|
|
|
- Percival McGee
- 10 years ago
- Views:
Transcription
1 LoadBalancingforMinimizingExecutionTimeofaTargetJobon anetworkofheterogeneousworkstations DepartmentofElectricalandComputerEngineering S.-Y.LeeandC.-H.Cho Auburn,AL AuburnUniversity NOWs.Insuchanenvironment,partitioning(loadbalancing)atargetjobbasedononlythe executiontimeofatargetjobistobeminimized.jobarrivalrateandsizeare\random"ona Anetworkofworkstations(NOWs)maybeemployedforhighperformancecomputingwhere Abstract tominimizeexecutiontimeofatargetjobonasetofworkstationswheretheround-robinjob schedulingpolicyisadopted.ithasbeenveriedthroughcomputersimulationthattheproposed rstordermoments(means)ofsystemparametersisnotoptimal.inthispaper,itisproposed toconsiderthesecondordermoments(standarddeviations)alsoinloadbalancinginorder staticanddynamicloadbalancingschemescansignicantlyreduceexecutiontimeofatarget jobinanowsenvironment,comparedtocaseswhereonlythemeansoftheparametersare used. scheduling,standarddeviation,staticloadbalancing,stochasticmodel KeyWords:Dynamicloadbalancing,Executiontime,Networkofworkstation,Round-robinjob
2 tributedcomputingtoolinanincreasingnumberofcases[1][2].accordingly,usinganows Anetworkofworkstations(NOWs),orcomputers,isbeingemployedasahighperformancedis- 1 Introduction issueofloadbalancingingeneralisnotnew.manyresearchershaveinvestigatedvariousaspects balancinghasasignicanteectonperformanceonecanachieveonanowsenvironment.the ecientlyforspeedingupvariousapplicationshasbecomeanimportantissue.inparticular,load ofloadbalancingforquitelongatime[3][4][5][6][7][8][9][10]. (orheterogeneity)ofsystem,loadbalancingoverhead,speciccharacteristicsofajob,etc.in processorspeed,jobarrivalrateandsize,communicationamongjobs(orsubtasks),homogeneity Thereweremanyparametersandcharacteristicsconsideredinloadbalancing.Theyinclude mostofthepreviouswork[11][12],onlythemeansofsuchparameterswereusedinloadbalancing. However,aparametermayhavethesamemeanforallworkstations,butquitedierentavariance onadierentworkstationinaheterogeneousenvironment.also,inmanycases[13][14][15],the emphasiswasonbalancingjobdistributionratherthanminimizingexecutiontimeofatargetjob. onanindividualworkstation.thisismainlyduetothefactthateachworkstationisusuallyshared forms,especiallydedicatedtightly-coupledmultiprocessorsystems,i.e.,randomnessofjobarrival ThereisafeatureofNOWs,whichdistinguishesitfromotherhighperformancecomputingplat- workstationtime-dependent.thatis,thenumberofjobsonaworkstationistobemodelledasa Thisrandomnessinjobarrivalandsizemakesthenumberofjobssharing(theprocessoron)a bymultipleindependentuserswhosubmittheirjobsatanytime.also,thesizeofajobisrandom. ofworkcompletedineachjobduringatimeintervaldependson(e.g.,inverselyproportionalto) randomvariable.whentheprocessorissharedamongjobsinaround-robinfashion,theamount workstationdoesnotachievetheminimumpossibleexecutiontime.aswillbeshownlater,not distributing(loadbalancing)atargetjobconsideringonlythemeanofthenumberofjobsoneach thenumberofjobs(sharingtheprocessor)inthatinterval.onanetworkofsuchworkstations, takeintoaccountthestandarddeviationofthenumberofjobsoneachworkstationinadditionto onlythemeanbutalsothestandarddeviationofthenumberofjobsaectsexecutiontimeofajob itsmeaninloadbalancing. onaworkstation.therefore,inordertominimizeexecutiontimeofatargetjob,itisnecessaryto analyticallyanddemonstratedviasimulationthatthesecondordermomentsaswellastherst ordermomentsofparametersaretobeusedtominimizeexecutiontimeofatargetjobona Inthispaper,asarststeptowarddevelopinganecientloadbalancingscheme,itisshown networkofheterogeneousworkstations.workstationsareconsideredtobeheterogeneouswhenthe partitionedforloadbalancingandcommunicationisnotrequiredamongsubtasks. time-sharedbymultiplejobs.inthisearlystudy,itisassumedthatatargetjobcanbearbitrarily meanandstandarddeviationofthenumberofjobsvarywithworkstation.eachworkstationis Themaincontributionsofthisworkare(i)derivationofanalyticformulasofperformance 1
3 measuresusedinloadbalancing,(ii)designofstaticanddynamicloadbalancingschemesfor thestandarddeviationsaswellasthemeansofparameterscanoutperformthoseconsideringthe meansonly. minimizingexecutiontimeofatargetjob,and(iii)showingthataloadbalancingschemeutilizing derivedanalyticallyonasingleworkstation,whicharetobeusedforloadbalancingonmultiple workstations.insection4,theproposedstaticanddynamicloadbalancingstrategiesaredescribed. InSection2,astochasticmodelofworkstationsisdescribed.InSection3,asetofmeasuresis strategies.insection6,aconclusionisprovidedwithremarksonthefuturedirections. InSection5,resultsfromextensivecomputersimulationarediscussedtovalidatetheproposed Glossary 2 AStochasticModelofWorkstations Thefollowingnotationsareadoptedinthispaper. Wiworkstationi X thenumberofworkstations Xi thesizeofatargetjobtobedistributed Ai theportionofxassignedtowi thenumberofjobs(randomvariable)arrivedinanintervalonwi ni aithestandarddeviationofai themeanofai Ni themeanofni arrivinginthecurrentinterval thenumberofjobs(randomvariable)inanintervalonwi,excludingthose nithestandarddeviationofni Si thesizeofjob(randomvariable)arrivingatwi i sithestandarddeviationofsi theservicerate(computingpower)ofwi themeanofsi Ti ti executiontime(randomvariable)measuredinintervalsonwi themeanofti Or Oc overheadinvolvedinredistributingload overheadinvolvedincheckingloaddistribution thestandarddeviationofti Whenavariableistobedistinguishedforeachtimeinterval,asuperscriptwithparentheses E[Z]expectationofZ willbeused,e.g.,a(j) idenotesaiforthejthinterval.thesubscriptofarandomvariable,which 2
4 isusedtodistinguishworkstations,isomittedwhenthereisnoneedfordistinction,e.g.,asingle workstationorwhenitdoesnotvarywithworkstation. ServicePolicy Atimeintervalisaunitoftimeforschedulingjobs(sharingtheprocessor)onaworkstation.All timemeasuresareexpressedinintervals.itisassumedthateachworkstationadoptsaround-robin foreachjobinanintervalonworkstationi(denotedbywi)whereiistheservicerateofwi. schedulingpolicy.aworkstation(processor)spends,oneachjobinaninterval,anamountoftime Thosejobsarrivedinanintervalstarttobeserviced(processed)inthefollowingintervalwithout whichisinverselyproportionaltothenumber(ni)ofjobsinthatinterval.thatis,i niisallocated JobArrival anydistinctiondependingontheirarrivaltimes(aslongastheyarriveinthesameinterval).itis tobenotedthatniincludesalljobsarrivedbutnotcompletedbyii 1. Jobsaresubmittedatrandomtimeinstancesand,therefore,thenumberofjobsarrivinginan intervalmaybemodelledbyarandomvariabledenotedbyai.themeanandstandarddeviation JobSize ofaiaredenotedbyaiandai,respectively. standarddeviation(si).itisassumedthatthejobsizeisindependentofthejobarrivalrate. Overheads Thesizeofajobvarieswithjobandmayhaveacertaindistributionwithamean(Si)anda suchastheremainingportionofxionwi,andalsoaconstantoverhead,or,forredistributingthe Loadsonworkstationsarecheckedtodetermineifloadbalancingistobedone.Itisassumedthat, givenanumberofworkstations,thereisaxedamountofoverhead,oc,forcheckinginformation remainingxoverworkstationswhenitisdecidedtoperformloadbalancing. beestimatedfromagivennetworkofworkstations.also,nicanbedirectlymonitoredinpractice. thesystemparametersmaybeknowninsomecases.ortheirmeansandstandarddeviationscan Thejobarrivalrateandjobsizewillbereferredtoassystemparameters.Thedistributionsof distributionofeachofthesystemparameters. Itneedstobenotedthattheproposedloadbalancingschemesdonotassumeanyparticular loadbalancingschemesformultipleworkstations,arederived. 3Inthissection,certain(performance)measuresonasingleworkstation,tobeusedintheproposed PerformanceMeasuresonaWorkstation 3
5 characteristics(morespecically,themeansandstandarddeviationsofthesystemparameters)do notvarywithtimeonaworkstation,itissaidthattheworkstationisin\steadystate".when Thejobofwhichexecutiontimeistobeminimizedisreferredtoastargetjob.Whentheload theyvarywithtime,theworkstationissaidtobein\dynamicstate". Thenumberofjobs,n(j),mayberelatedtothejobarrivalrate,a(j),asfollows. 3.1NumberofJobs n(j)=1+a(j 1)+(n(j 1) 1)p(j 1) intervalandtherstterm(of1)correspondstothetargetjob. wherep(j 1)istheprobabilitythatajobinthe(j 1)thintervaliscarriedovertothejth (1) dependsonandthedistributionsofa(j)ands(j),fromequation1, NotingthatE[n(j)]=E[n(j 1)]=N,andlettingPdenotethesteadystatevalueofp(j)which Also,thestandarddeviationofn(j)canbederivedasfollows. N=1+ 1 P A (2) 3.2ExecutionTime n=qe[(n(j) N)2]= 1 P a (3) Inthejthinterval,thetargetjob(anyjob)isprocessedbytheamountof tintervalstocompletethetargetjob,txi=1 n(j)forallj.ifittakes Then,1 Let'sexpressn(j)asN+n(j).Then,E[n(j)]=0sinceE[n(j)]=N,andE[(n(j))2]=2n. n(i)=x: (4) asfollows. n(j)canbeapproximatedbyignoringthehigherordertermsbeyondthesecondorderterm BytakingE[](expectation)onbothsidesofEquation4withEquation5incorporatedinto, n(j)= 1 N+n(j)1N0@1 n(j) 1 N + n(j) N!21A (5) themeanofexecutiontimeofthetargetjob,t,canbederived. 4
6 NotethatTdependsonnotonlyNbutalsonbothofwhichinturndependonthestandard T= 1+2n NXN2 (6) deviationsaswellasthemeansofthesystemparameters,a,a,s,ands(andofcourse).note thatexecutiontimeofatargetjobonaworkstationwitharound-robinjobschedulingdecreases approximationusedtoobtaint,thestandarddeviation,x,ofxcanbeshowntoben thatisprocessed(completed)inthejthinterval.thenx(j)= asvariation(n)inthenumberofjobsincreases. Inordertoderivethestandarddeviationofexecutiontime,letX(j)denoteaportionofX N+n(j).Followingthesimilar amountoftargetjobprocessedovertintervals(whichisthemeanexecutiontimeofthetarget Now,assuming\uncorrelatedness"ofX(j)betweenintervals,thestandarddeviation,X,ofthe N2. job)canbeeasilyshowntobeptx.finally,thestandarddeviationofexecutiontimeofa targetjobmaybederived(approximated)bydividingxbythemeanprocessingspeedwhichis XTandusingEquation6.Thatis, t=xt X=pTq1+2n n NN2 (7) 4.1StaticLoadBalancing 4 LoadBalancingoverHeterogeneousWorkstations Intheproposedstaticloadbalancingscheme,atargetjobispartitionedsuchthatthefractionof XassignedtoWifori=1;;WisinverselyproportionaltotheexpectedexecutiontimeofX onwiwherewisthenumberofworkstationsavailableforx.lettidenoteexecutiontimeofthe targetjobonwi(i.e.,whenwionlyisemployedfortheentirex).then, Ti= i1+2ni NiX LetXidenotethesizeoftheportionofXtobeassignedtoWi.Then,Xiisdeterminedas N2i fori=1;;w: (8) follows. Xi= PWi=11Ti XTi isconstantforalli.thisloadbalancingstrategyassignsmoreworktoaworkstationwitha Notethat,evenwhenNiisthesameforalli,Xwouldnotbedistributedevenlyunlessni (9) 5
7 largervariationinthenumberofjobsonitwhentheaveragenumberofjobsisthesameforall rateof1+3=23onw2.therefore,alargerportionofthetargetistobeassignedtow2which and3).then,atargetjobwouldbeprocessedattheaveragerateof2onw1whileattheaverage workstations.supposethatn1=n2=2,n1=0,andn2>0(say,n2alternatesbetween1 hasalargervariationinthenumberofjobs. 4.2DynamicLoadBalancing point). ofatargetjob)andhowfrequentlyloaddistributionistobechecked(determinationofchecking Twoessentialissuesindynamicloadbalancingarehowloadshouldberedistributed(redistribution Redistribution LetXi:remdenotethesizeoftheremainingportionofatargetjobonWibeforeloadbalancingat 6.Thatis, completiontimeofthetargetjobwouldbemaxifti:remgwhereti:remiscomputedusingequation acheckingpoint.ifloadbalancing(redistribution)isnotdoneatthecheckingpoint,theexpected Ti:rem= i1+2ni NiXi:rem N2i fori=1;;w (10) Xrem=PIXi:rem,isredistributedoverWiaccordingtoEquation9.Thatis,X0i:rem= Now,ifloadbalancingistobedoneatthecheckingpoint,thetotalremainingjob,ofwhichsizeis PWi=11 Ti:rem Xrem foralli;jsinceloadhasbeenbalanced. wherex0i:remisthesizeoftargetjob(portion)tobeassignedtowiafterloadbalancing.the expectedexecutiontimeofx0i:remonwiisdenotedbyt0 i:rem.then,notethatt0 i:rem=t0j:rem Ti:rem Theexpectedreduction,T,inexecutiontimeofthetargetjobcanbeexpressedas whereoristheoverheadforredistribution. T=maxifTi:remg T01:rem Or (11) DeterminationofCheckingPoint executiontime,t)exceedsacertainthreshold,i.e.,tthreshold. Loadbalancing(redistribution)iscarriedoutonlywhentheexpectedbenet(reductionin whichanywiisidle(doesnotworkonthetargetjob)beforethetargetjobiscompletedonall Inordertominimizeexecutiontimeofatargetjob,itisnecessarytominimizethedurationin 6
8 stillworkonthetargetjob. Wi.Hence,theloaddistributionistobecheckedbeforeanyofWibecomesidlewhiletheothers Equation7.Areasonableestimateofthe\highlylikely"earliestcompletiontimeonWimaybe approximatedtobet0 Thestandarddeviation,t0i:rem,ofexecutiontimetocompleteX0i:remcanbederivedusing setasfollows. Then,thenextcheckingpoint,Tcheck,measuredwithrespecttothecurrentcheckingpointis i:rem ht0i:remwherehisatuningfactorcloseto1. Tcheck=minifT0 tionbeforeanyofwicompletesitsexecutionoftargetjob(x0i:rem).notethatonceawicompletes Thatis,intheproposeddynamicloadbalancingscheme,itisattemptedtocheckloaddistribu- i:rem ht0i:remg (12) 5X0i:remitwillnotbeutilizedforthetargetjobatleastuntilnextcheckingpoint. Anextensivecomputersimulationhasbeencarriedoutinordertoverifythereductioninexecution timeofatargetjob,whichcanbeachievedbyconsideringthesecondordermoments(standard SimulationResultsandDiscussion geneousworkstations. 5.1Simulation deviations)aswellasthemeansofsystemparametersforloadbalancingonanetworkofhetero- similartrendshavebeenobservedforallthreedistributions,onlytheresultsforthe(truncated) distributions,havebeenconsideredforeachofthejobinter-arrivaltimeandthejobsize.since Inthissimulation,threedierentdistributions,i.e.,exponential,uniform,andtruncatedGaussian eachwithadierentseed,andthenresults(executiontimeofatargetjob)wereaveraged. testedforawiderangeofeachparameter.theprogramwasrunmultipletimesineachtestcase, Gaussiandistributionareprovidedinthispaper.Theproposedloadbalancingschemeshavebeen \SE"(StaticEven)whichdistributesatargetjobevenlyinthestaticloadbalancingand\SM" \staticproposed"and\dynamicproposed",respectively)arecomparedtootherapproaches,i.e., Theproposedstaticanddynamicloadbalancingschemes(\SP"and\DP"whichreads (StaticMean)and\DM"(DynamicMean)whichuseonlythemeans(Ni)ofthenumberofjobs inthestaticanddynamicloadbalancing,respectively. totheexecutiontimeforeachcheckingpoint.ifloadisredistributed,or(redistributionoverhead) isalsoadded(foreachredistribution). Inthecasesofdynamicloadbalancing,theoverhead,Oc,forcheckingloaddistributionisadded 7
9 Executiontimeismeasuredinintervals.Inadditiontoexecutiontimeofatargetjob,themeasure of\relativeimprovement"isusedincomparison,whichisdenedasris=tsm TSP 5.2ResultsandDiscussion staticloadbalancingwheretsmandtspareexecutiontimesofatargetjobachievedbysmand SP,respectively.Similarly,therelativeimprovementisdenedforthedynamicloadbalancingas RID=TDM TDP anddp,respectively. Resultsforcaseswhereworkstationsareinthesteadystatearediscussedrst. wheretdmandtdpareexecutiontimesofatargetjobachievedbydm discussedinsection3.2,tclearlyshowsitsdependencyonnanddecreasesasnincreases. nfordierentninasteadystate.obviously,tincreasesasnincreases.moreimportantly,as InFigure1,executiontimeofatargetjobonasingleworkstationisplottedasafunctionof expected,theproposedloadbalancingschemes(spanddp)workbetterthantheotherschemes, comparedamongtheveloadbalancingschemesmentionedabove.first,itcanbeseenthat,as InFigure2,(parallel)executiontimeofatargetjobinsteadystatesontwoworkstationsis conrmingthatthesecondordermomentsofthesystemparametersaretobeconsideredinload balancinginordertominimizetheexecutiontimeofatargetjob.second,itneedstobenotedthat SPachievesshorterexecutiontimesthanDP.Thisisduetothefactthatinasteadystatetheload characteristicsdonotvaryinthelongtermandthereforetheone-timeinitialloadbalancing(by SP)isgoodenough,andthatDPpaystheoverheadofcheckingandbalancingduringexecution. inn,leadingtoashorterexecutiontime(refertoequation6).however,increasingshasan executiontime(figure2-(b)).thisisbecauseanincreaseinacausesalargerincreaseinnthan Third,anincreaseinaleadstoashorterexecutiontime(Figure2-(a))whilethatinstoalonger oppositeeect. analyzedinasteadystate.asshowninthegure,whentheoverheadsarerelativelylow,dpcan stillachieveashorterexecutiontimethanthatbysp.however,astheoverheadsbecomelarger, InFigure3,dependencyofexecutiontimeontheloadcheckingandredistributionoverheadsis thansp. theystarttoosetthegainbythedynamicloadbalancingandeventuallymakedpperformworse DMinFigure4-(b).Itcanbeseeninbothcasesthattherelativeimprovementincreasesasthe dierenceinaorsbetweentwoworkstationsbecomeslarger.thisisduetothefactthatthe TherelativeimprovementbySPoverSMisconsideredinFigure4-(a),andthatbyDPover agiandssiareaandsoftheithgroupofworkstations.itcanbeobservedthattherelative largerthedierenceis,thelessaccuratetheloadbalancingbysmbecomes. improvementbyspoversmincreaseswiththenumberofworkstations.itincreasesmorerapidly Eectsofthenumberofworkstations,W,areanalyzedforsteadystatesinFigure5where theloadbalancingbyspbecomesmore(relatively)accuratethanthatbysmasthedierence whenthedierenceineitheraorsislarger.again,theseobservationsstemfromthefactthat inthesecondordermomentsbetweengroupsofworkstationsgrows. 8
10 45 40 N=2 (A=1, S=20) N=3 (A=2, S=10) N=4 (A=3, S=5) 35 Execution time 30 Figure1:ExecutiontimeofXononeworkstationwhere=100andX= σ (%) n S_E S_M S_P D_M D_P S_E S_M S_P D_M D_P S2=20,andX=2000.(a)a1=53%,s1=30%,s2=48%,(b)a1=53%,a2=45%,s1=30% Figure2:Parallelexecutiontimeontwoworkstationswhere=100,A1=1,A2=2,S1=10, (b) Now,acasewhereasystemparametervarieswithtimeisconsidered,i.e.dynamicstate.In σ a2 (%) σ (%) thestaticschemes(spandsm).also,itisnotedthatdpwhichtakesa1intoaccountachieves Figure6,a1varieswithtimesuchthatitsdeviationfromthevalueusedbySPischanged(larger forcaseiwithlargeri).asexpected,thedynamicschemes(dpanddm)performbetterthan s2 ashorterexecutiontimecomparedtodm.theimprovementbydpoverdmtendstoincrease 6withthedeviation. astherstordermoments(means)ofsystemparametersbetakenintoaccountforloadbalancing Inthispaper,ithasbeenproposedthatthesecondordermoments(standarddeviations)aswell ConclusionandFutureStudy onatime-sharedheterogeneousparallel/distributedcomputingenvironment.theseloadbalancing schemeswhichattempttominimizeexecutiontimeofatargetjobhavebeentestedviacomputer simulation.ithasbeenveriedthatconsideringthesecondordermomentsalsoinbothstaticand 9 Execution time Execution time
11 S_E S_M S_P D_M D_P Execution time S2=30,X=2000,a1=90%,a2=0%,s1=96%,s2=96%. Figure3:Parallelexecutiontimeontwoworkstationswhere=100,A1=1,A2=2,S1=20, O c, O r σ s2 =1 % σ s2 =47 % σ s2 =95 % σ s2 =1 % σ s2 =46 % σ s2 =96 % Relative improvement (%) A1=0:5,A2=0:5,S1=40,S2=40,X=3000,a1=0%,s1=100%,(b)Relativeimprovement, 5 2 RID,byDPoverDMontwoworkstations.=100,A1=2,A2=2,S1=20,S2=20,X=16000, Figure4:(a)Relativeimprovement,RIS,bySPoverSMontwoworkstations. 4 a1=0%,s1=96%,oc=0:1,or=0: σ (%) σ a2 a_2 (%) (reductioninexecutiontimeofatargetjob)becomeslargerasthedierenceinthesecondorder NOWswitharound-robinjobschedulingpolicyadoptedineachworkstation.Theimprovement dynamicloadbalancingcanleadtoasignicantreductioninexecutiontimeofatargetjobona momentsbetweenworkstationsorgroupsofworkstationsincreases.thesimilarobservationshave application. schemesaresimpleandgeneral,andthereforearebelievedtohaveagoodpotentialforwide beenmadeforallofthethreedistributionsconsideredforeachsystemparameter.theproposed performanceanalysisforrealworkloadsonanows,etc. Thefuturestudyincludesconsiderationofcommunicationamongsubtasksandjobgranularity, 10 Relative improvement (%)
12 Relative improvement (%) σ a_g2 =50 %, σ s_g2 =0 % σ a_g2 =50 %, σ s_g2 =96 % σ a_g2 =76 %, σ s_g2 =0 % σ a_g2 =76 %, σ s_g2 =96 % 15 Ag1=0:5,Ag2=0:5,Sg1=40,Sg2=40,X=1500,ag1=50%,sg1=96%. Figure5:Relativeimprovement,RIS,bySPoverSMonmultipleworkstationswhere=100, W S_E S_M S_P D_M D_P Execution time 40 Figure6:Parallelexecutiontimeontwoworkstationswhere=100,A1=1,A2=2,S1=20,S2=30, References X=2000,a1=24%,a2=0%,s1=0%,s2=20%.a1varieswithtimewhereitsdeviationfrom thevalueusedbyspislargerforcaseiwithlargeri [2]Pf,\InSearchofClusters". [1]D.Culler,\ParallelComputerArchitecture",MorganKaufman,1999. [4]C.PolychronopoulosandD.Kuck,\GuidedSelf-SchedulingSchemeforParallelSupercomputers",IEEETransactionsonComputers,vol.36,no.12,pp1,425-1,439,December1987. [3]G.Cybenko,\DynamicLoadBalancingforDistributedMemoryMultiprocessors",J.Parallel anddistributedcomputing,vol.7,pp ,1989. [5]S.Ranka,Y.Won,andS.Sahni,\ProgrammingaHypercubeMulticomputer",IEEESoftware, pp69-77,september
13 [7]M.Cierniak,W.Li,andM.J.Zaki,\LoopSchedulingforHeterogeneity",Proc.ofthe4th [6]M.MaheswaranandH.Siegel,\ADynamicMatchingandSchedulingAlgorithmforHeterogeneousComputingSystems",Proc.HeterogeneousComputing'98,pp57-69,1998. [8]A.GerasoulisandT.Yang,\OntheGranularityandClusteringofDirectedAcyclictask IEEEInternationalSymposiumHigh-PerformanceDistributedComputing,pp78-85,August graphs",ieeetransactionsonparallelanddistributedsystems,vol.4,no.6,pp , [9]S.M.FigueiraandF.Berman,\ModelingtheSlowdownofData-ParallelApplicationsin [10]J.C.JacobandS.-Y.Lee,"TaskSpreadingandShrinkingonMultiprocessorSystemsand HomogeneousClustersofWorkstations",Proc.HeterogeneousComputerWorkshop,pp90-101, [11]E.P.MakatosandT.J.Leblanc,\UsingProcessorAnityinLoopSchedulingonShared- NetworksofWorkstations",IEEETransactionsonParallelandDistributedSystems,vol.10, no.10,pp ,october1999. [12]S.SubramaniamandD.L.Eager,\AnitySchedulingofUnbalancedWorkloads",Proc.Supercomputing'94,pp ,1994. no.4,pp ,april1993. MemoryMultiprocessors",IEEETransactionsonParallelandDistributedSystems,vol.5, [13]M.-Y.Wu,\OnRuntimeParallelSchedulingforProcessorLoadBalancing",IEEETransactionsonParallelandDistributedSystems,vol.8,no.2,pp ,February1997. [14]X.ZhangandY.Yan,\ModelingandCharacterizingParallelComputingPerformanceOnHeterogeneousNetworksofWorkstations",Proc.ofthe7thIEEESymp.ParallelandDistributed [15]B.-R.TsaiandK.G.Shin,\Communication-OrientedAssignmentofTaskModulesinHypercubeMulticomputers",Proc.ofthe12thInternationalConferenceonDistributedComputing Processing,pp25-34,October1995. Systems,pp38-45,
Tuition Reimbursement Program. Handbook
EMPLOY EE Tuition Reimbursement Program Handbook For Employees... Ed u c a t i o n m a d e a f f o r d a b l e! A t t h e E r n e s t O r l a n d o L a w r e n c e B e r k e l e y N a t i o n a l L a b
5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
Ďě Ž ť č ď ť ď ú ď ť ě Ě ň Ě ě ú ň ž ú ú Ú ú ú Ě ň é é ž ú ž Ť Ť Ť ú ň Ď ú ň ď Ě ú É ž ř ú ě ň ý Ě ň ý ň ň Ť ř ď ř ň ú Ť ě ř ě ý Š Ú Ú ň ň ú Ó Ú ň Ň Ů ž ú ň Č ř ř ú É ě ň ú Ž ý ú ú Ú Ú ť ž ž ď ý ž ď ž
BMC ITSM Suite - nabité skúsenosťami. Juraj Izák, 13.10.2011
BMC ITSM Suite - nabité skúsenosťami Juraj Izák, 13.10.2011 MATERNA GmbH 2011 www.materna.com 1 Presenter Name Function E-mail Telephone Fax Mobile Ing. Juraj Izák Senior Consultant [email protected]
G S e r v i c i o C i s c o S m a r t C a r e u ي a d e l L a b o r a t o r i o d e D e m o s t r a c i n R ل p i d a V e r s i n d e l S e r v i c i o C i s c o S m a r t C a r e : 1 4 ع l t i m a A c
G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1
How to Subnet a Network How to use this paper Absolute Beginner: Read all Sections 1-4 N eed a q uick rev iew : Read Sections 2-4 J ust need a little h elp : Read Section 4 P a r t I : F o r t h e I P
R e t r o f i t o f t C i r u n i s g e C o n t r o l
R e t r o f i t o f t C i r u n i s g e C o n t r o l VB Sprinter D e s c r i p t i o n T h i s r e t r o f i t c o n s i s t s o f i n s t a l l i n g a c r u i s e c o n t r o l s wi t c h k i t i n
C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers
Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of
List of Graduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016
1FP419 Business Valuation (in German) master Accounting German 3 no 1FP421 Business Valuation (in English) master Accounting English 3 no 1FU491 Financial reporting under IFRS and US GAAP - Comparsion
Chapter 9 Project Cash Flow Analysis
Chapter 9 Project Cash Flow Analysis 9.1: (c) Given: accounting and cash flow data Find: income tax rate to use in project year 1 Approach: find the taxable incomes and income taxes with and without project
Data Center end users for 40G/100G and market dy nami c s for 40G/100G on S M F Adam Carter Ci s c o 1 W Now that 40GbE is part of the IEEE 802.3ba there will be a wid er array of applic ation s that will
NoFreeLunchTheoremsforSearch DavidH.Wolpert([email protected]) SFI-TR-95-02-010 WilliamG.Macready([email protected]) TheSantaFeInstitute 1399HydeParkRoad SantaFe,NM,87501 February23,1996 possiblecostfunctions.inparticular,ifalgorithmaoutperformsalgorithmbonsome
List of Graduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016
1FP419 Business Valuation (in German) master Accounting German 3 no 1FP421 Business Valuation (in English) master Accounting English 3 no 1FU491 Financial reporting under IFRS and US GAAP - Comparsion
ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!
179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".
How To Pay For An Ambulance Ride
Chapter 9Ambulance 9 9.1 Enrollment........................................................ 9-2 9.2 Emergency Ground Ambulance Transportation.............................. 9-2 9.2.1 Benefits, Limitations,
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with
CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change
CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may
Chapter. CPT only copyright 2009 American Medical Association. All rights reserved. 9Ambulance
Chapter 9Ambulance 9 9.1 Enrollment........................................................ 9-2 9.2 Emergency Ground Ambulance Transportation.............................. 9-2 9.2.1 Benefits, Limitations,
W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e
All answers must use the correct number of significant figures, and must show units!
CHEM 10113, Quiz 2 September 7, 2011 Name (please print) All answers must use the correct number of significant figures, and must show units! IA Periodic Table of the Elements VIIIA (1) (18) 1 2 1 H IIA
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).
PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a
UNIK4250 Security in Distributed Systems University of Oslo Spring 2012. Part 7 Wireless Network Security
UNIK4250 Security in Distributed Systems University of Oslo Spring 2012 Part 7 Wireless Network Security IEEE 802.11 IEEE 802 committee for LAN standards IEEE 802.11 formed in 1990 s charter to develop
Manage the acquisition of products from suppliers for which there exists a formal agreement.
Manage the acquisition of products from suppliers for which there exists a formal agreement. Establish Supplier Agreements (SG 1) Supplier Requirements Supplier Agreements s Satisfy Supplier Agreements
U S B Pay m e n t P r o c e s s i n g TM
U S B Pay m e n t P r o c e s s i n g T h a t s S m a r t P r o c e s s i n g TM USB was simple to enroll in. They had competitive rates and all the fees were listed clearly with no surprises. Everyone
Online Department Stores. What are we searching for?
Online Department Stores What are we searching for? 2 3 CONTENTS Table of contents 02 Table of contents 03 Search 06 Fashion vs. footwear 04 A few key pieces 08 About SimilarWeb Stepping up the Competition
Parallels Mac Management v4.0
Parallels Mac Management v4.0 Deployment Guide July 18, 2015 Copyright 1999 2015 Parallels IP Holdings GmbH and its affiliates. All rights reserved. All other marks and names mentioned herein may be trademarks
Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.
Robust Tests for the Equality of Variances Author(s): Morton B. Brown and Alan B. Forsythe Source: Journal of the American Statistical Association, Vol. 69, No. 346 (Jun., 1974), pp. 364-367 Published
Cisco Security Agent (CSA) CSA je v í c eúčelo v ý s o f t w a r o v ý ná s t r o j, k t er ý lze p o už í t k v ynuc ení r ů zný c h b ezp ečno s t ní c h p o li t i k. CSA a na lyzuje c h o v á ní a
PES INSTITUTE OF TECHNOLOGY B.E 5TH SEMESTER (AUTONOMOUS) - PROVISIONAL RESULTS JANUARY 2015 COMPUTER SCIENCE AND ENGINEERING BRANCH
1 1PI12CS002 A A A A A B A A NA S NA NA NA NA NA NA NA 25.0 25.0 9.04 2 1PI12CS004 B I B C B A A A NA NA NA S NA NA NA NA NA 21.0 21.0 8.14 3 1PI12CS005 B B C B B B A B A NA NA NA NA NA NA NA NA 25.0 25.0
BLADE 12th Generation. Rafał Olszewski. Łukasz Matras
BLADE 12th Generation Rafał Olszewski Łukasz Matras Jugowice, 15-11-2012 Gl o b a l M a r k e t i n g Dell PowerEdge M-Series Blade Server Portfolio M-Series Blades couple powerful computing capabilities
BIG DATA IN TRANSPORT RESEARCH: LEGAL AND PRIVACY CHALLENGES
BIG DATA IN TRANSPORT RESEARCH: LEGAL AND PRIVACY CHALLENGES P R E S ENTATION T R A F I KF DOR A GE MEETING 2 0 1 5 AALBORG 29 TH OF AUGUST NT K R I S T I A N H E G N E R R E I N A U, K R I SJ TO IHA N
MODERN ATOMIC THEORY AND THE PERIODIC TABLE
CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek
List of Undergraduate Courses University of Economics, Prague Fall/Winter Semester 2015/2016
1FU301 Fundamentals of Accounting in English bachelor Accounting English 3 no 1FU361 Financial reporting under IFRS and US GAAP - Basic Concepts (in English) bachelor Accounting English 3 no 1BP260 Banking
Electronegativity and Polarity
and Polarity N Goalby Chemrevise.org Definition: is the relative tendency of an atom in a molecule to attract electrons in a covalent bond to itself. is measured on the Pauling scale (ranges from 0 to
Der Bologna- P roz es s u nd d i e S t aat s ex am Stefan Bienefeld i na Service-St el l e B o l o g n a d er H R K Sem in a r D er B o l o g n a P ro z es s U m s et z u n g u n d M it g es t a l t u
SCO TT G LEA SO N D EM O Z G EB R E-
SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e
AN ESTIMATION OF CLAIMS DISTRIBUTION NAWOJIRO ESHITA FOREWORD
AN ESTIMATION OF CLAIMS DISTRIBUTION NAWOJIRO ESHITA FOREWORD There are two phases of difficulties in estimating a claims distribution. If we are going to estimate the claims distribution as accurately
SwA Community s Assurance Process Reference Model - Mapping to Assurance Models
Development Engineering DE 1 Establish assurance requirements DE 2 Create IT solutions with integrated business objectives and assurance Understand the operating environment and define the operating constraints
Sputtering Targets for Microelectronics. Sputtering Targets for Semiconductor Applications
Sputtering Targets for Microelectronics Sputtering Targets for Semiconductor Applications Umicore Thin Film Products Umicore Thin Film Products, a globally active business unit within the Umicore Group,
How To Solve A Sequential Mca Problem
Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 3, 2012 Changes in HA1 Problem
EXPERIMENT 4 The Periodic Table - Atoms and Elements
EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements
Business and Economics Applications
Business and Economics Applications Most of the word problems you do in math classes are not actually related to real life. Textbooks try to pretend they are by using real life data, but they do not use
DryLin ZLW Belt Drive
Belt Drive +50º 0º DryLin toothed belt drives have been developed for the fast positioning of small loads. The linear units with toothed belt drive are corrosion resistant, light and compact, besides having
Two River Views. A New Website at a New Home. Two River Community Bank Newsletter Fall 2015
T Rv V T Rv mm Bk Nl Fll 2015 A N W N Hm. W l x mg l l. Dg, l lk m v vg, k ll v l ll kg. Pl, mz ml v, mll z, g mll l. Skg, l. W v l l -vl g l v, g kg m m --g. I, ll l mvg m TRv.Bk. Ol -v gz lgl.k, g l
SAMBA TRISTE As recorded by Baden Powell, 1963 (From the 1963 Album BADEN POWELL À VONTADE)
nratd sin th owr ab Editor by rad Larsn. http://powrtab.itarntwor.or SM SE s rordd by adn owll, (From th lbm DEN OELL À ONDE) ransribd by railonitar ords by illy lano Msi by adn owll J Q = tr ` Dm Cma
Campus Sustainability Assessment and Related Literature
Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626
GE Healthcare Life Sciences
GE Life Sciences Controlled Order Intake Process for GE s Whatman Cellulose-Based Chromatography Media: Affected Products and Alternatives Product Code Item Description Discontinued or Transferred to Alternative
Enrolment Application Form
PASSPORT SIZE PHOTOGRAPH OF APPLICANT INSTITUTE OF CULINARY ARTS Farm Calenick, Zevenrivieren Road, Banhoek, Stellenbosch PO Box 6314 U N I E D A L 7612, S OUTH AF RI C A T E L +27 (0) 21 885 1414 I F
รายงานผลการด าเน นงาน เร อง โครงการศ นย เร ยนร การเกษตรพอเพ ยงป 2552 โดย
รายงานผลการด าเน นงาน เร อง โครงการศ นย เร ยนร การเกษตรพอเพ ยงป 2552 โดย นายประพนธ ธ ปะเตม ย เกษตรอ าเภอ (น กว ชาการส งเสร มการเกษตรช านาญการ) ส าน กงานเกษตรอ าเภอบางบ วทอง จ งหว ดนนทบ ร รายงานผลการด าเน
Version 1.0. General Certificate of Education (A-level) January 2012. Mathematics MPC4. (Specification 6360) Pure Core 4. Final.
Version.0 General Certificate of Education (A-level) January 0 Mathematics MPC (Specification 660) Pure Core Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together
I n s t r u k c j a o b s ł u g i p r o g r a m u Program Finansowo-K się gowy w e r s j a 1. 1 p o d W i n d o w s. W y d a w n i c t w o " G I D E X " S Z C Z E C I N - m a j - 2 0 0 2 W y ł ą c z n
Put the human back in Human Resources.
Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect
So ware Zusammenfassung Details docusnap.intern
docusnap.intern Datum Autor Seitenanzahl 08.10.2012 Docusnap 16 Domäne: docusnap.intern Hersteller: - Kein Hersteller angegeben - So warename: StorageIM_Community_1_1_0 Version 1.1.0.0 Hersteller: administrator
100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.
2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal
Chair of Software Engineering. Software Verification. Assertion Inference. Carlo A. Furia
Chair of Software Engineering Software Verification Assertion Inference Carlo A. Furia Proving Programs Automatically The Program Verification problem: Given: a program P and a specification S = [Pre,
LARGE CLASSES OF EXPERTS
LARGE CLASSES OF EXPERTS Csaba Szepesvári University of Alberta CMPUT 654 E-mail: [email protected] UofA, October 31, 2006 OUTLINE 1 TRACKING THE BEST EXPERT 2 FIXED SHARE FORECASTER 3 VARIABLE-SHARE
From Quantum to Matter 2006
From Quantum to Matter 006 Why such a course? Ronald Griessen Vrije Universiteit, Amsterdam AMOLF, May 4, 004 vrije Universiteit amsterdam Why study quantum mechanics? From Quantum to Matter: The main
Covariances between gamma-ray energies
Nuclear Instruments and Methods in Physics Research A 460 (2001) 289}296 Covariances between gamma-ray energies O. Helene*, Z.O. Guimaraes-Filho, V.R. Vanin, T.M. Pauliquevis Jr, I.D. Goldman, P.R. Pascholati
Ciascuncorsoincludeunacombinazionedigitescolastiche;duegiorni. interieduemezzegiornateselezionatetraleseguentidestinazioni:
Ognann 4 000g v an udn p v n n da70pa v ngna a B S c hp ud a I ng Ec c 8bun ag np c g B L c annab amacc 70d v naz na ànn c,chdannunapp un àd a nuvam c z da u mnddu an c vabb am magg num d a unz dgnnaz
1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.
1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í
Sustainable energy products Simulation based design for recycling
Sustainable energy products Simulation based design for recycling Markus A. Reuter (Prof. Dr. Dr. hc) Director: Technology Management, Outotec Oyj Aalto University (Finland), Central South University (China),
Multicrystalline solar silicon production for development of photovoltaic industry
Multicrystalline solar silicon production for development of photovoltaic industry A.I. Nepomnyaschikh Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, E-mail: [email protected]
STAPLES: AFTERMARKET STAPLES CROSS-REFERENCE GUIDE BRAND OEM # MODELS / FINISHERS DESCRIPTION COPYLITE #
C N O N S: FTERMRKET S CROSS-REFERENCE GUIDE CNON 0251001 CNON F23 5705 000 CNON E 1 CNON G 1 FINISHER D1, FINISHER D2, FINISHER F2 FINISHER G1, FINISHER H2, R E1 R E2, R E3, R F1 R H1, R H2, R J1 R K1,
Safe robot motion planning in dynamic, uncertain environments
Safe robot motion planning in dynamic, uncertain environments RSS 2011 Workshop: Guaranteeing Motion Safety for Robots June 27, 2011 Noel du Toit and Joel Burdick California Institute of Technology Dynamic,
Questions on Chapter 8 Basic Concepts of Chemical Bonding
Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,
Final Report Certification for CRADA Number. Between. UT-Battelle, LLC. and. (Participant)
Final Report Certification for CRADA Number NFB«M)1374 Between UT-Battelle, LLC and Carpenter Technology Corporation (Participant) Instructions: Mark the appropriate statement in 1a or 1b below with an
Lecture 2 - Semiconductor Physics (I) September 13, 2005
6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 2-1 Lecture 2 - Semiconductor Physics (I) September 13, 2005 Contents: 1. Silicon bond model: electrons and holes 2. Generation and recombination
Faculty Teaching Qualifications Table
aculty Table ollege: ducation Subject: ounseling Last Updated: July 2015 in ield May e cceptable Master s achelor s dditional Ph or d in ounselor ducation or closely related field Psychology ducation M.d.
The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.
A Classical Tax-Subsidy Problem Author(s): Gerard Debreu Source: Econometrica, Vol. 22, No. 1 (Jan., 1954), pp. 14-22 Published by: The Econometric Society Stable URL: http://www.jstor.org/stable/1909828.
845 PRICE AUTHORIZATION ACKNOWLEDGEMENT/STATUS - VERSION 5010
845 PRICE AUTHORIZATION ACKNOWLEDGEMENT/STATUS - VERSION 5010 This example represents a contract notification being sent by a Manufacturer to a Distributor eligible to service a contract to an end user
The Configuration Management process area involves the following:
CONFIGURATION MANAGEMENT A Support Process Area at Maturity Level 2 Purpose The purpose of is to establish and maintain the integrity of work products using configuration identification, configuration
ITINERARY 1 GOURMET OUTING 20 MINUTES AWAY FROM MONTRÉAL TOTAL DISTANCE: 57 KM
NJ OY AG AWAYAL ONG HMON É RÉ GI WI NROU! D m m m m w? M W R w! M W R R b b S É B S H 1 7 5 m H M W R b b b b b m mm w w 1 6 m m m w m B mb m M W R ; w w Y m m m C! IINRARY 1 GOURM OUING 20 MINUS AWAY
Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years
Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957
YTD Highlights. 1 st Half 2013 Results Presentation
1H/13 Results Presentation August 30 th, 2013 YTD Highlights Sales resilience, backlog impacted by forex Sustainable net results Working capital control remains top priority Disposals program under way
Networx SOW Status to date 10/28/09
The Networx Statement of Work (SOW) Status report presents a high level overview of /Agency/Contractor progress in satisfying Agency SOW requirements. 1. Agency (L) stands for Large Agency that is part
REQUEST FOR BID TREE TRIMMING and TREE REMOVAL for ELECTRIC LINE CLEARANCE
REQUEST FOR BID TREE TRIMMING and TREE REMOVAL for ELECTRIC LINE CLEARANCE Sealed bids will be received by the Director of Public Service of the City of Wadsworth (herein referred to as the City ) at his
Chapter 8 Atomic Electronic Configurations and Periodicity
Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from
UNITED STATES DEPARTMENT OF AGRICULTURE FOOD SAFETY AND INSPECTION SERVICE WASHINGTON, DC INFORMATION SYSTEM CERTIFICATION AND ACCREDITATION (C&A)
UNITED STATES DEPARTMENT OF AGRICULTURE FOOD SAFETY AND INSPECTION SERVICE WASHINGTON, DC FSIS DIRECTIVE 1306.2 9/28/11 INFORMATION SYSTEM CERTIFICATION AND ACCREDITATION (C&A) I. PURPOSE This directive
How to read your Oil Analysis Report
How to read your Oil Analysis Report A better understanding Petroleum Technologies Group, LLC. 4665 Broadmoor S.E. Ste#15 Grand Rapids, MI 49512 Phone # 616/698 9399 Fax # 616/698 9395 www.oil lab.com
Time-line based model for software project scheduling
Time-line based model for software project scheduling with genetic algorithms Carl K. Chang, Hsin-yi Jiang, Yu Di, Dan Zhu, Yujia Ge Information and Software Technology(IST), 2008 2010. 3. 9 Presented
Overview of the Systems Security Engineering Capability Maturity Model (SSE-CMM)
Overview of the Systems Security Engineering Capability Maturity Model (SSE-CMM) S E C A T HK- 36 What is the Problem the SSE-CMM Solves? Costs Current process Improved process Process Improvement Current
FORT WAYNE COMMUNITY SCHOOLS 12 00 SOUTH CLINTON STREET FORT WAYNE, IN 468 02 6:02 p.m. Ma r c h 2 3, 2 015 OFFICIAL P ROCEED ING S Ro l l Ca l l e a r d o f h o o l u e e o f t h e r t y m m u t y h o
Amsterdam RAI Hotel DETAILBOEK OMA AANVRAAG WABO 1 : 5. Heer Bokelweg 149 3032 AD Rotterdam, Netherlands tel: +31 10 243 8200 ARCHITECT PROJECT
A. 21. 000 AANVRAAG WABO DRAWING LIST N/A A. 21. 001 A. 21. 100 A. 21. 150 A. 21. 151 A. 21. 152 A. 21. 160 A. 21. 161 A. 21. 162 A. 21. 163 A. 21. 170 A. 21. 180 A. 21. 200 A. 21. 250 A. 21. 251 A. 21.
L a h ip e r t e n s ió n a r t e r ia l s e d e f in e c o m o u n n iv e l d e p r e s ió n a r t e r ia l s is t ó lic a ( P A S ) m a y o r o
V e r s i ó n P á g i n a 1 G U I A D E M A N E J O D E H I P E R T E N S I O N E S C E N C I A L 1. D E F I N I C I O N. L a h ip e r t e n s ió n a r t e r ia l s e d e f in e c o m o u n n iv e l d
ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom )
ANSWER KEY : PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom ) 1. Explore the Build an Atom simulation with your group. As you explore, talk about what
270/271 Health Care Eligibility Benefit Inquiry and Response
270/271 Health Care Eligibility Benefit Inquiry and Response ASC X12N 270/271 (005010X279A1) Page 2 Page 3 Table of Contents 1.0 Overview of Document...4 2.0 General Information...5 3.0 Provider Information.....6
How to Assign Transport Request for Language Translation?
How to Assign Transport Request for Language Translation? Applies to: SAP ECC 6.0. For more information, visit the ABAP homepage. Summary This document helps people to create a transport request for the
