Primality - Factorization
|
|
|
- Gary West
- 10 years ago
- Views:
Transcription
1 Primality - Factorization Christophe Ritzenthaler November 9, Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors. Example 1. There are infinitely many prime numbers. The biggest generic one is ((((((((( ) ) 3 + 6) ) ) ) ) ) ) Interested readers may read http: // www. cs. uwaterloo. ca/ journals/ JIS/ VOL8/ Caldwell/ caldwell78. html for the origin of this number. It has 20,562 decimal digits and the proof was built using fastecpp on several networks of workstations. We will write P the set of prime numbers. To estimate the efficiency of some algorithms, we need results on density of primes. Theorem 1.1. Let π(x) = #{p x prime}. One has π(x) x log x. Let n 2 be an integer and c an integer prime to n. Let π n,c (x) = #{p x prime, p = kn + c}. One has π n,c (x) 1 x φ(n) log x. To find a prime number, the number of attempts is then of the size of x. Indeed, the probability to fail in k attempts is (1 1/ log(x)) k so the probability to succeed which is closed to 1 for any k = log(x) 1+ɛ. 1 (1 1/ log(x)) k k/ log(x) 1 e Remark 1. For x 17, one has π(x) > x/ log x and for x > 1 one has π(x) < (x/ log x). Let us finish with the fundamental result. 1
2 Theorem 1.2. Every integer a > 1 can be written as the product of prime numbers a = p P p e(p) with e(p) 0 and e(p) = 0 except for finitely many primes p. Up to permutation, the factors in this product are uniquely determined. 2 Prime numbers To produce big prime numbers is very important for cryptographic applications. For a given n, there is no generic algorithm which can compute a random prime number less than n. However a result by Hadamard and de la Vallée Poussin shows that #{p n prime} n log n (see 1). So the usual method is to pick random numbers and to test if they are prime or not. This requests that we have fast algorithms to test primality. 2.1 Primality test Trial division The simplest algorithm is based on the following result. Proposition 2.1. n is a composite number if and only if it has a prime divisor p such that p n. Proof. Since n is composite, n = ab and either a or b is smaller than n. This proposition suggests that one can try all prime numbers less or equal to n using Eratosthenes sieve. Following the estimate density of prime (see 1), it means that we make up to n/ log n divisions, leading to an exponential algorithm in O(e ( 1 2 ɛ) log n ) Fermat test and Carmichael numbers By Fermat little theorem, one knows that if n is a prime number then a n 1 1 (mod n) for all a Z coprime with n. If the theorem was an equivalence, we would have an easy polynomial algorithm to test if a number is a prime. Unfortunately Example 2. Consider n = 341 = One has (mod 341). Such a number is called pseudo-prime (pseudo-premier) in base 2. We can prove that there are infinitely many pseudo-primes in base 2 by showing that if n is such a number then 2 n 1 also. Indeed because n is a pseudo-prime in base 2 one has n 2 n 1 1, i.e. there is c such that nc = 2 n 1 1. Now The last expression is divisible by 2 n 1 so 2 2n = 2 2(2n 1 1) 1 = 2 2nc n (mod 2 n 1). 2
3 To finish the proof, one has to show that 2 n 1 is not a prime. Since n = ab, 2 n 1 is divisible by 2 a 1. An idea is then to change the value of a : for instance (mod 341). Unfortunately, there are numbers that are pseudo-prime in any base. Such numbers are called Carmichael numbers (for instance 561 = ). It has been shown by Alford, Granville and Pomerance in 1994 that there are infinitely many Carmichael numbers so Fermat test cannot be completely sure. Let us show some properties of these numbers. Proposition 2.2. An (odd) composite number n 3 is a Carmichael number if and only if it is square free and for each prime divisor p of n, p 1 divides n 1. Proof. First it is easy to see that a Carmichael number is odd : indeed ( 1) n 1 1 (mod n) if and only if n is odd. Let a be a Carmichael number, for any a prime to n one has a n 1 1 (mod n). Let p be a prime divisor of n. There exists a primitive element modulo p that is prime to n. Indeed, let a a primitive element modulo p and n = p r m with m coprime to p. There exists an element (still denoted a) in Z/p r Z lifting the initial a (because the morphism Z/p r Z Z/pZ est surjectif). We find s Z/mZ coprime to m and since Z/nZ Z/p r Z Z/mZ we construct the element a Z/nZ image of (a, s). Such an element satisfies the properties for a. Now, one has of course a n 1 1 (mod p) but as a is primitive p 1 divides n 1. Now suppose that n = p 2 m and write a = 1 + pm. One has a p 1 + p 2 m (mod n) So the order of a is p. But p does not divide n 1 (p n) so we get a contradiction. Conversely, let n be a square-free integer such that p 1 divides n 1 for all prime divisors p of n. Let a be prime to n one has and because n 1 is a multiple of p 1, a p 1 1 (mod p) a n 1 1 (mod p). Using the Chinese Remainder theorem for all the factors p, one gets a n 1 1 (mod n). Corollary 2.1. Any Carmichael number is the product of at least 3 distinct odd primes. 3
4 Proof. Because a Carmichael number is without square factor and is not prime it has at least two prime factors. Let us assume that n = pq with p < q. Then q 1 divides pq 1 = p(q 1) + p 1 so q 1 divides p 1. Absurd. Example 3. Show that if 6m + 1, 12m + 1 and 18m + 1 are primes then n = (6m + 1)(12m+1)(18m+1) is a Carmichael number. First by the Chinese Remainder theorem, one can see that if n = ab with a, b coprime then for any x prime to n one has x lcm(φ(a),φ(b)) 1 (mod n). Now lcm(φ(6m + 1), φ(12m + 1), φ(18m + 1)) = 36m and also 36m n 1. One can check that 1729 is such a number Lucas test Let n > 1 be an integer. We will show that if there exists an a such that a n 1 1 (mod n) and a q 1 (mod n) for all q n 1, q n 1, then n is prime. This is a very good test for Fermat numbers F m, i.e. numbers of the form n = 2 2m + 1 (For m = only the first five are prime. F 33 is so big that it may be many years before we can decide its nature). But obviously this test is not good for a generic prime since we must know the factorization of n 1. Let assume that such an a exists and let d be the order of a in (Z/nZ). Since a n 1 1 (mod n), d (n 1). More exactly as no proper divisor of n 1 is the order of a, one has d = n 1. Now n 1 = d φ(n). This is possible only if n is prime Rabin-Miller test Contrary to the Fermat test, the Miller-Rabin test can prove the compositeness of any composite number (i.e. there is no analog of Carmichael numbers for this test). But Rabin-Miller test is a Monte-Carlo algorithm : it always stops ; if it answers yes, the number is composite and if it answers no then the answer is correct with a probability greater than 3/4. Let n be an odd positive integer and s = max{r N, 2 r n 1}. Let d = (n 1)/2 s. Lemma 2.1 (Miller). If n is a prime and if a is an integer prime to n then we have either a d 1 (mod n) or there exists r {0,..., s 1} such that a 2rd 1 (mod n). Proof. The order of a is a divisor of n 1. It can be d and then a d 1 (mod n). If it is not then its order is 2 r d for r {1,..., s}. So a 2rd 1 (mod n) and a 2r 1d is a non-trivial square root of 1 so a 2r 1d 1 (mod n). If we find an a which is prime to n and that satisfies neither of the conditions, then n is composite. Such an integer a is called a witness (témoin) for the compositeness of n. Example 4. Let n = 561. a = 2 is a witness for n. Indeed here s = 4, d = 35 and (mod 561), (mod 561), (mod 561), (mod 561). 4
5 For the efficiency of the Rabin-Miller test, it is important that there are sufficiently many witnesses for the compositeness of a composite number. Theorem 2.1 (Rabin). If n 3 is an odd composite number, then the set {1,..., n 1} contains at most (n 1)/4 numbers that are prime to n and not witnesses for the compositeness of n. Proof. Let k be the maximum value of r for which there is an integer a prime to n that satisfies the second identity. We set m = 2 k d. Let n = p pe(p) be the prime factorization of n. Let J = {a : gcd(a, n) = 1, a n 1 1 (mod n)} K = {a : gcd(a, n) = 1, a m ±1 (mod p e(p) ) for all p n} L = {a : gcd(a, n) = 1, a m ±1 (mod n)} M = {a : gcd(a, n) = 1, a m 1 (mod n)}. We have M L K J (Z/nZ). For each a which is not a witness for the compositeness of n, the residue class a belongs to L. We will prove that the index of L in (Z/nZ) is at least four. The index of M in K is a power of 2. Indeed one can write M K M x x x 2. Let denote I the image of the morphism s : x x 2 from the multiplicative group K. s has kernel a group of order 2 j for some j so #I = #K/2 j. Now since #I divides #M we can write #M = #I a and [K : M] = 2 j /t and is a power of 2. Let s say 2 j. If j 2 then we are finished. If j = 1 (i.e. [L : K] = 2) then n has two prime divisors. It follows from Cor. 2.1 that n is not a Carmichael number. This implies that J is a proper subgroup of (Z/nZ) and the index of J in (Z/nZ) is at least 2. Therefore the index of L in (Z/nZ) is at least 4. Finally, let j = 0. Then n is a prime power, say n = p e with e > 1. But φ : (Z/nZ) Z/(p 1)Z Z/p e 1 Z is an isomorphism. As n 1 is prime to p a n 1 1 (mod n) if and only if φ(a) = (µ, 0). So [(Z/nZ) : J] = #Z/p e 1 Z = p e 1. This is bigger than 4 except for n = 9 which can be checked by hand. To apply the Rabin-Miller test, we choose a random number a {2,..., n 1}. If gcd(a, n) > 1 then n is composite. Otherwise we compute a d, a 2d,..., a 2s 1d. If we find a witness for the compositeness of n, then we have proved that n is composite. By Th. 2.1, the probability that n is composite and that a is not a witness is less than 1/4. So if we repeat the test t times we can make this probability less than (1/4) t. For t = 10 this probability is less than Remark 2. Under the Generalized Riemann hypothesis (which is conjectural but believed true), it can be proved that there is always a witness for the compositeness of n with 5
6 a O((log n) 2 ). If we want a absolute test, Adleman, Pomerance, Rumely, Cohen and Lenstra have given an algorithm (APRCL) which is slower but still feasible on numbers of 1000 digits (it runs in O( n C log log n 2 2 )). In 2002, M. Agrawal, N. Kayal and N. Saxena have found a deterministic polynomial algorithm to solve the problem of primality. 3 Factorization Now given an n that is known to be composite, how can we find its decomposition in prime factors? We are going to present algorithms to obtain a non-trivial factor. By repeating inductively the algorithm, we can then factorize the number. 3.1 Trial division To find small prime factors of n, a precomputed table of all prime numbers below a fixed bound B is computed. This can be done using the sieve of Eratosthenes. A typical bound is B = Example 5. We want to factor n = Trial division with primes less than 50 yields the factors 2 2, 7 2, 43. If we divide n by those factors, we obtain m = Since 2 m (mod m), this number is still composite. 3.2 Pollard p 1 method This algorithm is efficient when n has a prime factor p such that p 1 has only small prime divisors. Indeed, by Fermat s little theorem, one has a k 1 (mod p) for all multiple k of p 1. If p 1 has only small prime divisors, one can try k = q P,q e B q e where B is a given bound. Now if a k 1 is not divisible by n, then gcd(a k 1, n) is a non-trivial factor of n. Example 6. Let n = of the previous example. We set B = 13. Then k = and gcd(2 k 1, n) = 547. So n = which are both prime numbers. 6
7 3.3 Quadratic sieve Idea The quadratic sieve finds integer x, y such that and x 2 y 2 (mod n) x ±y (mod n). Then n is a divisor of x 2 y 2 = (x y)(x + y) but of neither x y or x + y. Hence g = gcd(x y, n) is a proper divisor of n. Example 7. Let n = 7429, x = 227, y = 210. Then x 2 y 2 = n, x y = 17 so 17 n Determination of x and y The idea from the previous section is also used in other factoring algorithms, such as the number field sieve (NFS), but those algorithms have different ways of finding x, y. We describe how x, y are found in the quadratic sieve. Let m = n and f(x) = (X + m) 2 n. We first explain the procedure on an example. Example 8. Let n = Then m = 86. One has This implies f( 3) = = 540 = , f(1) = = 140 = , f(2) = = 315 = (mod 7429), (mod 7429), (mod 7429). If the last two congruences are multiplied then we obtain (87 88) 2 ( ) 2 (mod n). Therefore we can set x (mod n) 227 and y (mod n) 210. In the example we have presented number s for which the value f(s) has only small prime factors. Then we use the congruence (s + m) 2 f(s) (mod n). From those congruences, we select a subset whose products yields squares on the leftand the right-hand sides. The left-hand side of each congruence is a square anyway. Also we know the prime factorization of each right-hand side. The product of a number of right-hand sides is a square if the exponents 1 and all prime factors are even. In the next section, we explain how an appropriate subset of congruences is chosen. 7
8 Table 1: Factor base and sieving # decimal digits of n # factor base in thousand # sieving interval in million Choosing appropriate congruences The selection process is controlled by coefficients λ i {0, 1}. If λ i = 1 the congruence i is chosen; otherwise it is not. The product of the right hand sides of the chosen congruences is ( ) λ1 ( ) λ2 ( ) λ 3 = ( 1) λ1 2 2λ 1+2λ2 3 3λ 1+2λ3 5 λ 1+λ 2 +λ3 7 λ 2+λ 3. We want this number to be a square, so we have to solve the following linear system: λ 1 0 (mod 2) 2λ 1 + 2λ 2 0 (mod 2) 3λ 1 + 2λ 3 0 (mod 2) λ 1 + λ 2 + λ 3 0 (mod 2) λ 2 + λ 3 0 (mod 2). A solution is λ 1 = 0, λ 2 = λ 3 = 1. In general we choose a positive integer B. Then we look for integers s such that f(s) has only prime factors that belong to the factor base F (B) = {p P, p B} { 1}. Such values f(s) are called B-smooth. If we have found as many values for s as the factor base has elements, then we try to solve the corresponding linear system over Z/2Z. Faster algorithms than Gauss algorithm exist in this case Sieving It remains to be shown how the values of s are found for which f(s) is B-smooth. One possibility is to compute the value f(s) for s = 0, ±1, ±2,... and to test by trial division whether f(s) is B-smooth. Unfortunately, those values typically are not B-smooth. This is very inefficient as the factor base is large for large n (see Tab. 1). A more efficient method is to use sieving techniques, which are described as follows. We explain a simplified version that shows the main idea. We fix a sieving interval S = { C, C+1,..., 0, 1,..., C}. We want to find all s S such that f(s) is B-smooth. 8
9 To find out which of the values f(s) is divisible by a prime number p in the factor base, we start from the end. We fix a prime p. The equation f(s) 0 (mod p) has two solutions s i,p which can be computed quickly. Then we try to find values s i,p + kp S. After each step, we divide the corresponding f(s) by p. Prime powers can be treated similarly. Example 9. Let n = 7429, m = 86. The factor base is the set {2, 3, 5, 7} { 1}. As sieve interval, we use the set S = { 3,..., 3}. s (s + m) 2 n Sieve with Sieve with Sieve with Sieve with Remark 3. The optimum size of the factor base is roughly B = ( ) 2/4 e log n log(log n) and the sieving interval is in C = B 3. The heuristic running time is L n (1/2, 1). The fastest current algorithm is NFS which is in L n (1/3, (64/9) 1/3 ). 9
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
Factoring Algorithms
Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
Is n a Prime Number? Manindra Agrawal. March 27, 2006, Delft. IIT Kanpur
Is n a Prime Number? Manindra Agrawal IIT Kanpur March 27, 2006, Delft Manindra Agrawal (IIT Kanpur) Is n a Prime Number? March 27, 2006, Delft 1 / 47 Overview 1 The Problem 2 Two Simple, and Slow, Methods
An Overview of Integer Factoring Algorithms. The Problem
An Overview of Integer Factoring Algorithms Manindra Agrawal IITK / NUS The Problem Given an integer n, find all its prime divisors as efficiently as possible. 1 A Difficult Problem No efficient algorithm
Cryptography and Network Security Chapter 8
Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 8 Introduction to Number Theory The Devil said to Daniel Webster:
Factoring integers, Producing primes and the RSA cryptosystem Harish-Chandra Research Institute
RSA cryptosystem HRI, Allahabad, February, 2005 0 Factoring integers, Producing primes and the RSA cryptosystem Harish-Chandra Research Institute Allahabad (UP), INDIA February, 2005 RSA cryptosystem HRI,
Integer Factorization using the Quadratic Sieve
Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 [email protected] March 16, 2011 Abstract We give
Recent Breakthrough in Primality Testing
Nonlinear Analysis: Modelling and Control, 2004, Vol. 9, No. 2, 171 184 Recent Breakthrough in Primality Testing R. Šleževičienė, J. Steuding, S. Turskienė Department of Computer Science, Faculty of Physics
Factoring. Factoring 1
Factoring Factoring 1 Factoring Security of RSA algorithm depends on (presumed) difficulty of factoring o Given N = pq, find p or q and RSA is broken o Rabin cipher also based on factoring Factoring like
Arithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJ-PRG. R. Barbulescu Sieves 0 / 28
Arithmetic algorithms for cryptology 5 October 2015, Paris Sieves Razvan Barbulescu CNRS and IMJ-PRG R. Barbulescu Sieves 0 / 28 Starting point Notations q prime g a generator of (F q ) X a (secret) integer
FACTORING. n = 2 25 + 1. fall in the arithmetic sequence
FACTORING The claim that factorization is harder than primality testing (or primality certification) is not currently substantiated rigorously. As some sort of backward evidence that factoring is hard,
Notes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
Lecture 13 - Basic Number Theory.
Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted
Primality Testing and Factorization Methods
Primality Testing and Factorization Methods Eli Howey May 27, 2014 Abstract Since the days of Euclid and Eratosthenes, mathematicians have taken a keen interest in finding the nontrivial factors of integers,
Homework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
Computer and Network Security
MIT 6.857 Computer and Networ Security Class Notes 1 File: http://theory.lcs.mit.edu/ rivest/notes/notes.pdf Revision: December 2, 2002 Computer and Networ Security MIT 6.857 Class Notes by Ronald L. Rivest
Applications of Fermat s Little Theorem and Congruences
Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4
Faster deterministic integer factorisation
David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers
Factoring Algorithms
Institutionen för Informationsteknologi Lunds Tekniska Högskola Department of Information Technology Lund University Cryptology - Project 1 Factoring Algorithms The purpose of this project is to understand
2 Primality and Compositeness Tests
Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 33, 1635-1642 On Factoring R. A. Mollin Department of Mathematics and Statistics University of Calgary, Calgary, Alberta, Canada, T2N 1N4 http://www.math.ucalgary.ca/
RSA and Primality Testing
and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
Factorization Methods: Very Quick Overview
Factorization Methods: Very Quick Overview Yuval Filmus October 17, 2012 1 Introduction In this lecture we introduce modern factorization methods. We will assume several facts from analytic number theory.
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013
FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,
MATH 168: FINAL PROJECT Troels Eriksen. 1 Introduction
MATH 168: FINAL PROJECT Troels Eriksen 1 Introduction In the later years cryptosystems using elliptic curves have shown up and are claimed to be just as secure as a system like RSA with much smaller key
How To Factoring
Factoring integers,..., RSA Erbil, Kurdistan 0 Lecture in Number Theory College of Sciences Department of Mathematics University of Salahaddin Debember 1, 2014 Factoring integers, Producing primes and
Discrete Mathematics, Chapter 4: Number Theory and Cryptography
Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility
How To Solve The Prime Factorization Of N With A Polynomials
THE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY. IAN KIMING 1. Forbemærkning. Det kan forekomme idiotisk, at jeg som dansktalende og skrivende i et danskbaseret tidsskrift med en (formentlig) primært dansktalende
Smooth numbers and the quadratic sieve
Algorithmic Number Theory MSRI Publications Volume 44, 2008 Smooth numbers and the quadratic sieve CARL POMERANCE ABSTRACT. This article gives a gentle introduction to factoring large integers via the
Lecture 13: Factoring Integers
CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method
Cryptography and Network Security Number Theory
Cryptography and Network Security Number Theory Xiang-Yang Li Introduction to Number Theory Divisors b a if a=mb for an integer m b a and c b then c a b g and b h then b (mg+nh) for any int. m,n Prime
Today s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and
Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study
PRIMES is in P. Manindra Agrawal Neeraj Kayal Nitin Saxena
PRIMES is in P Manindra Agrawal Neeraj Kayal Nitin Saxena Department of Computer Science & Engineering Indian Institute of Technology Kanpur Kanpur-208016, INDIA Email: {manindra,kayaln,nitinsa}@iitk.ac.in
3. Computational Complexity.
3. Computational Complexity. (A) Introduction. As we will see, most cryptographic systems derive their supposed security from the presumed inability of any adversary to crack certain (number theoretic)
Computational Number Theory
Computational Number Theory C. Pomerance 1 Introduction Historically, computation has been a driving force in the development of mathematics. To help measure the sizes of their fields, the Egyptians invented
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen
CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: [email protected] URL: http://home.imf.au.dk/niels/ Contents
The cyclotomic polynomials
The cyclotomic polynomials Notes by G.J.O. Jameson 1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(s + t) = e(s)e(t) for all s, t. e( 1 ) =
Computing exponents modulo a number: Repeated squaring
Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method
11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
On Generalized Fermat Numbers 3 2n +1
Applied Mathematics & Information Sciences 4(3) (010), 307 313 An International Journal c 010 Dixie W Publishing Corporation, U. S. A. On Generalized Fermat Numbers 3 n +1 Amin Witno Department of Basic
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
The van Hoeij Algorithm for Factoring Polynomials
The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial
GREATEST COMMON DIVISOR
DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
Prime numbers and prime polynomials. Paul Pollack Dartmouth College
Prime numbers and prime polynomials Paul Pollack Dartmouth College May 1, 2008 Analogies everywhere! Analogies in elementary number theory (continued fractions, quadratic reciprocity, Fermat s last theorem)
H/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM
ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
Introduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set
FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
Monogenic Fields and Power Bases Michael Decker 12/07/07
Monogenic Fields and Power Bases Michael Decker 12/07/07 1 Introduction Let K be a number field of degree k and O K its ring of integers Then considering O K as a Z-module, the nicest possible case is
Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Runtime and Implementation of Factoring Algorithms: A Comparison
Runtime and Implementation of Factoring Algorithms: A Comparison Justin Moore CSC290 Cryptology December 20, 2003 Abstract Factoring composite numbers is not an easy task. It is classified as a hard algorithm,
Study of algorithms for factoring integers and computing discrete logarithms
Study of algorithms for factoring integers and computing discrete logarithms First Indo-French Workshop on Cryptography and Related Topics (IFW 2007) June 11 13, 2007 Paris, France Dr. Abhijit Das Department
The Sieve Re-Imagined: Integer Factorization Methods
The Sieve Re-Imagined: Integer Factorization Methods by Jennifer Smith A research paper presented to the University of Waterloo in partial fulfillment of the requirement for the degree of Master of Mathematics
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,
SOLUTIONS FOR PROBLEM SET 2
SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such
Elementary Number Theory
Elementary Number Theory A revision by Jim Hefferon, St Michael s College, 2003-Dec of notes by W. Edwin Clark, University of South Florida, 2002-Dec L A TEX source compiled on January 5, 2004 by Jim Hefferon,
Math 453: Elementary Number Theory Definitions and Theorems
Math 453: Elementary Number Theory Definitions and Theorems (Class Notes, Spring 2011 A.J. Hildebrand) Version 5-4-2011 Contents About these notes 3 1 Divisibility and Factorization 4 1.1 Divisibility.......................................
CS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
Elements of Applied Cryptography Public key encryption
Network Security Elements of Applied Cryptography Public key encryption Public key cryptosystem RSA and the factorization problem RSA in practice Other asymmetric ciphers Asymmetric Encryption Scheme Let
Public Key Cryptography: RSA and Lots of Number Theory
Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver
Lectures on Number Theory. Lars-Åke Lindahl
Lectures on Number Theory Lars-Åke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder
RSA Attacks. By Abdulaziz Alrasheed and Fatima
RSA Attacks By Abdulaziz Alrasheed and Fatima 1 Introduction Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first revealed in the August 1977 issue of Scientific American.
2.1 Complexity Classes
15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look
ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS. Carl Pomerance
ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS Carl Pomerance Given a cyclic group G with generator g, and given an element t in G, the discrete logarithm problem is that of computing an integer l with g l
Determining the Optimal Combination of Trial Division and Fermat s Factorization Method
Determining the Optimal Combination of Trial Division and Fermat s Factorization Method Joseph C. Woodson Home School P. O. Box 55005 Tulsa, OK 74155 Abstract The process of finding the prime factorization
Modern Factoring Algorithms
Modern Factoring Algorithms Kostas Bimpikis and Ragesh Jaiswal University of California, San Diego... both Gauss and lesser mathematicians may be justified in rejoicing that there is one science [number
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Number Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures
Number Theory Hungarian Style Cameron Byerley s interpretation of Csaba Szabó s lectures August 20, 2005 2 0.1 introduction Number theory is a beautiful subject and even cooler when you learn about it
k, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
MATH 289 PROBLEM SET 4: NUMBER THEORY
MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides
Die ganzen zahlen hat Gott gemacht
Die ganzen zahlen hat Gott gemacht Polynomials with integer values B.Sury A quote attributed to the famous mathematician L.Kronecker is Die Ganzen Zahlen hat Gott gemacht, alles andere ist Menschenwerk.
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
Continued Fractions. Darren C. Collins
Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history
SUM OF TWO SQUARES JAHNAVI BHASKAR
SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted
STUDY ON ELLIPTIC AND HYPERELLIPTIC CURVE METHODS FOR INTEGER FACTORIZATION. Takayuki Yato. A Senior Thesis. Submitted to
STUDY ON ELLIPTIC AND HYPERELLIPTIC CURVE METHODS FOR INTEGER FACTORIZATION by Takayuki Yato A Senior Thesis Submitted to Department of Information Science Faculty of Science The University of Tokyo on
Basic Algorithms In Computer Algebra
Basic Algorithms In Computer Algebra Kaiserslautern SS 2011 Prof. Dr. Wolfram Decker 2. Mai 2011 References Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, 1993. Cox, D.; Little,
Carmichael numbers and pseudoprimes
Carmichael numbers and pseudoprimes Notes by G.J.O. Jameson Introduction Recall that Fermat s little theorem says that if p is prime and a is not a multiple of p, then a p 1 1 mod p. This theorem gives
The Quadratic Sieve Factoring Algorithm
The Quadratic Sieve Factoring Algorithm Eric Landquist MATH 488: Cryptographic Algorithms December 14, 2001 1 Introduction Mathematicians have been attempting to find better and faster ways to factor composite
Factoring integers and Producing primes
Factoring integers,..., RSA Erbil, Kurdistan 0 Lecture in Number Theory College of Sciences Department of Mathematics University of Salahaddin Debember 4, 2014 Factoring integers and Producing primes Francesco
An Introductory Course in Elementary Number Theory. Wissam Raji
An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory
Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
Prime Numbers. Difficulties in Factoring a Number: from the Perspective of Computation. Computation Theory. Turing Machine 電 腦 安 全
Prime Numbers Difficulties in Factoring a Number: from the Perspective of Computation 電 腦 安 全 海 洋 大 學 資 訊 工 程 系 丁 培 毅 Prime number: an integer p> that is divisible only by and itself, ex., 3, 5, 7,, 3,
I. Introduction. MPRI Cours 2-12-2. Lecture IV: Integer factorization. What is the factorization of a random number? II. Smoothness testing. F.
F. Morain École polytechnique MPRI cours 2-12-2 2013-2014 3/22 F. Morain École polytechnique MPRI cours 2-12-2 2013-2014 4/22 MPRI Cours 2-12-2 I. Introduction Input: an integer N; logox F. Morain logocnrs
How To Factor In Prime Numbers
USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS Zhenxiang Zhang* Dept. of Math., Anhui Normal University, 241000 Wuhu, Anhui, P.R. China e-mail: [email protected] (Submitted
On the largest prime factor of x 2 1
On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical
calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,
Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true?
RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e -1
Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov [email protected]
Polynomials Alexander Remorov [email protected] Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).
