Machine Learning What, how, why?
|
|
|
- Christiana Leonard
- 10 years ago
- Views:
Transcription
1 Machine Learning What, how, why? Rémi Emonet Web En Vert
2 $ whoami
3 $ whoami Software Engineer Researcher: machine learning, computer vision Teacher: web technologies, computing literacy Geek: deck.js slides, isochrones, You are shrewd, skeptical and restrained. You are independent: you have a strong desire to have time to yourself. You are calm-seeking: you prefer activities that are quiet, calm, and safe. And you are philosophical: you are open to and intrigued by new ideas and love to explore them. Experiences that give a sense of prestige hold some appeal to you. You are relatively unconcerned with both tradition and taking pleasure in life. You care more about making your own path than following what others have done. And you prefer activities with a purpose greater than just personal enjoyment.
4 What is Machine Learning? 4 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
5 Machine Learning Basic Principle 5 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why? Given a dataset {y, x,, x } Optimize the likelihood function L = n(w, t, d)log p(w, t z)p(z, t d) Or using a sparse regularization L λ n i i1 ip i=1 a d w t a z sparse KL(U p(ts z, d)) d z t s r s By using a Gibbs Sampler ji ji N obs (W ji, rt ji, z ji) + η(w ji, rt ji) p(w ji, atji o ji = o, O ) = ji N (w, rt, z ) + η(w, rt ) w,rt ( obs ji )
6 Machine Learning in the Wild 6 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
7 Which One of These Services Uses Machine Learning? 7 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
8 Machine Learning in Future Tech? 8 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
9 What is Machine Learning? an example motivation 9 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
10 Challenge: Which Iris Species?
11 Feature Extraction 11 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why? Sepal length: 5.1 Sepal width: 2.5 Petal length: 4.2 Petal width: 1.0 Expected Label: Iris Setosa
12 Analysis and Program Writing
13 IFTTT...
14 Predictive Machine Learning 14 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why? Instead of writing a program that solves a task, We 1. collect labeled data: input/output pairs 2. automatically generate a program that computes an output for each new input 3. profit! The machine learns to generalize from a limited number of examples, like humans do.
15 Different Types of Tasks 15 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why? Supervised learning: some labels are known classification: find the label of an example regression: find the target value Unsupervised learning: no labels clustering: group things together pattern mining: find recurrent events anomaly detection: find outliers
16 The Principle of Overfitting 16 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
17 A Lot of Different Methods 17 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why? Also called models linear regression, logistic regression, SVM, kernel SVM, neural networks, k-means clustering, collaborative filtering, bayesian networks, expectation maximization, belief propagation, multiple kernel learning, metric learning, transfer learning, decision trees, gaussian processes, random forests, boosting,... For different contexts different tasks different nature of data different suppositions on the data different amount of data
18 Different Ways to Start 18 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why? Use a product that uses ML e.g. adwords, ibm bluemix, Use a prediction API send your data to the service get API to process new inputs e.g., google pred. API, prediction.io,... Dive into machine learning
19 Into Machine Learning 19 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why? Using libraries libraries exist in most languages most models already implemented test different methods with different parameters Learning machine learning many online courses get deeper understanding
20 Does Machine Learning Actually Matter? 20 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
21 Example: The Netflix Challenge 21 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
22 22 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why? FAIR
23 Example: Facebook AI Research 23 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why? Director: Yann LeCun Scientific Leads Léon Bouttou Rob Fergus Florent Perronnin fr rest
24 Data, Data, Data 24 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
25 Data is Machine Learning's Fuel 25 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
26 data === power
27 Getting Data?
28 Getting Data? 28 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why? Collect from your services/applications Do it yourself Pay some people you know Use crowd-sourcing, e.g., Amazon Mechanical Turk (MTurk) Find existing datasets (open data, etc) Work for/with a data rich company Create your intermediation business
29 What Can It Do For Me 29 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
30 Search Google Search, Bing, etc 30 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
31 Advertising AdWords, etc 31 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
32 Recommendations Netflix, Amazon, Youtube, app Stores, etc 32 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
33 Text Translation 33 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
34 Optical Character Recognition (postcodes, checks, book scans, etc) 34 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
35 Visual Recognition (objects, plants, animals, etc) 35 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
36 Face Detection Smile Detection (embedded in Cameras) 36 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
37 Face Identification (Picasa, Facebook, etc) 37 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
38 Kinect Controller 38 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
39 Self Driving Cars 39 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
40 Voice Recognition and Synthesis (GoogleNow, Siri, Cortana) 40 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
41 Sound Recognition (birds, underwater sounds, safety, etc) 41 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
42 Fraud Detection (Banking, Websites, etc) 42 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
43 Automated Trading 43 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
44 Customer/Person Profiling BlueMix Watson, etc 44 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
45 Adaptive Websites (automated A/B testing) 45 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
46 The Big Data Hype 46 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
47 and much more...
48 Where Will it Stop? 48 / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
49 Singularity?
50 Thanks! Questions? web/ Recommended Links: comprehensive introduction to ML models scikit learn (python) / 50 Rémi Emonet (@remiemonet) Machine Learning What, how, why?
51 tatadbb
52 -Porsupah-
53 ali eminov
54 efilpera
55 jannekestaaks
56 Asa-moya
57 francoisjouffroy
58 JD Hancock
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Machine Learning. 01 - Introduction
Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge
Machine Learning Capacity and Performance Analysis and R
Machine Learning and R May 3, 11 30 25 15 10 5 25 15 10 5 30 25 15 10 5 0 2 4 6 8 101214161822 0 2 4 6 8 101214161822 0 2 4 6 8 101214161822 100 80 60 40 100 80 60 40 100 80 60 40 30 25 15 10 5 25 15 10
Machine learning for algo trading
Machine learning for algo trading An introduction for nonmathematicians Dr. Aly Kassam Overview High level introduction to machine learning A machine learning bestiary What has all this got to do with
Introduction to Machine Learning Using Python. Vikram Kamath
Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression
Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research [email protected]
Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research [email protected] Introduction Logistics Prerequisites: basics concepts needed in probability and statistics
Analysis Tools and Libraries for BigData
+ Analysis Tools and Libraries for BigData Lecture 02 Abhijit Bendale + Office Hours 2 n Terry Boult (Waiting to Confirm) n Abhijit Bendale (Tue 2:45 to 4:45 pm). Best if you email me in advance, but I
Machine Learning for Data Science (CS4786) Lecture 1
Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD
Predictive Analytics Techniques: What to Use For Your Big Data March 26, 2014 Fern Halper, PhD Presenter Proven Performance Since 1995 TDWI helps business and IT professionals gain insight about data warehousing,
ADVANCED MACHINE LEARNING. Introduction
1 1 Introduction Lecturer: Prof. Aude Billard ([email protected]) Teaching Assistants: Guillaume de Chambrier, Nadia Figueroa, Denys Lamotte, Nicola Sommer 2 2 Course Format Alternate between: Lectures
Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer
Machine Learning Chapter 18, 21 Some material adopted from notes by Chuck Dyer What is learning? Learning denotes changes in a system that... enable a system to do the same task more efficiently the next
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016
Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00
MACHINE LEARNING BASICS WITH R
MACHINE LEARNING [Hands-on Introduction of Supervised Machine Learning Methods] DURATION 2 DAY The field of machine learning is concerned with the question of how to construct computer programs that automatically
CPSC 340: Machine Learning and Data Mining. Mark Schmidt University of British Columbia Fall 2015
CPSC 340: Machine Learning and Data Mining Mark Schmidt University of British Columbia Fall 2015 Outline 1) Intro to Machine Learning and Data Mining: Big data phenomenon and types of data. Definitions
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
An Introduction to Data Mining
An Introduction to Intel Beijing [email protected] January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail
3F3: Signal and Pattern Processing
3F3: Signal and Pattern Processing Lecture 3: Classification Zoubin Ghahramani [email protected] Department of Engineering University of Cambridge Lent Term Classification We will represent data by
Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University [email protected]
Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University [email protected] 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian
MA2823: Foundations of Machine Learning
MA2823: Foundations of Machine Learning École Centrale Paris Fall 2015 Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr TAs: Jiaqian Yu [email protected]
Big Data and Marketing
Big Data and Marketing Professor Venky Shankar Coleman Chair in Marketing Director, Center for Retailing Studies Mays Business School Texas A&M University http://www.venkyshankar.com [email protected]
Machine Learning with MATLAB David Willingham Application Engineer
Machine Learning with MATLAB David Willingham Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB Streamlining the
E6895 Advanced Big Data Analytics Lecture 3:! Spark and Data Analytics
E6895 Advanced Big Data Analytics Lecture 3:! Spark and Data Analytics Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Mgr., Dept. of Network Science and Big
COPYRIGHTED MATERIAL. Contents. List of Figures. Acknowledgments
Contents List of Figures Foreword Preface xxv xxiii xv Acknowledgments xxix Chapter 1 Fraud: Detection, Prevention, and Analytics! 1 Introduction 2 Fraud! 2 Fraud Detection and Prevention 10 Big Data for
Machine Learning: Overview
Machine Learning: Overview Why Learning? Learning is a core of property of being intelligent. Hence Machine learning is a core subarea of Artificial Intelligence. There is a need for programs to behave
Maximize Revenues on your Customer Loyalty Program using Predictive Analytics
Maximize Revenues on your Customer Loyalty Program using Predictive Analytics 27 th Feb 14 Free Webinar by Before we begin... www Q & A? Your Speakers @parikh_shachi Technical Analyst @tatvic Loves js
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
Data Mining and Visualization
Data Mining and Visualization Jeremy Walton NAG Ltd, Oxford Overview Data mining components Functionality Example application Quality control Visualization Use of 3D Example application Market research
KATE GLEASON COLLEGE OF ENGINEERING. John D. Hromi Center for Quality and Applied Statistics
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM KATE GLEASON COLLEGE OF ENGINEERING John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE (KGCOE- CQAS- 747- Principles of
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization Ángela Blanco Universidad Pontificia de Salamanca [email protected] Spain Manuel Martín-Merino Universidad
CSci 538 Articial Intelligence (Machine Learning and Data Analysis)
CSci 538 Articial Intelligence (Machine Learning and Data Analysis) Course Syllabus Fall 2015 Instructor Derek Harter, Ph.D., Associate Professor Department of Computer Science Texas A&M University - Commerce
Predictive Modeling and Big Data
Predictive Modeling and Presented by Eileen Burns, FSA, MAAA Milliman Agenda Current uses of predictive modeling in the life insurance industry Potential applications of 2 1 June 16, 2014 [Enter presentation
Government of Russian Federation. Faculty of Computer Science School of Data Analysis and Artificial Intelligence
Government of Russian Federation Federal State Autonomous Educational Institution of High Professional Education National Research University «Higher School of Economics» Faculty of Computer Science School
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015
An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content
The Artificial Prediction Market
The Artificial Prediction Market Adrian Barbu Department of Statistics Florida State University Joint work with Nathan Lay, Siemens Corporate Research 1 Overview Main Contributions A mathematical theory
What is Data Mining? Data Mining (Knowledge discovery in database) Data mining: Basic steps. Mining tasks. Classification: YES, NO
What is Data Mining? Data Mining (Knowledge discovery in database) Data Mining: "The non trivial extraction of implicit, previously unknown, and potentially useful information from data" William J Frawley,
Car Insurance. Prvák, Tomi, Havri
Car Insurance Prvák, Tomi, Havri Sumo report - expectations Sumo report - reality Bc. Jan Tomášek Deeper look into data set Column approach Reminder What the hell is this competition about??? Attributes
Is a Data Scientist the New Quant? Stuart Kozola MathWorks
Is a Data Scientist the New Quant? Stuart Kozola MathWorks 2015 The MathWorks, Inc. 1 Facts or information used usually to calculate, analyze, or plan something Information that is produced or stored by
SURVEY REPORT DATA SCIENCE SOCIETY 2014
SURVEY REPORT DATA SCIENCE SOCIETY 2014 TABLE OF CONTENTS Contents About the Initiative 1 Report Summary 2 Participants Info 3 Participants Expertise 6 Suggested Discussion Topics 7 Selected Responses
INTRODUCTION TO MACHINE LEARNING 3RD EDITION
ETHEM ALPAYDIN The MIT Press, 2014 Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION [email protected] http://www.cmpe.boun.edu.tr/~ethem/i2ml3e CHAPTER 1: INTRODUCTION Big Data 3 Widespread
Big Data and Analytics: Challenges and Opportunities
Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif
KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES
HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES Translating data into business value requires the right data mining and modeling techniques which uncover important patterns within
Defending Networks with Incomplete Information: A Machine Learning Approach. Alexandre Pinto [email protected] @alexcpsec @MLSecProject
Defending Networks with Incomplete Information: A Machine Learning Approach Alexandre Pinto [email protected] @alexcpsec @MLSecProject Agenda Security Monitoring: We are doing it wrong Machine Learning
Predictive Data modeling for health care: Comparative performance study of different prediction models
Predictive Data modeling for health care: Comparative performance study of different prediction models Shivanand Hiremath [email protected] National Institute of Industrial Engineering (NITIE) Vihar
MACHINE LEARNING IN HIGH ENERGY PHYSICS
MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!
Introduction to Pattern Recognition
Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)
Attribution. Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley)
Machine Learning 1 Attribution Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley) 2 Outline Inductive learning Decision
Statistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before
Big Data at Spotify. Anders Arpteg, Ph D Analytics Machine Learning, Spotify
Big Data at Spotify Anders Arpteg, Ph D Analytics Machine Learning, Spotify Quickly about me Quickly about Spotify What is all the data used for? Quickly about Spark Hadoop MR vs Spark Need for (distributed)
Role of Social Networking in Marketing using Data Mining
Role of Social Networking in Marketing using Data Mining Mrs. Saroj Junghare Astt. Professor, Department of Computer Science and Application St. Aloysius College, Jabalpur, Madhya Pradesh, India Abstract:
COMP 598 Applied Machine Learning Lecture 21: Parallelization methods for large-scale machine learning! Big Data by the numbers
COMP 598 Applied Machine Learning Lecture 21: Parallelization methods for large-scale machine learning! Instructor: ([email protected]) TAs: Pierre-Luc Bacon ([email protected]) Ryan Lowe ([email protected])
Cymon.io. Open Threat Intelligence. 29 October 2015 Copyright 2015 esentire, Inc. 1
Cymon.io Open Threat Intelligence 29 October 2015 Copyright 2015 esentire, Inc. 1 #> whoami» Roy Firestein» Senior Consultant» Doing Research & Development» Other work include:» docping.me» threatlab.io
CS 207 - Data Science and Visualization Spring 2016
CS 207 - Data Science and Visualization Spring 2016 Professor: Sorelle Friedler [email protected] An introduction to techniques for the automated and human-assisted analysis of data sets. These
Building an Iris Plant Data Classifier Using Neural Network Associative Classification
Building an Iris Plant Data Classifier Using Neural Network Associative Classification Ms.Prachitee Shekhawat 1, Prof. Sheetal S. Dhande 2 1,2 Sipna s College of Engineering and Technology, Amravati, Maharashtra,
The Delicate Art of Flower Classification
The Delicate Art of Flower Classification Paul Vicol Simon Fraser University University Burnaby, BC [email protected] Note: The following is my contribution to a group project for a graduate machine learning
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification
Big Data: Image & Video Analytics
Big Data: Image & Video Analytics How it could support Archiving & Indexing & Searching Dieter Haas, IBM Deutschland GmbH The Big Data Wave 60% of internet traffic is multimedia content (images and videos)
Maschinelles Lernen mit MATLAB
Maschinelles Lernen mit MATLAB Jérémy Huard Applikationsingenieur The MathWorks GmbH 2015 The MathWorks, Inc. 1 Machine Learning is Everywhere Image Recognition Speech Recognition Stock Prediction Medical
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
Data Mining Analytics for Business Intelligence and Decision Support
Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing
DATA SCIENCE CURRICULUM WEEK 1 ONLINE PRE-WORK INSTALLING PACKAGES COMMAND LINE CODE EDITOR PYTHON STATISTICS PROJECT O5 PROJECT O3 PROJECT O2
DATA SCIENCE CURRICULUM Before class even begins, students start an at-home pre-work phase. When they convene in class, students spend the first eight weeks doing iterative, project-centered skill acquisition.
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
Predictive Modeling Techniques in Insurance
Predictive Modeling Techniques in Insurance Tuesday May 5, 2015 JF. Breton Application Engineer 2014 The MathWorks, Inc. 1 Opening Presenter: JF. Breton: 13 years of experience in predictive analytics
COMP9321 Web Application Engineering
COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411
Why is Internal Audit so Hard?
Why is Internal Audit so Hard? 2 2014 Why is Internal Audit so Hard? 3 2014 Why is Internal Audit so Hard? Waste Abuse Fraud 4 2014 Waves of Change 1 st Wave Personal Computers Electronic Spreadsheets
Machine Learning over Big Data
Machine Learning over Big Presented by Fuhao Zou [email protected] Jue 16, 2014 Huazhong University of Science and Technology Contents 1 2 3 4 Role of Machine learning Challenge of Big Analysis Distributed
Machine Learning and Statistics: What s the Connection?
Machine Learning and Statistics: What s the Connection? Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh, UK August 2006 Outline The roots of machine learning
Machine Learning in Python with scikit-learn. O Reilly Webcast Aug. 2014
Machine Learning in Python with scikit-learn O Reilly Webcast Aug. 2014 Outline Machine Learning refresher scikit-learn How the project is structured Some improvements released in 0.15 Ongoing work for
Machine Learning CS 6830. Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science [email protected]
Machine Learning CS 6830 Razvan C. Bunescu School of Electrical Engineering and Computer Science [email protected] What is Learning? Merriam-Webster: learn = to acquire knowledge, understanding, or skill
Learning outcomes. Knowledge and understanding. Competence and skills
Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges
Data Mining Applications in Higher Education
Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2
A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML
www.bsc.es A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML Josep Ll. Berral, Nicolas Poggi, David Carrera Workshop on Big Data Benchmarks Toronto, Canada 2015 1 Context ALOJA: framework
Data Mining in CRM & Direct Marketing. Jun Du The University of Western Ontario [email protected]
Data Mining in CRM & Direct Marketing Jun Du The University of Western Ontario [email protected] Outline Why CRM & Marketing Goals in CRM & Marketing Models and Methodologies Case Study: Response Model Case
HT2015: SC4 Statistical Data Mining and Machine Learning
HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric
Data Mining + Business Intelligence. Integration, Design and Implementation
Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Data Mining Practical Machine Learning Tools and Techniques
Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea
Obtaining Value from Big Data
Obtaining Value from Big Data Course Notes in Transparency Format technology basics for data scientists Spring - 2014 Jordi Torres, UPC - BSC www.jorditorres.eu @JordiTorresBCN Data deluge, is it enough?
MACHINE LEARNING BRETT WUJEK, SAS INSTITUTE INC.
MACHINE LEARNING BRETT WUJEK, SAS INSTITUTE INC. AGENDA MACHINE LEARNING Background Use cases in healthcare, insurance, retail and banking Eamples: Unsupervised Learning Principle Component Analysis Supervised
Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012
Clustering Big Data Anil K. Jain (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Outline Big Data How to extract information? Data clustering
Presentation by: Ahmad Alsahaf. Research collaborator at the Hydroinformatics lab - Politecnico di Milano MSc in Automation and Control Engineering
Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen 9-October 2015 Presentation by: Ahmad Alsahaf Research collaborator at the Hydroinformatics lab - Politecnico di
Using Data Mining for Mobile Communication Clustering and Characterization
Using Data Mining for Mobile Communication Clustering and Characterization A. Bascacov *, C. Cernazanu ** and M. Marcu ** * Lasting Software, Timisoara, Romania ** Politehnica University of Timisoara/Computer
Supervised Feature Selection & Unsupervised Dimensionality Reduction
Supervised Feature Selection & Unsupervised Dimensionality Reduction Feature Subset Selection Supervised: class labels are given Select a subset of the problem features Why? Redundant features much or
Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining
Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? A preliminary exploration of the data to better understand its characteristics.
TIETS34 Seminar: Data Mining on Biometric identification
TIETS34 Seminar: Data Mining on Biometric identification Youming Zhang Computer Science, School of Information Sciences, 33014 University of Tampere, Finland [email protected] Course Description Content
10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html
10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html
COM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3
COMP 5318 Data Exploration and Analysis Chapter 3 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING)
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Preliminaries Classification and Clustering Applications
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network Anthony Lai (aslai), MK Li (lilemon), Foon Wang Pong (ppong) Abstract Algorithmic trading, high frequency trading (HFT)
Data Mining Tools. Jean- Gabriel Ganascia LIP6 University Pierre et Marie Curie 4, place Jussieu, 75252 Paris, Cedex 05 Jean- Gabriel.Ganascia@lip6.
Data Mining Tools Jean- Gabriel Ganascia LIP6 University Pierre et Marie Curie 4, place Jussieu, 75252 Paris, Cedex 05 Jean- [email protected] DATA BASES Data mining Extraction Data mining Interpretation/
Sense Making in an IOT World: Sensor Data Analysis with Deep Learning
Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information
