Deep Learning for Big Data

Size: px
Start display at page:

Download "Deep Learning for Big Data"

Transcription

1 Deep Learning for Big Data Yoshua Bengio Département d Informa0que et Recherche Opéra0onnelle, U. Montréal 30 May 2013, Journée de la recherche École Polytechnique, Montréal

2 Big Data & Data Science Super- hot buzzword Data deluge Two sides of the coin: 1. Allowing computers to understand the data (percep0on) 2. Allowing computers to take decisions (ac0on) My research: 1. CERC in Data Science and Real- Time Decision- Making: The necessity to combine 1 and 2. 2

3 Business execu0ves are faced with a relentless and exponen0al growth of data that can be collected by their enterprises 3 Big Data a Growing Torrent 30 billion pieces of content shared on Facebook every month 5 billion mobile phones in use in % projected growth in global data generated per year vs. 5% growth in global IT spending Data: McKinsey 1 Exabyte = 1 Billion Gigabytes Figure: The Economist

4 Making sense of this data could unleash substan0al value across an array of industries. 4 Big Data Big Value $300 billion poten0al annual value to US health care $600 billion poten0al annual consumer surplus from using personal loca0on data globally 250 billion poten0al annual value to Europe s public sector 60% poten0al increase in retailers opera0ng margins possible with big data Source: McKinsey

5 There are many reasons to believe that since last year turning data into a compeffve advantage is becoming a top- of- mind C- level issue. 5 Big Data: in the minds of executives O Reilly Strata Conference, Twice yearly event, started 2011 McKinsey White Paper, 2011 The Economist Special Report, 2010 The world of Big Data is on fire The Economist, Sept 2011 #bigdata on Twider

6 Data Science: automatically extracting knowledge from data From: Yann LeCun Lecture 1 on Big Data, large scale machine learning,

7 Decision Science + Machine Learning The topic of a successful CERC applica0on Why? Data deluge & real- 0me online learning 7 Learned models are used to take decisions on the fly The data used to train depends on the decisions taken Can t separate the learning from the decisions like in tradi0onal OR & ML setups Examples: Online adver0sing & recommenda0on systems Online video games Fraud detec0on, targeted marking, etc.

8 Ultimate Goals for AI AI Needs knowledge Needs learning Needs generalizing where probability mass concentrates Needs to fight the curse of dimensionality Needs disentangling the underlying explanatory factors ( making sense of the data ) 8

9 Easy Learning = example (x,y) y true unknown function learned function: prediction = f(x) x

10 Local Smoothness Prior: Locally Capture the Variations y prediction f(x) = training example true function: unknown x x è f(x) f(x ) learnt = interpolated test point x x

11 What We Are Fighting Against: The Curse of Dimensionality To generalize locally, need representa0ve examples for all relevant varia0ons!

12 Manifold Learning Prior: examples concentrate near lower dimensional manifold 12

13 Putting Probability Mass where Structure is Plausible Empirical distribu0on: mass at training examples Smoothness: spread mass around Insufficient Guess structure and generalize accordingly 13

14 Representation Learning Good input features essen0al for successful ML (feature engineering = 90% of effort in industrial ML) Handcrasing features vs learning them Representa0on learning: guesses the features / factors / causes = good representa0on. 14

15 Deep Representation Learning Deep learning algorithms adempt to learn mul0ple levels of representa0on of increasing complexity/abstrac0on When the number of levels can be data- selected, this is Deep Learning h 3 h 2 15 h 1 x

16 A Modern Deep Architecture Op0onal Output layer Here predic0ng a supervised target Hidden layers These learn more abstract representa0ons as you head up Input layer 16 This has raw sensory inputs (roughly)

17 Google Image Search: Different object types represented in the same space Google: S. Bengio, J. Weston & N. Usunier (IJCAI 2011, NIPS 2010, JMLR 2010, MLJ 2010)

18 How do humans generalize from very few examples? Brains may be born with generic priors. Which ones? Humans transfer knowledge from previous learning: Representa0ons Explanatory factors Previous learning from: unlabeled data + labels for other tasks 18

19 Learning multiple levels of representation Theore0cal evidence for mul0ple levels of representa0on ExponenFal gain for some families of funcfons Biologically inspired learning Brain has a deep architecture Cortex seems to have a generic learning algorithm Humans first learn simpler concepts and then compose them to more complex ones 19

20 Learning multiple levels of representation (Lee, Largman, Pham & Ng, NIPS 2009) (Lee, Grosse, Ranganath & Ng, ICML 2009) Successive model layers learn deeper intermediate representa0ons Layer 3 High- level linguis0c representa0ons Parts combine to form objects Layer 2 20 Layer 1 Prior: underlying factors & concepts compactly expressed w/ mulfple levels of abstracfon

21 subsubsub1 subsubsub2 subsubsub3 subsub1 subsub2 subsub3 sub1 sub2 sub3 main Deep computer program

22 subroutine1 includes subsub1 code and subsub2 code and subsubsub1 code subroutine2 includes subsub2 code and subsub3 code and subsubsub3 code and main Shallow computer program

23 Major Breakthrough in 2006 Ability to train deep architectures by using layer- wise unsupervised learning, whereas previous purely supervised adempts had failed Unsupervised feature learners: RBMs Auto- encoder variants Sparse coding variants Empirical successes since then: 2 competitions, Google, Microsoft, IBM, Apple 23 Toronto Hinton Bengio Montréal Le Cun New York

24 Deep Networks for Speech Recognition: results from Google, IBM, Microsoft task Hours of training data Deep net+hmm GMM+HMM same data GMM+HMM more data Switchboard (2k hours) English Broadcast news Bing voice search Google voice input (lots more) Youtube (numbers taken from Geoff Hinton s June 22, 2012 Google talk)

25 Deep Sparse Rectifier Neural Networks (Glorot,Bordes and Bengio AISTATS 2011), following up on (Nair & Hinton 2010) Machine learning motivations Neuroscience motivations Leaky integrate-and-fire model Sparse representations Sparse gradients Rectifier f(x)=max(0,x) Outstanding results by Krizhevsky et al 2012 killing the state- of- the- art on ImageNet 1000: 1st choice Top- 5 2nd best 27% err Previous SOTA 45% err 26% err Krizhevsky et al 37% err 15% err

26 Learning Multiple Levels of Abstraction The big payoff of deep learning is to allow learning higher levels of abstrac0on Higher- level abstrac0ons disentangle the factors of varia0on, which allows much easier generaliza0on and transfer More abstract representa0ons à Successful transfer (domains, languages), 2 interna0onal compe00ons won 26

27 Challenges Ahead Big data + deep learning = underfizng, local minima, ill- condi0oning, difficulty of using 2 nd - order methods in stochas0c / online sezng The challenge of inference with non- unimodal non- factorial posteriors (can we avoid this altogether?) Big data + deep learning + parallel compu0ng à our current best training algorithms are highly sequen0al big Google in this respect (Dean et al ICML 2012, NIPS 2012) Much remains to be understood mathema0cally, (Alain & Bengio ICLR 2013) one of few scratching the 0p of the iceberg 27

28 LISA team: Merci! Questions?

Learning to Process Natural Language in Big Data Environment

Learning to Process Natural Language in Big Data Environment CCF ADL 2015 Nanchang Oct 11, 2015 Learning to Process Natural Language in Big Data Environment Hang Li Noah s Ark Lab Huawei Technologies Part 1: Deep Learning - Present and Future Talk Outline Overview

More information

Deep learning applications and challenges in big data analytics

Deep learning applications and challenges in big data analytics Najafabadi et al. Journal of Big Data (2015) 2:1 DOI 10.1186/s40537-014-0007-7 RESEARCH Open Access Deep learning applications and challenges in big data analytics Maryam M Najafabadi 1, Flavio Villanustre

More information

Machine Learning. 01 - Introduction

Machine Learning. 01 - Introduction Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge

More information

Steven C.H. Hoi School of Information Systems Singapore Management University Email: [email protected]

Steven C.H. Hoi School of Information Systems Singapore Management University Email: chhoi@smu.edu.sg Steven C.H. Hoi School of Information Systems Singapore Management University Email: [email protected] Introduction http://stevenhoi.org/ Finance Recommender Systems Cyber Security Machine Learning Visual

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Deep Learning Barnabás Póczos & Aarti Singh Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey

More information

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries Copyright GENIVI Alliance

More information

Introduction to Machine Learning Using Python. Vikram Kamath

Introduction to Machine Learning Using Python. Vikram Kamath Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression

More information

203.4770: Introduction to Machine Learning Dr. Rita Osadchy

203.4770: Introduction to Machine Learning Dr. Rita Osadchy 203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:

More information

CSE 517A MACHINE LEARNING INTRODUCTION

CSE 517A MACHINE LEARNING INTRODUCTION CSE 517A MACHINE LEARNING INTRODUCTION Spring 2016 Marion Neumann Contents in these slides may be subject to copyright. Some materials are adopted from Killian Weinberger. Thanks, Killian! Machine Learning

More information

Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016

Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016 Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00

More information

Compacting ConvNets for end to end Learning

Compacting ConvNets for end to end Learning Compacting ConvNets for end to end Learning Jose M. Alvarez Joint work with Lars Pertersson, Hao Zhou, Fatih Porikli. Success of CNN Image Classification Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,

More information

The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2

The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016) The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2 1 School of

More information

Scalable Machine Learning - or what to do with all that Big Data infrastructure

Scalable Machine Learning - or what to do with all that Big Data infrastructure - or what to do with all that Big Data infrastructure TU Berlin blog.mikiobraun.de Strata+Hadoop World London, 2015 1 Complex Data Analysis at Scale Click-through prediction Personalized Spam Detection

More information

Learning Deep Architectures for AI. Contents

Learning Deep Architectures for AI. Contents Foundations and Trends R in Machine Learning Vol. 2, No. 1 (2009) 1 127 c 2009 Y. Bengio DOI: 10.1561/2200000006 Learning Deep Architectures for AI By Yoshua Bengio Contents 1 Introduction 2 1.1 How do

More information

Tutorial on Deep Learning and Applications

Tutorial on Deep Learning and Applications NIPS 2010 Workshop on Deep Learning and Unsupervised Feature Learning Tutorial on Deep Learning and Applications Honglak Lee University of Michigan Co-organizers: Yoshua Bengio, Geoff Hinton, Yann LeCun,

More information

What is Artificial Intelligence?

What is Artificial Intelligence? CSE 3401: Intro to Artificial Intelligence & Logic Programming Introduction Required Readings: Russell & Norvig Chapters 1 & 2. Lecture slides adapted from those of Fahiem Bacchus. 1 What is AI? What is

More information

An Analysis of Single-Layer Networks in Unsupervised Feature Learning

An Analysis of Single-Layer Networks in Unsupervised Feature Learning An Analysis of Single-Layer Networks in Unsupervised Feature Learning Adam Coates 1, Honglak Lee 2, Andrew Y. Ng 1 1 Computer Science Department, Stanford University {acoates,ang}@cs.stanford.edu 2 Computer

More information

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information

More information

Neural Networks for Machine Learning. Lecture 13a The ups and downs of backpropagation

Neural Networks for Machine Learning. Lecture 13a The ups and downs of backpropagation Neural Networks for Machine Learning Lecture 13a The ups and downs of backpropagation Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed A brief history of backpropagation

More information

Taking Inverse Graphics Seriously

Taking Inverse Graphics Seriously CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION [email protected] http://www.cmpe.boun.edu.tr/~ethem/i2ml3e CHAPTER 1: INTRODUCTION Big Data 3 Widespread

More information

Visualizing Higher-Layer Features of a Deep Network

Visualizing Higher-Layer Features of a Deep Network Visualizing Higher-Layer Features of a Deep Network Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent Dept. IRO, Université de Montréal P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7,

More information

Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks

Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks This version: December 12, 2013 Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks Lawrence Takeuchi * Yu-Ying (Albert) Lee [email protected] [email protected] Abstract We

More information

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

More information

CSC384 Intro to Artificial Intelligence

CSC384 Intro to Artificial Intelligence CSC384 Intro to Artificial Intelligence What is Artificial Intelligence? What is Intelligence? Are these Intelligent? CSC384, University of Toronto 3 What is Intelligence? Webster says: The capacity to

More information

PhD in Computer Science and Engineering Bologna, April 2016. Machine Learning. Marco Lippi. [email protected]. Marco Lippi Machine Learning 1 / 80

PhD in Computer Science and Engineering Bologna, April 2016. Machine Learning. Marco Lippi. marco.lippi3@unibo.it. Marco Lippi Machine Learning 1 / 80 PhD in Computer Science and Engineering Bologna, April 2016 Machine Learning Marco Lippi [email protected] Marco Lippi Machine Learning 1 / 80 Recurrent Neural Networks Marco Lippi Machine Learning

More information

How To Use Neural Networks In Data Mining

How To Use Neural Networks In Data Mining International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and

More information

Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. [email protected]

Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang [email protected] http://acl.cs.qc.edu/~lhuang/teaching/machine-learning Logistics Lectures M 9:30-11:30 am Room 4419 Personnel

More information

Machine Learning for Data Science (CS4786) Lecture 1

Machine Learning for Data Science (CS4786) Lecture 1 Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:

More information

Manifold Learning with Variational Auto-encoder for Medical Image Analysis

Manifold Learning with Variational Auto-encoder for Medical Image Analysis Manifold Learning with Variational Auto-encoder for Medical Image Analysis Eunbyung Park Department of Computer Science University of North Carolina at Chapel Hill [email protected] Abstract Manifold

More information

Representation Learning: A Review and New Perspectives

Representation Learning: A Review and New Perspectives 1 Representation Learning: A Review and New Perspectives Yoshua Bengio, Aaron Courville, and Pascal Vincent Department of computer science and operations research, U. Montreal also, Canadian Institute

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott

More information

Machine Learning What, how, why?

Machine Learning What, how, why? Machine Learning What, how, why? Rémi Emonet (@remiemonet) 2015-09-30 Web En Vert $ whoami $ whoami Software Engineer Researcher: machine learning, computer vision Teacher: web technologies, computing

More information

Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012

Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Clustering Big Data Anil K. Jain (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Outline Big Data How to extract information? Data clustering

More information

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems

More information

Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research [email protected]

Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research [email protected] Introduction Logistics Prerequisites: basics concepts needed in probability and statistics

More information

Networked Virtual Spaces and Clouds. Magda El Zarki UC Irvine

Networked Virtual Spaces and Clouds. Magda El Zarki UC Irvine Networked Virtual Spaces and Clouds Magda El Zarki UC Irvine Outline Introduc6on to Networked Virtual Environments (NVE) Networked Virtual Environment Architectures Quality of Experience Clouds and real

More information

CS 1699: Intro to Computer Vision. Deep Learning. Prof. Adriana Kovashka University of Pittsburgh December 1, 2015

CS 1699: Intro to Computer Vision. Deep Learning. Prof. Adriana Kovashka University of Pittsburgh December 1, 2015 CS 1699: Intro to Computer Vision Deep Learning Prof. Adriana Kovashka University of Pittsburgh December 1, 2015 Today: Deep neural networks Background Architectures and basic operations Applications Visualizing

More information

MA2823: Foundations of Machine Learning

MA2823: Foundations of Machine Learning MA2823: Foundations of Machine Learning École Centrale Paris Fall 2015 Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr TAs: Jiaqian Yu [email protected]

More information

Steven C.H. Hoi. School of Computer Engineering Nanyang Technological University Singapore

Steven C.H. Hoi. School of Computer Engineering Nanyang Technological University Singapore Steven C.H. Hoi School of Computer Engineering Nanyang Technological University Singapore Acknowledgments: Peilin Zhao, Jialei Wang, Hao Xia, Jing Lu, Rong Jin, Pengcheng Wu, Dayong Wang, etc. 2 Agenda

More information

Marc'Aurelio Ranzato

Marc'Aurelio Ranzato Marc'Aurelio Ranzato Facebook Inc. 1 Hacker Way Menlo Park, CA 94025, USA email: [email protected] web: www.cs.toronto.edu/ ranzato RESEARCH INTERESTS My primary research interests are in the area

More information

Latent variable and deep modeling with Gaussian processes; application to system identification. Andreas Damianou

Latent variable and deep modeling with Gaussian processes; application to system identification. Andreas Damianou Latent variable and deep modeling with Gaussian processes; application to system identification Andreas Damianou Department of Computer Science, University of Sheffield, UK Brown University, 17 Feb. 2016

More information

Machine Learning. Mausam (based on slides by Tom Mitchell, Oren Etzioni and Pedro Domingos)

Machine Learning. Mausam (based on slides by Tom Mitchell, Oren Etzioni and Pedro Domingos) Machine Learning Mausam (based on slides by Tom Mitchell, Oren Etzioni and Pedro Domingos) What Is Machine Learning? A computer program is said to learn from experience E with respect to some class of

More information

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume

More information

CPSC 340: Machine Learning and Data Mining. Mark Schmidt University of British Columbia Fall 2015

CPSC 340: Machine Learning and Data Mining. Mark Schmidt University of British Columbia Fall 2015 CPSC 340: Machine Learning and Data Mining Mark Schmidt University of British Columbia Fall 2015 Outline 1) Intro to Machine Learning and Data Mining: Big data phenomenon and types of data. Definitions

More information

Data Mining. Supervised Methods. Ciro Donalek [email protected]. Ay/Bi 199ab: Methods of Computa@onal Sciences hcp://esci101.blogspot.

Data Mining. Supervised Methods. Ciro Donalek donalek@astro.caltech.edu. Ay/Bi 199ab: Methods of Computa@onal Sciences hcp://esci101.blogspot. Data Mining Supervised Methods Ciro Donalek [email protected] Supervised Methods Summary Ar@ficial Neural Networks Mul@layer Perceptron Support Vector Machines SoLwares Supervised Models: Supervised

More information

Learning is a very general term denoting the way in which agents:

Learning is a very general term denoting the way in which agents: What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);

More information

An Introduction to Deep Learning

An Introduction to Deep Learning Thought Leadership Paper Predictive Analytics An Introduction to Deep Learning Examining the Advantages of Hierarchical Learning Table of Contents 4 The Emergence of Deep Learning 7 Applying Deep-Learning

More information

The Discipline of Machine Learning

The Discipline of Machine Learning The Discipline of Machine Learning Tom M. Mitchell July 2006 CMU-ML-06-108 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Machine Learning Department School of Computer Science,

More information

Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

More information

Machine Learning CS 6830. Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science [email protected]

Machine Learning CS 6830. Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning CS 6830 Razvan C. Bunescu School of Electrical Engineering and Computer Science [email protected] What is Learning? Merriam-Webster: learn = to acquire knowledge, understanding, or skill

More information

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015 An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

More information

Sparse deep belief net model for visual area V2

Sparse deep belief net model for visual area V2 Sparse deep belief net model for visual area V2 Honglak Lee Chaitanya Ekanadham Andrew Y. Ng Computer Science Department Stanford University Stanford, CA 9435 {hllee,chaitu,ang}@cs.stanford.edu Abstract

More information

Machine Learning: Overview

Machine Learning: Overview Machine Learning: Overview Why Learning? Learning is a core of property of being intelligent. Hence Machine learning is a core subarea of Artificial Intelligence. There is a need for programs to behave

More information

6.2.8 Neural networks for data mining

6.2.8 Neural networks for data mining 6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural

More information

Applications of Deep Learning to the GEOINT mission. June 2015

Applications of Deep Learning to the GEOINT mission. June 2015 Applications of Deep Learning to the GEOINT mission June 2015 Overview Motivation Deep Learning Recap GEOINT applications: Imagery exploitation OSINT exploitation Geospatial and activity based analytics

More information

CAP4773/CIS6930 Projects in Data Science, Fall 2014 [Review] Overview of Data Science

CAP4773/CIS6930 Projects in Data Science, Fall 2014 [Review] Overview of Data Science CAP4773/CIS6930 Projects in Data Science, Fall 2014 [Review] Overview of Data Science Dr. Daisy Zhe Wang CISE Department University of Florida August 25th 2014 20 Review Overview of Data Science Why Data

More information

Efficient online learning of a non-negative sparse autoencoder

Efficient online learning of a non-negative sparse autoencoder and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-93030-10-2. Efficient online learning of a non-negative sparse autoencoder Andre Lemme, R. Felix Reinhart and Jochen J. Steil

More information

Data Management in the Cloud: Limitations and Opportunities. Annies Ductan

Data Management in the Cloud: Limitations and Opportunities. Annies Ductan Data Management in the Cloud: Limitations and Opportunities Annies Ductan Discussion Outline: Introduc)on Overview Vision of Cloud Compu8ng Managing Data in The Cloud Cloud Characteris8cs Data Management

More information

Data, Measurements, Features

Data, Measurements, Features Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are

More information

The Applications of Deep Learning on Traffic Identification

The Applications of Deep Learning on Traffic Identification The Applications of Deep Learning on Traffic Identification Zhanyi Wang [email protected] Abstract Generally speaking, most systems of network traffic identification are based on features. The features

More information

Interac(ve Broker (UK) Limited Webinar: Proprietary Trading Groups

Interac(ve Broker (UK) Limited Webinar: Proprietary Trading Groups Interac(ve Broker (UK) Limited Webinar: Proprietary Trading Groups Presenter Gerald Perez Managing Director London, United Kingdom E- mail: gperez@interac=vebrokers.com Important Informa=on: The risk of

More information

Financial Opera,ons Track: ROI vs. ROCE (Return on Customer Experience) Speaker: Robert Lane, Strategic Sourcing Manager, Premier Health Partners

Financial Opera,ons Track: ROI vs. ROCE (Return on Customer Experience) Speaker: Robert Lane, Strategic Sourcing Manager, Premier Health Partners Financial Opera,ons Track: ROI vs. ROCE (Return on Customer Experience) Speaker: Robert Lane, Strategic Sourcing Manager, Premier Health Partners INTEGRATION: Merging internal and external excellence into

More information

Simplified Machine Learning for CUDA. Umar Arshad @arshad_umar Arrayfire @arrayfire

Simplified Machine Learning for CUDA. Umar Arshad @arshad_umar Arrayfire @arrayfire Simplified Machine Learning for CUDA Umar Arshad @arshad_umar Arrayfire @arrayfire ArrayFire CUDA and OpenCL experts since 2007 Headquartered in Atlanta, GA In search for the best and the brightest Expert

More information

Obtaining Value from Big Data

Obtaining Value from Big Data Obtaining Value from Big Data Course Notes in Transparency Format technology basics for data scientists Spring - 2014 Jordi Torres, UPC - BSC www.jorditorres.eu @JordiTorresBCN Data deluge, is it enough?

More information

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376 Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.

More information

Machine Learning and Data Mining. Fundamentals, robotics, recognition

Machine Learning and Data Mining. Fundamentals, robotics, recognition Machine Learning and Data Mining Fundamentals, robotics, recognition Machine Learning, Data Mining, Knowledge Discovery in Data Bases Their mutual relations Data Mining, Knowledge Discovery in Databases,

More information

Statistics for BIG data

Statistics for BIG data Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before

More information

Factored 3-Way Restricted Boltzmann Machines For Modeling Natural Images

Factored 3-Way Restricted Boltzmann Machines For Modeling Natural Images For Modeling Natural Images Marc Aurelio Ranzato Alex Krizhevsky Geoffrey E. Hinton Department of Computer Science - University of Toronto Toronto, ON M5S 3G4, CANADA Abstract Deep belief nets have been

More information

Introduction to Pattern Recognition

Introduction to Pattern Recognition Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

HT2015: SC4 Statistical Data Mining and Machine Learning

HT2015: SC4 Statistical Data Mining and Machine Learning HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric

More information

Attribution. Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley)

Attribution. Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley) Machine Learning 1 Attribution Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley) 2 Outline Inductive learning Decision

More information

Generalized Denoising Auto-Encoders as Generative Models

Generalized Denoising Auto-Encoders as Generative Models Generalized Denoising Auto-Encoders as Generative Models Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent Département d informatique et recherche opérationnelle, Université de Montréal Abstract

More information

Neural Networks in Data Mining

Neural Networks in Data Mining IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V6 PP 01-06 www.iosrjen.org Neural Networks in Data Mining Ripundeep Singh Gill, Ashima Department

More information

Big Data Analytics. The Hype and the Hope* Dr. Ted Ralphs Industrial and Systems Engineering Director, COR@L Laboratory

Big Data Analytics. The Hype and the Hope* Dr. Ted Ralphs Industrial and Systems Engineering Director, COR@L Laboratory Big Data Analytics The Hype and the Hope* Dr. Ted Ralphs Industrial and Systems Engineering Director, COR@L Laboratory * Source: http://www.economistinsights.com/technology-innovation/analysis/hype-and-hope/methodology

More information

Phone Systems Buyer s Guide

Phone Systems Buyer s Guide Phone Systems Buyer s Guide Contents How Cri(cal is Communica(on to Your Business? 3 Fundamental Issues 4 Phone Systems Basic Features 6 Features for Users with Advanced Needs 10 Key Ques(ons for All Buyers

More information

Unsupervised Feature Learning and Deep Learning

Unsupervised Feature Learning and Deep Learning Unsupervised Feature Learning and Deep Learning Thanks to: Adam Coates Quoc Le Honglak Lee Andrew Maas Chris Manning Jiquan Ngiam Andrew Saxe Richard Socher Develop ideas using Computer vision Audio Text

More information

Learning multiple layers of representation

Learning multiple layers of representation Review TRENDS in Cognitive Sciences Vol.11 No.10 Learning multiple layers of representation Geoffrey E. Hinton Department of Computer Science, University of Toronto, 10 King s College Road, Toronto, M5S

More information

Big Data Deep Learning: Challenges and Perspectives

Big Data Deep Learning: Challenges and Perspectives Big Data Deep Learning: Challenges and Perspectives D.saraswathy Department of computer science and engineering IFET college of engineering Villupuram [email protected] Abstract Deep

More information

Cloud Compu)ng. Yeow Wei CHOONG Anne LAURENT

Cloud Compu)ng. Yeow Wei CHOONG Anne LAURENT Cloud Compu)ng Yeow Wei CHOONG Anne LAURENT h-p://www.b- eye- network.com/blogs/eckerson/archives/cloud_compu)ng/ 2011 h-p://www.forbes.com/sites/tjmccue/2014/01/29/cloud- compu)ng- united- states- businesses-

More information

Machine Learning using MapReduce

Machine Learning using MapReduce Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous

More information

Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines

Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines Marc Aurelio Ranzato Geoffrey E. Hinton Department of Computer Science - University of Toronto 10 King s College Road,

More information

IFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, -2,..., 127, 0,...

IFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, -2,..., 127, 0,... IFT3395/6390 Historical perspective: back to 1957 (Prof. Pascal Vincent) (Rosenblatt, Perceptron ) Machine Learning from linear regression to Neural Networks Computer Science Artificial Intelligence Symbolic

More information

DEEP LEARNING WITH GPUS

DEEP LEARNING WITH GPUS DEEP LEARNING WITH GPUS GEOINT 2015 Larry Brown Ph.D. June 2015 AGENDA 1 Introducing NVIDIA 2 What is Deep Learning? 3 GPUs and Deep Learning 4 cudnn and DiGiTS 5 Machine Learning & Data Analytics and

More information

Software & systems for the neuromorphic generation of computing. Peter Suma co-ceo 1-416-505-8973 peter.suma@appliedbrainresearch.

Software & systems for the neuromorphic generation of computing. Peter Suma co-ceo 1-416-505-8973 peter.suma@appliedbrainresearch. Software & systems for the neuromorphic generation of computing. Peter Suma co-ceo 1-416-505-8973 [email protected] 15 minutes to explain how well the world s most functional AI runs

More information

NEURAL NETWORKS IN DATA MINING

NEURAL NETWORKS IN DATA MINING NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,

More information

Semi-Supervised Support Vector Machines and Application to Spam Filtering

Semi-Supervised Support Vector Machines and Application to Spam Filtering Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery

More information

Chapter 4: Artificial Neural Networks

Chapter 4: Artificial Neural Networks Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/

More information