00 SOUTH CLINTON STREET FORT WAYNE, IN 468 02 6:02 p.m. Ma r c h 2 3, 2 015 OFFICIAL P ROCEED ING S Ro l l Ca l l e a r d o f h o o l u e e o f t h e r t y m m u t y h o

More information

Amsterdam RAI Hotel DETAILBOEK OMA AANVRAAG WABO 1 : 5. Heer Bokelweg 149 3032 AD Rotterdam, Netherlands tel: +31 10 243 8200 ARCHITECT PROJECT

Amsterdam RAI Hotel DETAILBOEK OMA AANVRAAG WABO 1 : 5. Heer Bokelweg 149 3032 AD Rotterdam, Netherlands tel: +31 10 243 8200 ARCHITECT PROJECT A. 21. 000 AANVRAAG WABO DRAWING LIST N/A A. 21. 001 A. 21. 100 A. 21. 150 A. 21. 151 A. 21. 152 A. 21. 160 A. 21. 161 A. 21. 162 A. 21. 163 A. 21. 170 A. 21. 180 A. 21. 200 A. 21. 250 A. 21. 251 A. 21.

More information

L a h ip e r t e n s ió n a r t e r ia l s e d e f in e c o m o u n n iv e l d e p r e s ió n a r t e r ia l s is t ó lic a ( P A S ) m a y o r o

L a h ip e r t e n s ió n a r t e r ia l s e d e f in e c o m o u n n iv e l d e p r e s ió n a r t e r ia l s is t ó lic a ( P A S ) m a y o r o V e r s i ó n P á g i n a 1 G U I A D E M A N E J O D E H I P E R T E N S I O N E S C E N C I A L 1. D E F I N I C I O N. L a h ip e r t e n s ió n a r t e r ia l s e d e f in e c o m o u n n iv e l d

More information

ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom )

ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom ) ANSWER KEY : PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom ) 1. Explore the Build an Atom simulation with your group. As you explore, talk about what

More information

270/271 Health Care Eligibility Benefit Inquiry and Response

270/271 Health Care Eligibility Benefit Inquiry and Response 270/271 Health Care Eligibility Benefit Inquiry and Response ASC X12N 270/271 (005010X279A1) Page 2 Page 3 Table of Contents 1.0 Overview of Document...4 2.0 General Information...5 3.0 Provider Information.....6

More information

How to Assign Transport Request for Language Translation?

How to Assign Transport Request for Language Translation? How to Assign Transport Request for Language Translation? Applies to: SAP ECC 6.0. For more information, visit the ABAP homepage. Summary This document helps people to create a transport request for the

More information