CPTs EXECUTED IN DIFFICULT CONDITIONS USING CPTWD (CONE PENETRATION TEST WHILE DRILLING) AND ITS FUTURE DEVELOPMENTS

Size: px
Start display at page:

Download "CPTs EXECUTED IN DIFFICULT CONDITIONS USING CPTWD (CONE PENETRATION TEST WHILE DRILLING) AND ITS FUTURE DEVELOPMENTS"

Transcription

1 CPTs EXECUTED IN DIFFICULT CONDITIONS USING CPTWD (CONE PENETRATION TEST WHILE DRILLING) AND ITS FUTURE DEVELOPMENTS M.Sacchetto A.Trevisan S.P.G. s.r.l. via dell artigianato Adria (Ro) Italy Abstract: During the last few years we have faced difficult challenges several times, among them: -execution of deep and very deep CPTU tests in non-penetrable soils, in which penetration with standard methods was not possible i.e.:- tests in soils where penetrable layers are alternated to non-penetrable ones, -execution of CPTU tests down hole, alternated with undisturbed sampling and different kinds of testing in the same hole, execution of deep CPTU tests from jack-up and simply floating barges. The results of the above experiences are shown and commented upon. Moreover, looking to the offshore market, where it is not possible to use jackup barges, due to the high level of water, we purposely designed new equipment for pushing using the barge as a reaction, and allowing compensation of the heave.. Moreover we designed some wireline tools which, together with CPTWD, can cover a wide range of in-situ tests. 1. INTRODUCTION The most popular way to perform Cone Penetration Testing is using standard cones (mostly piezocone, Ø 35,6 mm) pushed by a static penetrometer at a standard Rate of Penetration of 2 cm/second; the penetrometers push several tonnes and therefore they need reaction, which is given by dead weight (ballasted penetrometers) or augers driven into the soil as deep as is required for developing the reaction. Therefore the standard CPT to be performed needs to fulfil at least three basic conditions: a) the point of application of the thrust on the rods needs to be somehow joined to the soil to be tested (the point of application of the thrust cannot be floating) b) the reaction to the thrust must be proportional to the resistance of the soil, in terms of sum of resistance of the tip and total friction resistance along the whole drillstring (this is one of the reasons for so-called refusal ); if the reaction is poor it is not possible for the rods to be pushed since the penetrometer cannot fully develop its thrust c) the rods and the whole structure should be strong enough to bear the thrust applied by the penetrometer (commonly the standard Ø 35,6 mm rods cannot bear more than tonnes). To overcome problems (b) and (c) we developed the CPTWD (cone penetration test while drilling); actually the reaction needed is fairly low compared to the one needed by a standard cone, the lateral friction being dramatically lower since the lateral area to be pushed into the soil is just 737 cm 2 (50 cm of standard rods instead of several meters). Besides the rods are the drillstring used for conventional drilling, it means a Ø 127 mm rods 10 mm thick, therefore the limitation related to the strength of the CPT-rods is not determinant. CPTWD can also be used in floating conditions (with some problems), nevertheless it would be better to develop a dedicated device for heave compensation so as to have a system which would be perfectly suitable for carrying out CPTu in almost any conditions. One more advantage of using CPTWD would be to carry out CPTu in soils where penetrable and notpenetrable layers are alternated. Furthermore CPTWD is just one of the tools which can be used for sampling and testing the soil using the same drillstring, in a way which can be described as plug-ins. 2. CPTWD (CONE PENETRATION TEST WHILE DRILLING) AND INFLUENCE OF THE RATE OF PENETRATION IN CPTU The CPTWD system (Cone Penetration Test While Drilling) is an integration between a standard CPTU and a wireline coring system; sometimes the MWD (monitoring while drilling) recording is also added, so as to have a matrix with all the CPTU parameters and the MWD ones (Flow, Torque, thrust, Rop, etc) all together versus depth every 2 cm. The CPTWD also allows to alternate CPTU strokes when/with sampling, coring, down-the-hole testing; at the end of the test, since the hole is always cased with rods whose inner diameter is 107 mm, there is

2 the possibility to install almost any geotechnical instrumentation (piezometers, extensometers, inclinometers, etc) Sometimes it is not possible with CPTWD to push at a constant rate of Penetration of 20 mm/s, due to the way the CPTWD works and due to the soil conditions. Actually the CPTWD needs a combination of thrust, rotation, water flow and moving the cuttings up which could be difficult to get in some cases; therefore in those cases the correct RoP (20 mm/s) is somehow sacrified for performing the test and for getting some continuous data. This means that the CPTu parameters should be somehow corrected in order to have the correct soil profile and interpretation. For this reason we have performed several comparative tests at different rates of penetration and we compared the results, also using different methods (standard CPTu wìth penetrometers and deep tests with CPTWD). In both cases (deep and shallow) the results confirm expectations: Qc decreases proportionally to the decreasing of RoP, Fs does not seem to be significantly affected by RoP, nor is U. The variations of U seem to depend more on other factors, like saturation and/or the natural variation of the soil. It has been found that the evaluation of geotechnical parameters (such as Cu, Ø, etc) made with the usual correlations and the usual software is normally more affected by several other factors than the slight variation of Qc, Fs, U with a slower RoP than standard. Therefore it could be useful for Geotechnicians to also know the RoP in order to correct if necessary the parameters according to different Rates of PenetrationFollowing is a figure showing a tentative correlation between Qc and Rate of Penetration, distinguishing between different types of soil. The ordinate is the ratio between a certain Qc and the Qc 20 (with standard RoP) and the x-axis is the Rate of Penetration. Upper graph is for Clay, lower graph is for sand, the medium is in average 3. CPTU PERFORMED IN DIFFICULT SOILS AND FROM FLOATING BARGE 3.1 CPTu in very stiff silt and clay A CPTu test was performed in a site (using CPTWD) where stratigraphy is extremely peculiar: from 0 to 13 m sandy gravel, and from m to 160 m very dense silt, sometimes more or less sandy or clayey, but apparently uniform looking at the cores. In that site, after a pre-hole 13.4 m deep, we tried hard to push with both the CPTU cone and the Marchetti dilatometer standard methods without any result, no penetration at all also after having anchored the drillrig to the soil (like a penetrometer). Then we tried with CPTWD with extremely low RoP, and we were able to get continuous data from 17 to up to 30.5 m and we could have tested deeper Figure 2: CPTWD carried out at very low rate of penetration in very stiff silt and clay The results show that the Qc is significantly very high (constantly over 25 Mpa, as well as the Fs); the U seems to detect the percentage of clay/sand in the silt; this CPTWD test was carried out close (10 m) to a continuous core BH with samples and in situ (SPT, pressiometer, permeameter) testing; the CPTWD results are in very good accordance with the stratigraphy and results of other tests Fig 1: tentative parametric correlation between RoP and Qc

3 3.2 CPTu and SPT in the same hole (from floating pontoon) with alternate layers of penetrable soils and gravel In a Northern Italian harbour some tests were done in a site where the stratigraphy is very variable and above the bedrock there are alternate layers of sand/silt/clay and gravel. Only a floating pontoon was available, anchored with piles in locations where the water depth on average was 12 m. In order to have some geotechnical parameters of the gravel it was preliminarily asked to run standard CPTu tests down to the top of the gravel, then DPSH tests down to the bottom of the gravel and then CPTu until the deeper layer of gravel, then DPSH again, etc down to the top of the bedrock. Since the Jack-Up barges were not available we decided to perform the tests with CPTWD, replacing DPSH with continuous SPT tests. It has to be noted that in this case the harbour was well-protected and the pontoon (although simply floating) was well-fixed on four piles: we tried to run CPTu tests with a standard 20- ton penetrometer and the rods broke once the cone touched the top of the gravel, although the penetrometric rods were prevented from bending by a heavy-duty casing pipe for the first 14 m. Modern rigs have a hydraulic circuit called buoyancy which allow a manual, limited adjustment of the upward/downward movement of the rotary head; this arrangement makes pushing down the drillstring while mantaining a relatively constant rate of penetration easier. The buoyancy circuit is commonly manually-operated, so the Driller has to take care of the fine adjustments of height of rotary head according to heave (a sort of manual heave compensation). This adds one more difficulty to the already-difficult task of pushing down the cone while drilling, and therefore in these cases the results depend much on the skill of the operator. Following is the graph of the CPTU test, there are blank intervals, corresponding to the SPT performed in gravel Figure 3: CPTWD executed from floating pontoon alternating CPTu and SPT CPTU results Figure 5: CPTWD executed from floating pontoon alternating CPTu and SPT SPT results

4 3.3 deep CPTu tests using CPTWD and a Drillrig mounted on a floating barge, simply anchored cone by the vertical movement of the barge and drillrig. In front of the location of the Northern inlet of the Venice Mobile Dams, some CPTu tests were carried out down to a depth of m from the seabed, water depth in open sea being on average 11 m. No jackup barges were available at that time, and due to time constraints we placed an Atlas Mustang A66 drillrig mounted on a truck on a big barge, to be anchored at any location by means of four dead weights moved by a crane. Since the barge did not have any moon-pool we had to install a cantilever for the drilling operations. fig 6 CPTWD from a barge Adriatic sea, Venice - fig 8 results of one of CPTu tests executed from a floating barge. 4 IMPROVEMENTS and DEVELOPMENTS of TESTING for OFFSHORE DRILLING fig 7 drill rig used for the CPTWD from a floating barge The following graph shows one of the tests run on a water depth of around 11 m and a depth of 60 m; it can be noted that the graphs show slight value oscillations, with a frequency which is the same as the wave. It means that the Driller could not avoid or dampen the small waves by using the buoyancy circuit of the rig and therefore the heave slightly affected the values (both resistances and U). It was necessary to filter the graphs to take away (as much as possible) the oscillations transmitted to the 4.1 HEAVE COMPENSATION Focusing on the execution of CPTu tests in very difficult conditions from the above-outlined examples, it can be understood that CPTWD can easily overcome some heavy limitations of the standard way of carrying out CPTu (by pushing with a static penetrometer), but mostly regarding the depth of execution, drilling through hard layers, sampling and testing in the same hole of CPTu, executing CPTu in almost non-penetrable soils (sometimes altering the Rate of Penetration compared to the standard), executing deep CPTu with a very low reaction (the friction on the rods actually is extremely low if com-

5 pared to that of the standard CPT tests) and executing CPTu without problems of bending of the CPTrods. On the other hand the CPTWD can help in the execution of tests from floating barges (offshore, nearshore) but it doesn t solve the problem of fixing the pushing device to the soil to be tested, meaning that the measurement of the Rate of Penetration should be related to the soil which is penetrated (in brief any test performed from a floating barge needs to have heave compensation) Besides the CPTWD needs a combination of several parameters in addition to simple pushing as with the standard penetrometers: water flow, thrust, rotation, flowing the cuttings away from the bottom of the hole and (in case of operations from a barge) calibration of the buoyancy if possible, and the drillrig has to be perfectly equipped for wireline operations. The above-listed operations need an unconventional level of skill of the drilling Team and a perfectly-equipped drillrig. In offshore operations where the height of the waves can be in meters, the only way of performing CPT testing at the present is to use a heavecompensated vessel with down-hole system, latching internally of drillstring and pushing out the cone by a piston (therefore using the drillstring as reaction); the majority of heave-compensated rigs do not have an efficient system for pushing or do not have any at all, giving the weight of the rods the task of applying thrust. Not to have thrust or not to have a reliable way to push the rods is a problem both for the execution of good quality coring and sampling and for eventual execution of continuous tests as CPTWD. For this reason we have designed a heavecompensation system which can be adapted to a standard drillrig. The system is made up of two or four hydraulic pistons connected in such a way that once the rotary head is pushed or pulled the force is transmitted to the barge in the opposite direction (hence the barge giving reaction) and the rotary head is allowed to move only related to the soil, the upward and downward oscillations created by the waves don t matter and nor do their amplitude/frequency. The system is not active but reactive, it works only if a push/pull force to the rotary head is applied. Fig. 9 schematich sketch of heave compensation system 4.2 IMPROVEMENTS-DEVELOPMENTS Further improvement of the system is possible by adding several wireline tools. We have aldready designed and in some case already tested the following wireline tools (they work mostly at the bottom of the hole and not in a continous way as CPTWD does): -wireline flat dilatometer (WL-MEDUSA): instead of CPTwd is placed inside the drillstring a wireline latching system which holds a barrel in which is placed an electronic flat dilatometer, developed together with Mr.Marchetti. -wireline Permeameter and Sampler: the permeameter is a sort of slotted pipe (like a filter of a water-well) put inside a prehole (made with wireline small diameter core barrel); in the slotted pipe is run the permeability test inside the drillstring; the wireline sampler works with the same principle of BAT but the filter of the sampler is screwed into the soil instead than pushed (as the standard BAT) and there is no needle creating communication between the vial and the filter; connecting a pressostat with a datalogger to the top of the vial is possible to run a permeability test at the same time of the sampling (but without the severe limitations of BAT due to the needle); this method has been successfully tested down to -180 m.

6 Fig. 10 wireline sampler and permeameter

7 -wireline samplers Thin-wall tube type: have been developed and tested several types of samplers with and without front-piston for withdrawing undisturbed samples -wireline Vane Test: the whole device is contained into a wireline core-barrel and there are no rods conneting the vane apparatus to the surface; the rotation is given by an electrical powerpack contained inside the barrel; the shear value are stored inside a RAM managed by a microcomputer. -wireline drilling of pre-holes for pressiometric and rock-dilatometer testing: many tests have been done using this arrangement; in theory could also be possible to make a wireline arrangement of standard Menard pressiometer and/or rock-dilatometer but not with the standard wireline. With the same principle of CPTWD and the other mentioned applications could be adapted almost any tool to the wireline system. In such a way could be made an integrated system which would be capable to run almost any in-situ test down the hole using the same drillstring, in a continous way (as with CPTWD or WL-Medusa) or simply at the bottom of the hole (such as Vane-test, permeability test); alternatively to in-situ test could be done continous core drilling, no coring drilling (placing a wireline no-coring device such as a tricone) eventually with MWD (monitoring while drilling), undisturbed sampling of the soil. 5 CONCLUSIONS In CPT practise some problems occur when there are non-standard conditions, for example when reaction/anchoring of the penetrometer is poor, when there are not penetrable layers, when friction on the whole length of the CPT-rods becomes high, when CPT tests have to be carried out from a floating barge/platforms, etc These problems can be overcome by using CPTWD, but only accepting a noticeable increase of difficulty with the execution of the tests. Actually performing CPTWD is not just a matter of anchoring the penetrometer and pushing, but it s a combination of calibrating thrust, rotation and torque, water flow in the drillbit, flushing cuttings away in order to avoid the stuck of drillstring. Besides that, the drillrig must be suitable for wireline operations and the preparation of the borehole is much more difficult than preparation of the penetrometer for a standard CPTU test. On the other hand CPTWD can be easily used on jackup barges (nearshore) and also on floating barges/platforms but only when the wave height is very low, the barge is well-anchored and the frequency of the waves manageable by the calibration of the pushing circuit by the Driller. In some cases the rate of penetration of CPTWD is not standard, therefore it would be advisable to perform comparative tests in order to assess and better understand how and how much the rate of penetration affects the results of CPT tests; after that it would be advisable to also consider the rate of Penetration in the data elaboration. In order to improve the use of CPT rigs and CPTWD equipment offshore we designed a relatively-simple reactive system which allows us to compensate for heave and it could be applicable (as a matter of principle) with some adaptations to standard rigs. The possibility of having well-manageable thrust on offshore drillrigs would allow not only to perform CPT in a continuous way, but also to increase the quality of boreholes (coring, sampling, testing). In addiction, almost any method of drilling and sampling could in theory be arranged with wireline; we already designed and/or already developed and tested a wide range of tools, among them: corebarrels for any kind of soil, samplers, deep groundwater sampler, permeameter, Vane Test, Flat dilatometer, etc. This developments could bring to an integrated all-purpose system where any tool (for testing, sampling, coring) can be considered as a plug-in, in order to get the widest range of data with the best cost/effect ratio. The development of such integrated system eventually with the possibility to work with a heave compensation would be a breakthrough expecially in offshore geotechnical deep surveys. 6 REFERENCES -Lunne et al. CPT: Cone Penetration Testing in Geotechnical practice -Cestari: prove geotecniche in situ -CPT95 Congress: variuos articles -Sacchetto, M., A. Trevisan, K. Elmgren, and K. Melander, Cone Penetration Test While Drilling, Geotechnicaland Geophysical Site Characterization, Vol. 1 (Proc.ISC-2, Porto, Portugal), Millpress, Rotterdam, The Netherlands, 2004, pp Marchetti, S. Sacchetto, M.: wireline dilatometer WL Medusa DMT2006 Washington -Failmetzger, R, Marchetti, D. Sacchetto, M.: Effective Insitu Tests for Measurement of Soil Properties for Over Water or Deep Investigations Using Wire-line Methods ISC 3 Taiwan Sacchetto, M, Trevisan, A. influence of pushing method and of RoP (Rate of Penetration) on the value of Qc, Fs, U. CPT10 California 2010

CPTWD (Cone Penetration Test While Drilling) a new method for deep geotechnical surveys

CPTWD (Cone Penetration Test While Drilling) a new method for deep geotechnical surveys CPTWD (Cone Penetration Test While Drilling) a new method for deep geotechnical surveys Authors : Massimo Sacchetto-Engineer-: S P G drilling company -Adria (Ro) Italy Kjell Elmgren Engineer ENVI Environmental

More information

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:!

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:! In-situ Testing! Insitu Testing! Insitu testing is used for two reasons:! To allow the determination of shear strength or penetration resistance or permeability of soils that would be difficult or impossible

More information

Manual: Nearshore CPT Testing NEARSHORE CONE PENETRATION TESTING (TOP PUSH TECHNIQUE)

Manual: Nearshore CPT Testing NEARSHORE CONE PENETRATION TESTING (TOP PUSH TECHNIQUE) Manual: Nearshore CPT Testing NEARSHORE CONE PENETRATION TESTING (TOP PUSH TECHNIQUE) Nearshore CPT is not as difficult as it might seem. Most CPT companies do already have most of the necessary equipment

More information

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance

More information

Site Investigation. Some unsung heroes of Civil Engineering. buried right under your feet. 4. Need good knowledge of the soil conditions

Site Investigation. Some unsung heroes of Civil Engineering. buried right under your feet. 4. Need good knowledge of the soil conditions This is an attempt to create a stand alone self learning module on site investigation. Fasten your seat belts. Sit back, relax and enjoy. 1 2 Site Investigation Some unsung heroes of Civil Engineering

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Introduction The design and construction of foundations require a good knowledge of the mechanical behaviour of soils and of their spatial variability. Such information can be

More information

CIVL451. Soil Exploration and Characterization

CIVL451. Soil Exploration and Characterization CIVL451 Soil Exploration and Characterization 1 Definition The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally

More information

Caltrans Geotechnical Manual

Caltrans Geotechnical Manual Cone Penetration Test The cone penetration test (CPT) is an in-situ sounding that pushes an electronic penetrometer into soil and records multiple measurements continuously with depth. Compared with rotary

More information

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture No. # 13 (Refer Slide Time: 00:18) So last class, it was

More information

HAULBOWLINE, CORK STATIC CONE PENETRATION TESTS FACTUAL REPORT

HAULBOWLINE, CORK STATIC CONE PENETRATION TESTS FACTUAL REPORT HAULBOWLINE, CORK STATIC CONE PENETRATION TESTS FACTUAL REPORT CONE PENETRATION TESTS Cone resistance Local friction Porewater pressure Dissipations REPORT NO: RRM CONTRACT NO: GLOVER SITE INVESTIGATIONS

More information

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer HS-4210_MAN_09.08 product manual HS-4210 Digital Static Cone Penetrometer Introduction This Manual covers the measurement of bearing capacity using the Humboldt Digital Static Cone Penetrometer (DSCP).

More information

Cone penetration testing, CPTu

Cone penetration testing, CPTu 1 Cone penetration testing, CPTu Preface Our company is Environmental Mechanics AB or short Envi. A Swedish company developing, producing and marketing systems for cone penetration testing (also known

More information

ODOT/OSU collaboration on the development of CPT Capabilities for use in Ohio Transportation Projects

ODOT/OSU collaboration on the development of CPT Capabilities for use in Ohio Transportation Projects CPT Cone Penetration Testing ODOT/OSU collaboration on the development of CPT Capabilities for use in Ohio Transportation Projects Presented by: Jason Ross, Staff Engineer, BBC&M Engineering, Inc. Kirk

More information

Cone Penetration Test (CPT)

Cone Penetration Test (CPT) Cone Penetration Test (CPT) The cone penetration test, or CPT in short, is a soil testing method which will provide a great deal of high quality information. In the Cone Penetration Test (CPT), a cone

More information

KWANG SING ENGINEERING PTE LTD

KWANG SING ENGINEERING PTE LTD KWANG SING ENGINEERING PTE LTD 1. INTRODUCTION This report represents the soil investigation works at Aljunied Road / Geylang East Central. The objective of the soil investigation is to obtain soil parameters

More information

Soil behaviour type from the CPT: an update

Soil behaviour type from the CPT: an update Soil behaviour type from the CPT: an update P.K. Robertson Gregg Drilling & Testing Inc., Signal Hill, California, USA ABSTRACT: An initial application of CPT results is to evaluate soil type and soil

More information

NOTES on the CONE PENETROMETER TEST

NOTES on the CONE PENETROMETER TEST GE 441 Advanced Engineering Geology & Geotechnics Spring 2004 Introduction NOTES on the CONE PENETROMETER TEST The standardized cone-penetrometer test (CPT) involves pushing a 1.41-inch diameter 55 o to

More information

Standard Test Method for Mechanical Cone Penetration Tests of Soil 1

Standard Test Method for Mechanical Cone Penetration Tests of Soil 1 Designation: D 3441 98 AMERICAN SOCIETY FOR TESTING AND MATERIALS 100 Barr Harbor Dr., West Conshohocken, PA 19428 Reprinted from the Annual Book of ASTM Standards. Copyright ASTM Standard Test Method

More information

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives In this section you will learn the following Penetrometer Tests Standard penetration test Static cone penetration test Dynamic cone

More information

How To Design A Foundation

How To Design A Foundation The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION Instructor : Dr. Jehad Hamad Definition The process of determining the layers of natural

More information

USE OF CONE PENETRATION TEST IN PILE DESIGN

USE OF CONE PENETRATION TEST IN PILE DESIGN PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 47, NO. 2, PP. 189 197 (23) USE OF CONE PENETRATION TEST IN PILE DESIGN András MAHLER Department of Geotechnics Budapest University of Technology and Economics

More information

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc.

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc. Design Manual Chapter 6 - Geotechnical 6B - Subsurface Exploration Program 6B-2 Testing A. General Information Several testing methods can be used to measure soil engineering properties. The advantages,

More information

Anirudhan I.V. Geotechnical Solutions, Chennai

Anirudhan I.V. Geotechnical Solutions, Chennai Anirudhan I.V. Geotechnical Solutions, Chennai Often inadequate In some cases, excess In some cases, disoriented Bad investigation Once in a while good ones Depends on one type of investigation, often

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 409 ISSN 2229-5518

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 409 ISSN 2229-5518 International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 409 Estimation of Undrained Shear Strength of Soil using Cone Penetration Test By Nwobasi, Paul Awo Department

More information

Cone Penetration Testing in Geotechnical Practice. Tom Lunne Peter K. Robertson John J.M. Powell

Cone Penetration Testing in Geotechnical Practice. Tom Lunne Peter K. Robertson John J.M. Powell Cone Penetration Testing in Geotechnical Practice Tom Lunne Peter K. Robertson John J.M. Powell BLACKIE ACADEMIC & PROFESSIONAL An Imprint of Chapman & Hall London Weinheim New York Tokyo Melbourne Madras

More information

Using Combination of SPT, DMT and CPT to Estimate Geotechnical Model for a Special Project in Turkey

Using Combination of SPT, DMT and CPT to Estimate Geotechnical Model for a Special Project in Turkey Using Combination of SPT, DMT and CPT to Estimate Geotechnical Model for a Special Project in Turkey Figen Orhun Onal GE, M.Sc., Site Works Manager, Zemin Etud ve Tasarım A.Ş., Istanbul, figen.orhun@zetas.com.tr

More information

An Automatic Kunzelstab Penetration Test

An Automatic Kunzelstab Penetration Test An Automatic Kunzelstab Penetration Test Yongyuth Sirisriphet 1, Kitidech Santichaianant 2 1 Graduated student: Faculty of Industrial Education in and Technology. King Mongkut's University of Technology

More information

Numerical Simulation of CPT Tip Resistance in Layered Soil

Numerical Simulation of CPT Tip Resistance in Layered Soil Numerical Simulation of CPT Tip Resistance in Layered Soil M.M. Ahmadi, Assistant Professor, mmahmadi@sharif.edu Dept. of Civil Engineering, Sharif University of Technology, Tehran, Iran Abstract The paper

More information

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1 GEOTECHNICAL ENGINEERING II Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1 1. SUBSURFACE EXPLORATION 1.1 Importance, Exploration Program 1.2 Methods of exploration, Boring, Sounding

More information

Fundamentals of CONE PENETROMETER TEST (CPT) SOUNDINGS. J. David Rogers, Ph.D., P.E., R.G.

Fundamentals of CONE PENETROMETER TEST (CPT) SOUNDINGS. J. David Rogers, Ph.D., P.E., R.G. Fundamentals of CONE PENETROMETER TEST (CPT) SOUNDINGS J. David Rogers, Ph.D., P.E., R.G. Cone Penetration Test CPT soundings can be very effective in site characterization, especially sites with discrete

More information

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Brussels, 18-20 February 2008 Dissemination of information workshop 1 Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Dr.-Ing. Bernd Schuppener, Federal Waterways Engineering

More information

Pavements should be well drained both during and upon completion of construction. Water should not be allowed to pond on or near pavement surfaces.

Pavements should be well drained both during and upon completion of construction. Water should not be allowed to pond on or near pavement surfaces. Project No. 208-8719 January, 2009 Ref: 2-8719BR Anthony Hudson - Broadscale Geotechnical Investigation - Proposed Commercial Development - 52 Old Pacific Highway, Pimpama Page 32 iii) Pavements should

More information

CPTic_CSM8. A spreadsheet tool for identifying soil types and layering from CPTU data using the I c method. USER S MANUAL. J. A.

CPTic_CSM8. A spreadsheet tool for identifying soil types and layering from CPTU data using the I c method. USER S MANUAL. J. A. CPTic_CSM8 A spreadsheet tool for identifying soil types and layering from CPTU data using the I c method. USER S MANUAL J. A. Knappett (2012) This user s manual and its associated spreadsheet ( CPTic_CSM8.xls

More information

Geotechnical Testing Methods II

Geotechnical Testing Methods II Geotechnical Testing Methods II Ajanta Sachan Assistant Professor Civil Engineering IIT Gandhinagar FIELD TESTING 2 1 Field Test (In-situ Test) When it is difficult to obtain undisturbed samples. In case

More information

Multiple parameters with one Cone Penetration Test. by Mark Woollard

Multiple parameters with one Cone Penetration Test. by Mark Woollard Multiple parameters with one Cone Penetration Test by Mark Woollard Subjects introduction MW introduction APB introduction CPT portfolio APB onshore CPT equipment near shore CPT equipment offshore CPT

More information

TECHNICAL NOTE: SI 01 SPECIFIC REQUIREMENTS FOR THE ACCREDITATION OF INSPECTION BODIES FOR SITE INVESTIGATION

TECHNICAL NOTE: SI 01 SPECIFIC REQUIREMENTS FOR THE ACCREDITATION OF INSPECTION BODIES FOR SITE INVESTIGATION ACCREDITATION SCHEME FOR INSPECTION BODIES TECHNICAL NOTE: SI 01 SPECIFIC REQUIREMENTS FOR THE ACCREDITATION OF INSPECTION BODIES FOR SITE INVESTIGATION Technical Note SI 01: 3 February 2016 The SAC Accreditation

More information

2009 Japan-Russia Energy and Environment Dialogue in Niigata S2-6 TANAKA ERINA

2009 Japan-Russia Energy and Environment Dialogue in Niigata S2-6 TANAKA ERINA Importance of the Site Investigation for Development of Methane Hydrate Hokkaido University Hiroyuki Tanaka Civil Engineer My Background Site Investigation Soil Parameters for Design Very Soft Clay and

More information

A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil

A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil ISSN: 319-53 (An ISO 39: 00 Certified Organization) A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil Utpal Kumar Das Associate Professor, Department

More information

PREDICTING THE HYDRAULIC CONDUCTIVITY OF MAKASSAR MARINE CLAY USING FIELD PENETRATION TEST (CPTU) RESULTS

PREDICTING THE HYDRAULIC CONDUCTIVITY OF MAKASSAR MARINE CLAY USING FIELD PENETRATION TEST (CPTU) RESULTS Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011) December 14 16, 2011, Hong Kong, China PREDICTING THE HYDRAULIC CONDUCTIVITY OF MAKASSAR MARINE CLAY USING FIELD

More information

DIRECT PUSH DRILLING.

DIRECT PUSH DRILLING. DIRECT PUSH DRILLING. CONCEPT. Direct Push Drilling is a method of drilling and sampling where the tools are pushed or driven into the ground. No rotation is involved so all the samples are uncontaminated

More information

Penetration rate effects on cone resistance measured in a calibration chamber

Penetration rate effects on cone resistance measured in a calibration chamber Penetration rate effects on cone resistance measured in a calibration chamber K. Kim Professional Service Industries, Inc, Houston, TX, USA M. Prezzi & R. Salgado Purdue University, West Lafayette, IN,

More information

GUIDELINE FOR HAND HELD SHEAR VANE TEST

GUIDELINE FOR HAND HELD SHEAR VANE TEST GUIDELINE FOR HAND HELD SHEAR VANE TEST NZ GEOTECHNICAL SOCIETY INC August 2001 CONTENTS Page 1.0 Introduction 2 2.0 Background 2 3.0 Recommended Practice 3 4.0 Undrained Shear Strength 3 5.0 Particular

More information

EVALUATING THE IMPROVEMENT FROM IMPACT ROLLING ON SAND

EVALUATING THE IMPROVEMENT FROM IMPACT ROLLING ON SAND EVALUATING THE IMPROVEMENT FROM IMPACT ROLLING ON SAND D.L. Avalle, Broons Hire (SA) Pty Ltd, Australia J.P. Carter, The University of Sydney, Australia Abstract Impact rolling, utilising a non-circular

More information

CPT interpretation in marine soils less than 5m depth examples from the North Sea

CPT interpretation in marine soils less than 5m depth examples from the North Sea CPT interpretation in marine soils less than 5m depth examples from the North Sea R. Mitchell SEtech (Geotechnical Engineers) Limited, Great Yarmouth, England S. Wootton & R. Comrie SEtech (Geotechnical

More information

1 Mobilisation and demobilisation 1 Deep boring sum 2 Cone penetration tests sum 3 Miscellenous tests sum

1 Mobilisation and demobilisation 1 Deep boring sum 2 Cone penetration tests sum 3 Miscellenous tests sum Malaysian Civil Engineering Standard Method of Measurement (MyCESMM) CLASS D: SITE INVESTIGATION WORK Measurement covered under other classes: Excavation not carried out for the purpose of soil investigation

More information

Geotechnic Parameters Analysis Obtained by Pencel Presuremeter Test on Clayey Soils in Resistencia City

Geotechnic Parameters Analysis Obtained by Pencel Presuremeter Test on Clayey Soils in Resistencia City American Journal of Science and Technology 2015; 2(5): 237-242 Published online August 10, 2015 (http://www.aascit.org/journal/ajst) ISSN: 2375-3846 Geotechnic Parameters Analysis Obtained by Pencel Presuremeter

More information

IN SITU GEOTECHNICAL TESTING USING LIGHTWEIGHT PLATFORMS. Peter Zimmerman, MSCE David Brown, P.G. Geoprobe Systems Salina, Kansas.

IN SITU GEOTECHNICAL TESTING USING LIGHTWEIGHT PLATFORMS. Peter Zimmerman, MSCE David Brown, P.G. Geoprobe Systems Salina, Kansas. IN SITU GEOTECHNICAL TESTING USING LIGHTWEIGHT PLATFORMS Peter Zimmerman, MSCE David Brown, P.G. Geoprobe Systems Salina, Kansas June, 1999 ABSTRACT In situ testing in geotechnical engineering has traditionally

More information

GUIDE TO CONE PENETRATION TESTING

GUIDE TO CONE PENETRATION TESTING GUIDE TO CONE PENETRATION TESTING www.greggdrilling.com Engineering Units Multiples Micro (μ) = 10-6 Milli (m) = 10-3 Kilo (k) = 10 +3 Mega (M) = 10 +6 Imperial Units SI Units Length feet (ft) meter (m)

More information

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT 1.0 SOIL IMPROVEMENT 1.1 General Soil Investigation Information are provided in Part B1 annex as a guide to the Contractor for his consideration

More information

ON THE INTERPRETATION OF SEISMIC CONE PENETRATION TEST (SCPT) RESULTS

ON THE INTERPRETATION OF SEISMIC CONE PENETRATION TEST (SCPT) RESULTS Studia Geotechnica et Mechanica, Vol. XXXV, No. 4, 213 DOI: 1.2478/sgem-213-33 ON THE INTERPRETATION OF SEISMIC CONE PENETRATION TEST (SCPT) RESULTS IRENA BAGIŃSKA Wrocław University of Technology, Faculty

More information

Soil Classification Through Penetration Tests

Soil Classification Through Penetration Tests Pak. J. Engg. & Appl. Sci. Vol. 9, Jul., 2011 (p. 76-86) Soil Classification Through Penetration Tests A. H. Khan, A. Akbar, K. Farooq, N. M. Khan, M. Aziz and H. Mujtaba Department of Civil Engineering,

More information

The Challenge of Sustainability in the Geo-Environment Proceedings of the Geo-Congress 2008 ASCE New Orleans LA

The Challenge of Sustainability in the Geo-Environment Proceedings of the Geo-Congress 2008 ASCE New Orleans LA The Challenge of Sustainability in the Geo-Environment Proceedings of the Geo-Congress 2008 ASCE New Orleans LA Strength and Permeability of a Deep Soil Bentonite Slurry Wall Christopher R. Ryan P.E. M

More information

VOLUME III GEOLOGY, HYDROGEOLOGY & GEOTECHNICAL REPORT CAPITAL REGION RESOURCE RECOVERY CENTRE

VOLUME III GEOLOGY, HYDROGEOLOGY & GEOTECHNICAL REPORT CAPITAL REGION RESOURCE RECOVERY CENTRE 2.0 SITE INVESTIGATION METHODOLOGY The following section summarizes the Site investigation methodology applied during the subsurface investigation and hydrogeological assessment completed at the CRRRC

More information

CARLOS FERNANDEZ TADEO & ASOCIADOS, S.L. Range of Services

CARLOS FERNANDEZ TADEO & ASOCIADOS, S.L. Range of Services 1 CARLOS FERNANDEZ TADEO & ASOCIADOS, S.L. Range of Services Pile and deep foundations testing Geotechnical testing equipment supplier Geotechnical software supplier Geotechnical consulting Web page: www.fernandeztadeo.com

More information

Module5: Site investigation using in situ testing

Module5: Site investigation using in situ testing Module5: Site investigation using in situ testing Topics: Introduction Penetration testing 1. Standard penetration test 2. Cone penetration test Strength and compressibility testing 1. Field vane shear

More information

COMPENDIUM OF INDIAN STANDARDS ON SOIL ENGINEERING PART 2

COMPENDIUM OF INDIAN STANDARDS ON SOIL ENGINEERING PART 2 (PREVIEW) SP 36 (Part 2) : 1988 COMPENDIUM OF INDIAN STANDARDS ON SOIL ENGINEERING PART 2 IS 1893 : 1979 (Reaffirmed 1987) CODE OF PRACTICE FOR SUBSURFACE INVESTIGATION FOR FOUNDATIONS 1.1 This code deals

More information

How To Prepare A Geotechnical Study For A Trunk Sewer Project In Lincoln, Nebraska

How To Prepare A Geotechnical Study For A Trunk Sewer Project In Lincoln, Nebraska APPENDIX B Geotechnical Engineering Report GEOTECHNICAL ENGINEERING REPORT Preliminary Geotechnical Study Upper Southeast Salt Creek Sanitary Trunk Sewer Lincoln Wastewater System Lincoln, Nebraska PREPARED

More information

STP883-EB/Nov. 1985. Subject Index

STP883-EB/Nov. 1985. Subject Index STP883-EB/Nov. 1985 Subject Index A Aas in-situ tests, 209-210 Analytical model technique, 432, 438 Andersen's procedure, 342, 345,349-351 Arabian Gulf soils, 413 ASCE conference, 41 ASTM Standards D 422:385

More information

Conquering New Frontiers in Underwater Cone Penetration Testing

Conquering New Frontiers in Underwater Cone Penetration Testing Conquering New Frontiers in Underwater Cone Penetration Testing Karin van den Berg, Axel Walta & Titus de Wolff A.P. van den Berg, Heerenveen, The Netherlands ABSTRACT: The future poses a challenge with

More information

Comparison of Continuous Dynamic Probing with the Standard Penetration Test for Highly Weathered Limestone of Eastern Sudan

Comparison of Continuous Dynamic Probing with the Standard Penetration Test for Highly Weathered Limestone of Eastern Sudan Comparison of Continuous Dynamic Probing with the Standard Penetration Test for Highly Weathered Limestone of Eastern Sudan Prof. Dr. Khairul Anuar Kassim Deputy Dean, Research and Graduate Studies, Faculty

More information

GUIDE TO CONE PENETRATION TESTING

GUIDE TO CONE PENETRATION TESTING GUIDE TO CONE PENETRATION TESTING www.greggdrilling.com Engineering Units Multiples Micro (μ) = 10-6 Milli (m) = 10-3 Kilo (k) = 10 +3 Mega (M) = 10 +6 Imperial Units SI Units Length feet (ft) meter (m)

More information

Geotechnical Standards Eurocodes. An update

Geotechnical Standards Eurocodes. An update Geotechnical Standards Eurocodes. An update Professor Ltd Sussex University EUROCOE 7 (EN 1997) Part 1 published. 2004 National Annex published 2007 Part 2 published Mar 2007 National Annex published 2010

More information

CHAPTER 9 SOIL EXPLORATION 9.1 INTRODUCTION

CHAPTER 9 SOIL EXPLORATION 9.1 INTRODUCTION CHAPTER 9 SOIL EXPLORATION 9.1 INTRODUCTION The stability of the foundation of a building, a bridge, an embankment or any other structure built on soil depends on the strength and compressibility characteristics

More information

product manual 08.09 H-4210A PORTABLE STATIC CONE PENETROMETER

product manual 08.09 H-4210A PORTABLE STATIC CONE PENETROMETER 08.09 product manual H-4210A PORTABLE STATIC CONE PENETROMETER PORTABLE STATIC CONE PENETROMETER GENERAL INFORMATION The H-4210A Static Cone Penetrometer is an unparalleled device for measuring soil consistency.

More information

NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY

NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY Ilaria Giusti University of Pisa ilaria.giusti@for.unipi.it Andrew J. Whittle Massachusetts Institute of Technology ajwhittl@mit.edu Abstract This paper

More information

By D. P. StewarP and M. F. Randolph z

By D. P. StewarP and M. F. Randolph z T-BAR PENETRATION TESTING IN SOFT CLAY By D. P. StewarP and M. F. Randolph z ABSTRACT: A t-bar penetration test for soft clay that can be performed with existing cone penetration test (CPT) equipment is

More information

1.0 INTRODUCTION 1 2.0 SCOPE OF WORK 2 3.0 EXECUTION OF FIELD WORK 2 4.0 LABORATORY TESTS 8 5.0 FINDINGS OF THE GEOTECHNICAL INVESTIGATION 9

1.0 INTRODUCTION 1 2.0 SCOPE OF WORK 2 3.0 EXECUTION OF FIELD WORK 2 4.0 LABORATORY TESTS 8 5.0 FINDINGS OF THE GEOTECHNICAL INVESTIGATION 9 REPORT ON GEOTECHNICAL INVESTIGATION FOR LPG MOUNDED STORAGE AT VISAKHA REFINERY, MALKAPURAM, VISAKHAPATNAM (A.P) FOR HINDUSTAN PETROLEUM CORPORATION LIMITED CONTENTS SR.NO. DESCRIPTION PAGE NO. 1.0 INTRODUCTION

More information

Use and Application of Piezocone Penetration Testing in Presumpscot Formation

Use and Application of Piezocone Penetration Testing in Presumpscot Formation Use and Application of Piezocone Penetration Testing in Presumpscot Formation Craig W. Coolidge, P.E. Summit Geoengineering Services, Rockland, Maine ABSTRACT: This paper examines the advantages and limitations

More information

Ingeniería y Georiesgos Ingeniería Geotécnica Car 19 a Nº 84-14 of 204 ; TEL : 6916043 E-mail: igr@ingeoriesgos.com

Ingeniería y Georiesgos Ingeniería Geotécnica Car 19 a Nº 84-14 of 204 ; TEL : 6916043 E-mail: igr@ingeoriesgos.com The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two sucessive CPT

More information

TECHNICAL REPORT ON SCALA DYNAMIC CONE PENETROMETER IRREGULARITY

TECHNICAL REPORT ON SCALA DYNAMIC CONE PENETROMETER IRREGULARITY TECHNICAL REPORT ON SCALA DYNAMIC CONE PENETROMETER IRREGULARITY CETANZ Technical Report TR 1 Author(s) SJ Anderson, Geotechnics Ltd Report Date First Issue May 2010 Report Revision Date September 2011

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Reliability of

More information

Use of the Cone Penetration Test for Geotechnical Site Characterization in Clay-Mantled Karst. T. C. Siegel 1 and P. E. Cargill 2

Use of the Cone Penetration Test for Geotechnical Site Characterization in Clay-Mantled Karst. T. C. Siegel 1 and P. E. Cargill 2 Use of the Cone Penetration Test for Geotechnical Site Characterization in Clay-Mantled Karst T. C. Siegel 1 and P. E. Cargill 2 Abstract Adapted for use as a mechanical soil exploration device in the

More information

SUGGESTION ABOUT DETERMINATION OF THE BEARING CAPACITY OF PILES ON THE BASIS OF CPT SOUNDING TESTS

SUGGESTION ABOUT DETERMINATION OF THE BEARING CAPACITY OF PILES ON THE BASIS OF CPT SOUNDING TESTS SUGGESTION ABOUT DETERMINATION OF THE BEARING CAPACITY OF PILES ON THE BASIS OF CPT SOUNDING TESTS JóZSEF PUSZTAI About the authors Pusztai József Budapest University of Technology and Economics, Department

More information

GEOTECHNICAL DESIGN MANUAL

GEOTECHNICAL DESIGN MANUAL GEOTECHNICAL DESIGN MANUAL CHAPTER 4 GEOTECHNICAL FIELD INVESTIGATION NYSDOT Geotechnical Page 4-1 December 10, 2013 (Intentionally left blank) NYSDOT Geotechnical Page 4-2 December 10, 2013 Table of Contents

More information

JOHNSON STREET BRIDGE REPLACEMENT PROJECT

JOHNSON STREET BRIDGE REPLACEMENT PROJECT JOHNSON STREET BRIDGE REPLACEMENT Victoria, BC GEOTECHNICAL INVESTIGATION REPORT Prepared for: City Hall No. 1 Centennial Square Victoria, BC VW 1P Prepared by: Stantec 7 Dominion Street, Suite 5 Burnaby,

More information

FINAL REPORT ON SOIL INVESTIGATION

FINAL REPORT ON SOIL INVESTIGATION FINAL REPORT ON SOIL INVESTIGATION FOR PROPOSED CONSTRUCTION AT SS-6B AREA AT HPCL VISAKH REFINERY VISAKHAPATNAM ANDHRA PRADESH J.J. ASSOCIATES(VISAKHAPATNAM) AETP(P) LIMITED #11-6-3, RockDale Layout,

More information

A Ground Improvement Update from TerraSystems

A Ground Improvement Update from TerraSystems TERRANOTES A Ground Improvement Update from TerraSystems SOIL MODULUS AFTER GROUND IMPROVEMENT Evaluation of ground improvement is accomplished using a variety of methods, from simple elevation surveys

More information

In Situ Subsurface Characterization

In Situ Subsurface Characterization 27 In Situ Subsurface Characterization J. David Frost Georgia Institute of Technology Susan E. Burns Georgia Institute of Technology 27.1 Introduction 27.2 Subsurface Characterization Methodology 27.3

More information

Geotechnical Investigation Test Report

Geotechnical Investigation Test Report Geotechnical Investigation Test Report Report No. htsc/rcd/ 3457 Dated: - 20/03/2010 Asphalt Standard Penetration Test as per IS 2131 ------------- IS 6403 Soil Job Card No - 1649 Cement Client/Department

More information

Chapter 4 SUBSURFACE INVESTIGATION GUIDELINES

Chapter 4 SUBSURFACE INVESTIGATION GUIDELINES Chapter 4 SUBSURFACE INVESTIGATION GUIDELINES Final SCDOT GEOTECHNICAL DESIGN MANUAL August 2008 Table of Contents Section Page 4.1 Introduction...4-1 4.2 Subsurface Investigation...4-2 4.2.1 Preliminary

More information

Strength Determination of "Tooth-Paste" Like Sand and Gravel Washing Fines Using DMT

Strength Determination of Tooth-Paste Like Sand and Gravel Washing Fines Using DMT Strength Determination of "Tooth-Paste" Like Sand and Gravel Washing Fines Using DMT David L. Knott, P.E. and James M. Sheahan, P.E. HDR Engineering, Inc. 3 Gateway Center Pittsburgh, PA 15222-1074 Phone:

More information

Field tests using an instrumented model pipe pile in sand

Field tests using an instrumented model pipe pile in sand Field tests using an instrumented model pipe pile in sand D. Igoe University College Dublin K. Gavin University College Dublin B. O Kelly Trinity College Dublin Reference: Igoe D., Gavin K., and O'Kelly

More information

Cone Penetration Testing (CPT) Michael Bailey, P.G. U.S. Army Corps of Engineers, Savannah District

Cone Penetration Testing (CPT) Michael Bailey, P.G. U.S. Army Corps of Engineers, Savannah District Cone Penetration Testing (CPT) Michael Bailey, P.G. U.S. Army Corps of Engineers, Savannah District Recommended publications ASTM D 5778-07 Standard Test Method for Electronic Friction Cone and Piezocone

More information

STANDARD OPERATING PROCEDURE

STANDARD OPERATING PROCEDURE STANDARD OPERATING PROCEDURE DATA ACQUISITION USING THE C1 MEMOCONE SYSTEM REVISION DATE: OKT 21, 2011 Prepared by Per Ljunggren TABLE OF CONTENTS STANDARD OPERATING PROCEDURE...3 DATA ACQUISITION USING

More information

Electronic Soil Test Logging. Strategic Advantage or Unnecessary Headache?

Electronic Soil Test Logging. Strategic Advantage or Unnecessary Headache? 1 Electronic Soil Test Logging Strategic Advantage or Unnecessary Headache? 2 The Plan 3 4 What is it? Digitally Recording Soil Test Data Why? 5 6 Traditional Work Flow Field Digital Entry Sample Review

More information

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Vol.3, Issue.1, Jan-Feb. 2013 pp-284-290 ISSN: 2249-6645 Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Mahmoud M. Abu zeid, 1 Amr M. Radwan, 2 Emad A. Osman, 3 Ahmed M.Abu-bakr,

More information

DYNAMIC CONE PENETRATION TEST INSTRUCTIONAL MANUAL GEOTECHANICAL

DYNAMIC CONE PENETRATION TEST INSTRUCTIONAL MANUAL GEOTECHANICAL DYNAMIC CONE PENETRATION TEST INSTRUCTIONAL MANUAL GEOTECHANICAL J. P. Scientific Instruments 7, Civil Lines, Roorkee-247667 DYNAMIC CONE PENETRATION TEST CONTENTS: PAGE NO. 1.0 INTRODUCTION 03 2.0 PROBLEM

More information

TruTrak Automated directional drilling system

TruTrak Automated directional drilling system D r i l l i n g a n d E v a l u a t i o n TruTrak Automated directional drilling system Answering the need for improved drilling precision and efficiency Simple wells are not so simple anymore While 2D

More information

NEW DEVELOPMENTS AND IMPORTANT CONSIDERATIONS FOR STANDARD PENETRATION TESTING FOR LIQUEFACTION EVALUATIONS. Jeffrey A Farrar M.S.

NEW DEVELOPMENTS AND IMPORTANT CONSIDERATIONS FOR STANDARD PENETRATION TESTING FOR LIQUEFACTION EVALUATIONS. Jeffrey A Farrar M.S. NEW DEVELOPMENTS AND IMPORTANT CONSIDERATIONS FOR STANDARD PENETRATION TESTING FOR LIQUEFACTION EVALUATIONS Jeffrey A Farrar M.S., P E 1 ABSTRACT Standard Penetration Tests (SPT) are often used for evaluating

More information

CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests PURPOSE: The parameters of the shear strength relationship provide a means of evaluating the load carrying capacity of soils, stability of slopes, and pile capacity. The direct shear test is one of the

More information

Structural concepts for minimum facility platforms for Marginal field development in western offshore, India

Structural concepts for minimum facility platforms for Marginal field development in western offshore, India Structural concepts for minimum facility platforms for Marginal field development in western offshore, India A collaborative project By IIT Madras and IEOT,ONGC 24 April 2007 1 Outline Conventional Wellhead

More information

TECHNICAL Summary. TRB Subject Code:62-7 Soil Foundation Subgrades February 2003 Publication No.: FHWA/IN/JTRP-2002/30, SPR-2362

TECHNICAL Summary. TRB Subject Code:62-7 Soil Foundation Subgrades February 2003 Publication No.: FHWA/IN/JTRP-2002/30, SPR-2362 INDOT Research TECHNICAL Summary Technology Transfer and Project Implementation Information TRB Subject Code:62-7 Soil Foundation Subgrades February 3 Publication No.: FHWA/IN/JTRP-2/3, SPR-2362 Final

More information

King Saud University College of Engineering Civil Engineering Department DEFORMATION OF PARTIALLY SATURATED SAND. Sultan Musaed Al-Ghamdi

King Saud University College of Engineering Civil Engineering Department DEFORMATION OF PARTIALLY SATURATED SAND. Sultan Musaed Al-Ghamdi King Saud University College of Engineering Civil Engineering Department DEFORMATION OF PARTIALLY SATURATED SAND By Sultan Musaed Al-Ghamdi Submitted in Partial Fulfillment of The Required For the Degree

More information

Fellenius, B. H., and Eslami, A.

Fellenius, B. H., and Eslami, A. Page SOIL PROFILE INTERPRETED FROM CPTu DATA Fellenius, B. H., and Eslami, A. Fellenius, B. H., and Eslami, A., 2000. Soil profile interpreted from CPTu data. Year 2000 Geotechnics Geotechnical Engineering

More information

REPORT. Earthquake Commission. Christchurch Earthquake Recovery Geotechnical Factual Report Merivale

REPORT. Earthquake Commission. Christchurch Earthquake Recovery Geotechnical Factual Report Merivale REPORT Earthquake Commission Christchurch Earthquake Recovery Geotechnical Factual Report Merivale REPORT Earthquake Commission Christchurch Earthquake Recovery Geotechnical Factual Report Merivale Report

More information

Kentucky Lake Bridge Pile Load Testing Overview Ohio Transportation Engineering Conference Columbus, Ohio 10/28/2015

Kentucky Lake Bridge Pile Load Testing Overview Ohio Transportation Engineering Conference Columbus, Ohio 10/28/2015 Kentucky Lake Bridge Pile Load Testing Overview Ohio Transportation Engineering Conference Columbus, Ohio 10/28/2015 Presented by: Jeff Dunlap, P.E. Terracon Consultants 1 Project Site Kentucky Official

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 2 HYDRAULIC AND PNEUMATIC CYLINDERS The material needed for outcome 2 is very extensive

More information

Improvement in physical properties for ground treated with rapid impact compaction

Improvement in physical properties for ground treated with rapid impact compaction International Journal of the Physical Sciences Vol. 6(22), pp. 5133-5140, 2 October 2011 Available online at http://www.academicjournals.org/ijps ISSN 1992-1950 2011 Academic Journals Full Length Research

More information

Statistical identification of homogeneous soil units for Venice lagoon soils

Statistical identification of homogeneous soil units for Venice lagoon soils Statistical identification of homogeneous soil units for Venice lagoon soils M. Uzielli Georisk Engineering, Florence, Italy P. Simonini, S. Cola Department of Hydraulic, Maritime, Environmental and Geotechnical

More information

Soil Behavior Type using the DMT

Soil Behavior Type using the DMT Soil Behavior Type using the DMT Peter K. Robertson Gregg Drilling & Testing Inc., Signal Hill, CA, USA. E-mail: probertson@greggdrilling.com Keywords: Soil Behavior Type, CPT, DMT ABSTRACT: The most promising

More information