I. Introduction. MPRI Cours Lecture IV: Integer factorization. What is the factorization of a random number? II. Smoothness testing. F.
|
|
|
- Abigayle Anthony
- 10 years ago
- Views:
Transcription
1 F. Morain École polytechnique MPRI cours /22 F. Morain École polytechnique MPRI cours /22 MPRI Cours I. Introduction Input: an integer N; logox F. Morain logocnrs logoinria Output: N = k i=1 pα i i with p i (proven) prime. Lecture IV: Integer factorization Major impact: estimate the security of RSA cryptosystems. Also: primitive for a lot of number theory problems. I. Introduction. II. Smoothness testing. III. Pollard s RHO method. IV. Pollard s p 1 method. 2013/10/14 How do we test and compare algorithms? Cunningham project, RSA Security (partitions, RSA keys) though abandoned? Decimals of π. F. Morain École polytechnique MPRI cours /22 What is the factorization of a random number? F. Morain École polytechnique MPRI cours /22 II. Smoothness testing N = N 1 N 2 N r with N i prime, N i N i+1. Prop. r log 2 N; r = log log N. Size of the factors: D k = lim N + log N k / log N exists and On average k D k N 1 N 0.62, N 2 N 0.21, N 3 N an integer has one large factor, a medium size one and a bunch of small ones. Def. a B-smooth number has all its prime factors B. B-smooth numbers are the heart of all efficient factorization or discrete logarithm algorithms. De Bruijn s function: ψ(x, y) = #{z x, z is y smooth}. Thm. (Candfield, Erdős, Pomerance) ε > 0, uniformly in y (log x) 1+ε, as x with u = log x/ log y. ψ(x, y) = x u u(1+o(1))
2 B-smooth numbers (cont d) A) Trial division Prop. Let L(x) = exp ( log x log log x ). For all real α > 0, β > 0, as x ψ(x α, L(x) β x α ) = L(x). α 2β +o(1) Ordinary interpretation: a number x α is L(x) β -smooth with probability ψ(x α, L(x) β ) x α = L(x) α 2β +o(1). Algorithm: divide x X by all p B, say {p 1, p 2,..., p m }, m = π(b) = O(B). Cost: m divisions or p B T(x, p) = O(m lg X lg B). Implementation: use any method to compute and store all primes 2 32 (one char per (p i+1 p i )/2; see Brent). Useful generalization: given x 1, x 2,..., x n X, can we find the B-smooth part of the x i s more rapidly than repeating the above in O(nm lg B lg X)? F. Morain École polytechnique MPRI cours /22 B) Product trees Algorithm: Franke/Kleinjung/FM/Wirth improved by Bernstein 1. [Product tree] Compute z = p 1 p m. p 1 p 2 p 3 p 4 p 1 p 2 p 3 p 4 p 1 p 2 p 3 p 4 2. [Remainder tree] Compute z mod x 1,..., z mod x n. z mod (x 1 x 2 x 3 x 4 ) z mod (x 1 x 2 ) z mod (x 3 x 4 ) z mod x 1 z mod x 2 z mod x 3 z mod x 4 3. [explode valuation] For each k {1,..., n}, compute y k = z 2e mod x k with e s.t. 2 2e x k ; print gcd(x k, y k ). F. Morain École polytechnique MPRI cours /22 F. Morain École polytechnique MPRI cours /22 Validity and analysis Validity: let y k = z 2e mod x k. Suppose p x k. Then ν p (x k ) 2 e, since 2 ν p ν 2 2e. Therefore ν p (y k ) 2 e ν and the gcd will contain the right valuation. Division: If A has r + s digits and B has s digits, then plain division requires D(r + s, s) = O(rs) word operations. In case r s, break into r/s divisions of complexity M(s). Step 1: M((m/2) lg B). Step 2: D(m lg B, n lg X) (m/n)m(n) lg B lg X. Ex. B = 2 32, m , X = Rem. If space is an issue, do this by blocks. Rem. For more information see Bernstein s web page. F. Morain École polytechnique MPRI cours /22
3 F. Morain École polytechnique MPRI cours /22 F. Morain École polytechnique MPRI cours /22 III. Pollard s RHO method Epact Prop. Let f : E E, #E = m; X n+1 = f (X n ) with X 0 E. X 0 X 1 X 2 X µ 1 X µ X µ+1 X µ+λ 1 Thm. (Flajolet, Odlyzko, 1990) When m πm λ µ m. Prop. There exists a unique e > 0 (epact) s.t. µ e < λ + µ and X 2e = X e. It is the smallest non-zero multiple of λ that is µ: if µ = 0, e = λ and if µ > 0, e = µ λ λ. Floyd s algorithm: X <- X0; Y <- X0; e <- 0; repeat X <- f(x); Y <- f(f(y)); e <- e+1; until X = Y; Thm. e π 5 m m. F. Morain École polytechnique MPRI cours /22 Application to the factorization of N F. Morain École polytechnique MPRI cours /22 Practice Idea: suppose p N and we have a random f mod N s.t. f mod p is random. function f(x, N) return (x 2 + 1) mod N; end. function rho(n) 1. [initialization] x:=1; y:=1; g:=1; 2. [loop] while (g = 1) do x:=f(x, N); y:=f(f(y, N), N); g:=gcd(x-y, N); endwhile; 3. return g; Choosing f : some choices are bad, as x x 2 et x x 2 2. Tables exist for given f s. Trick: compute gcd( i (x 2i x i ), N), using backtrack whenever needed. Improvements: reducing the number of evaluations of f, the number of comparisons (see Brent, Montgomery). Conjecture. RHO finds p N using O( p) iterations.
4 F. Morain École polytechnique MPRI cours /22 F. Morain École polytechnique MPRI cours /22 Theoretical results (1/4) Bach (2/4) Thm. (Bach, 1991) Proba RHO with f (x) = x finding p N after k iterations is at least ( k 2) when p goes to infinity. Sketch of the proof: define p + O(p 3/2 ) f 0 (X, Y) = X, f i+1 (X, Y) = f 2 i + Y, f 1 (X, Y) = X 2 + Y, f 2 (X, Y) = (X 2 + Y 2 ) + Y,... Divisor of N found by inspecting gcd(f 2i+1 (x, y) f i (x, y), N) for i = 0, 1, 2,.... Prop. (a) deg X (f i ) = 2 i ; (b) f i X 2i mod Y; (c) f i Y 2i Y mod X; (d) f i+j (X, Y) = f i (f j (X, Y), Y). (e) f i is absolutely irreducible (Eisentein s criterion). (f) f j f i = fj 1 2 f i 1 2 = (f j 1 + f i 1 )(f j 2 + f i 2 ) (f j i + X)(f j i X). (g) For all k 1 f l+n ± f l f l+kn ± f l. F. Morain École polytechnique MPRI cours /22 Bach (3/4) For i < j, ρ i,j is the unique poly in Z[X, Y] s.t. (a) ρ i,j is a monic (in Y) irreducible divisor of f j f i. (b) Let ω i,j denote a primitive (2 j 2 i ) root of unity. Then ρ i,j (ω i,j, 0) = 0. Proof: and and for i 1: f j f i X 2i (X 2j 2 i 1) mod Y, X 2j 2 i 1 = µ 2 j 2 i Φ µ (X). f j f 0 ρ 0,j d j,d j ρ 0,d f j 1 + f i 1 ρ i,j d j i,d j i ρ. i,i+d Conj. we have in fact equalities instead of divisibility., F. Morain École polytechnique MPRI cours /22 Bach (4/4) Thm1. f k f l factor over Z[X, Y]. Moreover, they are squarefree. Proof uses projectivization of f. Weil s thm: if f Z[X, Y] is absolutely irreducible of degree d, then N p the number of projective zeroes of f is s.t. ( ) d 1 p. N p (p + 1) 2 2 Thm2. Fix k 1. Choose x and y at random s.t. 0 x, y < p. Then, proba for some i, j < k, i j, f i (x, y) = f j (x, y) mod p is at least ( k ) 2 /p + O(1/p 3/2 ) as p tends to infinity. Proof: same as i < j < k and ρ i,j (x, y) 0 mod p. Use inclusion-exclusion, Weil s inequality and Bézout s theorems. Same result for RHO to find p N.
5 F. Morain École polytechnique MPRI cours /22 F. Morain École polytechnique MPRI cours /22 IV. Pollard s p 1 method First phase Idea: assume p N and a is prime to p. Then Invented by Pollard in Williams: p + 1. Bach and Shallit: Φ k factoring methods. Shanks, Schnorr, Lenstra, etc.: quadratic forms. Lenstra (1985): ECM. Rem. Almost all the ideas invented for the classical p 1 can be transposed to the other methods. (p a p 1 1 and p N) p gcd(a p 1 1, N). Generalization: if R is known s.t. p 1 R, will yield a factor. gcd((a R mod N) 1, N) How do we find R? Only reasonable hope is that p 1 B! for some (small) B. In other words, p 1 is B-smooth. Algorithm: R = p α B 1 p α = lcm(2,..., B 1 ). Rem. (usual trick) we compute gcd( k ((ar k 1) mod N), N). F. Morain École polytechnique MPRI cours /22 Second phase: the classical one F. Morain École polytechnique MPRI cours /22 Second phase: BSGS Let b = a R mod N and gcd(b, N) = 1. Hyp. p 1 = Qs with Q R and s prime, B 1 < s B 2. Test: is gcd(b s 1, N) > 1 for some s. s j = j-th prime. In practice all s j+1 s j are small (Cramer s conjecture implies s j+1 s j (log B 2 ) 2 ). Precompute c δ b δ mod N for all possible δ (small); Compute next value with one multiplication b s j+1 = b s j c sj+1 s j mod N. Cost: O((log B 2 ) 2 ) + O(log s 1 ) + (π(b 2 ) π(b 1 )) multiplications +(π(b 2 ) π(b 1 )) gcd s. When B 2 B 1, π(b 2 ) dominates. Rem. We need a table of all primes < B 2 ; memory is O(B 2 ). Record. Nohara (66dd of , 2006; see Select w B 2, v 1 = B 1 /w, v 2 = B 2 /w. Write our prime s as s = vw u, with 0 u < w, v 1 v v 2. Lem. gcd(b s 1, N) > 1 iff gcd(b wv b u, N) > 1. Algorithm: 1. Precompute b u mod N for all 0 u < w. 2. Precompute all(b w ) v for all v 1 v v For all u and all v evaluate gcd(b vw b u, N). Number of multiplications: w + (v 2 v 1 ) + O(log 2 w) = O( B 2 ) Memory: O( B 2 ). Number of gcd: π(b 2 ) π(b 1 ).
6 Second phase: using fast polynomial arithmetic Algorithm: 1. Compute h(x) = 0 u<w (X bu ) Z/NZ[X] 2. Evaluate all h((b w ) v ) for all v 1 v v Evaluate all gcd(h(b wv ), N). Analysis: Step 1: O((log w)m pol (w)) operations (using a product tree). Step 2: O((log w)m int (log N)) for b w ; v 2 v 1 for (b w ) v ; multi-point evaluation on w points takes O((log w)m pol (w)). Rem. Evaluating h(x) along a geometric progression of length w takes O(w log w) operations (see Montgomery-Silverman). ( ) Total cost: O((log w)m pol (w)) = O. B 0.5+o(1) 2 Trick: use gcd(u, w) = 1 and w = F. Morain École polytechnique MPRI cours /22 Second phase: using the birthday paradox Consider B = b mod p ; s := #B. If we draw s elements at random in B, then we have a collision (birthday paradox). Algorithm: build (b i ) with b 0 = b, and { b 2 b i+1 = i mod N with proba 1/2 b 2 i b mod N with proba 1/2. We gather r s values and compute where r i=1 j i (b i b j ) = Disc(P(X)) = i P(X) = r (X b i ). i=1 use fast polynomial operations again. P (b i ) F. Morain École polytechnique MPRI cours /22
FACTORING. n = 2 25 + 1. fall in the arithmetic sequence
FACTORING The claim that factorization is harder than primality testing (or primality certification) is not currently substantiated rigorously. As some sort of backward evidence that factoring is hard,
Arithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJ-PRG. R. Barbulescu Sieves 0 / 28
Arithmetic algorithms for cryptology 5 October 2015, Paris Sieves Razvan Barbulescu CNRS and IMJ-PRG R. Barbulescu Sieves 0 / 28 Starting point Notations q prime g a generator of (F q ) X a (secret) integer
Faster deterministic integer factorisation
David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
An Overview of Integer Factoring Algorithms. The Problem
An Overview of Integer Factoring Algorithms Manindra Agrawal IITK / NUS The Problem Given an integer n, find all its prime divisors as efficiently as possible. 1 A Difficult Problem No efficient algorithm
Primality - Factorization
Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
Factorization Methods: Very Quick Overview
Factorization Methods: Very Quick Overview Yuval Filmus October 17, 2012 1 Introduction In this lecture we introduce modern factorization methods. We will assume several facts from analytic number theory.
Factoring. Factoring 1
Factoring Factoring 1 Factoring Security of RSA algorithm depends on (presumed) difficulty of factoring o Given N = pq, find p or q and RSA is broken o Rabin cipher also based on factoring Factoring like
FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY
FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY LINDSEY R. BOSKO I would like to acknowledge the assistance of Dr. Michael Singer. His guidance and feedback were instrumental in completing this
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
Factoring Algorithms
Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors
Primality Testing and Factorization Methods
Primality Testing and Factorization Methods Eli Howey May 27, 2014 Abstract Since the days of Euclid and Eratosthenes, mathematicians have taken a keen interest in finding the nontrivial factors of integers,
Elementary factoring algorithms
Math 5330 Spring 013 Elementary factoring algorithms The RSA cryptosystem is founded on the idea that, in general, factoring is hard. Where as with Fermat s Little Theorem and some related ideas, one can
STUDY ON ELLIPTIC AND HYPERELLIPTIC CURVE METHODS FOR INTEGER FACTORIZATION. Takayuki Yato. A Senior Thesis. Submitted to
STUDY ON ELLIPTIC AND HYPERELLIPTIC CURVE METHODS FOR INTEGER FACTORIZATION by Takayuki Yato A Senior Thesis Submitted to Department of Information Science Faculty of Science The University of Tokyo on
PROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
The Division Algorithm for Polynomials Handout Monday March 5, 2012
The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,
Factorization Algorithms for Polynomials over Finite Fields
Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is
Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov [email protected]
Polynomials Alexander Remorov [email protected] Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).
ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS. Carl Pomerance
ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS Carl Pomerance Given a cyclic group G with generator g, and given an element t in G, the discrete logarithm problem is that of computing an integer l with g l
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
Modern Factoring Algorithms
Modern Factoring Algorithms Kostas Bimpikis and Ragesh Jaiswal University of California, San Diego... both Gauss and lesser mathematicians may be justified in rejoicing that there is one science [number
8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
Integer Factorization using the Quadratic Sieve
Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 [email protected] March 16, 2011 Abstract We give
Is n a Prime Number? Manindra Agrawal. March 27, 2006, Delft. IIT Kanpur
Is n a Prime Number? Manindra Agrawal IIT Kanpur March 27, 2006, Delft Manindra Agrawal (IIT Kanpur) Is n a Prime Number? March 27, 2006, Delft 1 / 47 Overview 1 The Problem 2 Two Simple, and Slow, Methods
Today s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
HYPERELLIPTIC CURVE METHOD FOR FACTORING INTEGERS. 1. Thoery and Algorithm
HYPERELLIPTIC CURVE METHOD FOR FACTORING INTEGERS WENHAN WANG 1. Thoery and Algorithm The idea of the method using hyperelliptic curves to factor integers is similar to the elliptic curve factoring method.
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
Lecture 13: Factoring Integers
CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method
The Mixed Binary Euclid Algorithm
Electronic Notes in Discrete Mathematics 35 (009) 169 176 www.elsevier.com/locate/endm The Mixed Binary Euclid Algorithm Sidi Mohamed Sedjelmaci LIPN CNRS UMR 7030 Université Paris-Nord Av. J.-B. Clément,
Discrete Mathematics, Chapter 4: Number Theory and Cryptography
Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility
Unique Factorization
Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon
MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao [email protected]
Integer Polynomials June 9, 007 Yufei Zhao [email protected] We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
How To Factor In Prime Numbers
USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS Zhenxiang Zhang* Dept. of Math., Anhui Normal University, 241000 Wuhu, Anhui, P.R. China e-mail: [email protected] (Submitted
Introduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
FACTORING SPARSE POLYNOMIALS
FACTORING SPARSE POLYNOMIALS Theorem 1 (Schinzel): Let r be a positive integer, and fix non-zero integers a 0,..., a r. Let F (x 1,..., x r ) = a r x r + + a 1 x 1 + a 0. Then there exist finite sets S
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
Factoring Algorithms
Institutionen för Informationsteknologi Lunds Tekniska Högskola Department of Information Technology Lund University Cryptology - Project 1 Factoring Algorithms The purpose of this project is to understand
Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and
Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study
Smooth numbers and the quadratic sieve
Algorithmic Number Theory MSRI Publications Volume 44, 2008 Smooth numbers and the quadratic sieve CARL POMERANCE ABSTRACT. This article gives a gentle introduction to factoring large integers via the
Factoring Polynomials
Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent
H/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
Lecture 13 - Basic Number Theory.
Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted
Prime Numbers and Irreducible Polynomials
Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.
The van Hoeij Algorithm for Factoring Polynomials
The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
Computer and Network Security
MIT 6.857 Computer and Networ Security Class Notes 1 File: http://theory.lcs.mit.edu/ rivest/notes/notes.pdf Revision: December 2, 2002 Computer and Networ Security MIT 6.857 Class Notes by Ronald L. Rivest
Public-Key Cryptanalysis 1: Introduction and Factoring
Public-Key Cryptanalysis 1: Introduction and Factoring Nadia Heninger University of Pennsylvania July 21, 2013 Adventures in Cryptanalysis Part 1: Introduction and Factoring. What is public-key crypto
On Generalized Fermat Numbers 3 2n +1
Applied Mathematics & Information Sciences 4(3) (010), 307 313 An International Journal c 010 Dixie W Publishing Corporation, U. S. A. On Generalized Fermat Numbers 3 n +1 Amin Witno Department of Basic
7. Some irreducible polynomials
7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of
Runtime and Implementation of Factoring Algorithms: A Comparison
Runtime and Implementation of Factoring Algorithms: A Comparison Justin Moore CSC290 Cryptology December 20, 2003 Abstract Factoring composite numbers is not an easy task. It is classified as a hard algorithm,
CS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering
Library (versus Language) Based Parallelism in Factoring: Experiments in MPI. Dr. Michael Alexander Dr. Sonja Sewera.
Library (versus Language) Based Parallelism in Factoring: Experiments in MPI Dr. Michael Alexander Dr. Sonja Sewera Talk 2007-10-19 Slide 1 of 20 Primes Definitions Prime: A whole number n is a prime number
calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,
Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials
FPGA and ASIC Implementation of Rho and P-1 Methods of Factoring. Master s Thesis Presentation Ramakrishna Bachimanchi Director: Dr.
FPGA and ASIC Implementation of Rho and P-1 Methods of Factoring Master s Thesis Presentation Ramakrishna Bachimanchi Director: Dr. Kris Gaj Contents Introduction Background Hardware Architecture FPGA
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
Index Calculation Attacks on RSA Signature and Encryption
Index Calculation Attacks on RSA Signature and Encryption Jean-Sébastien Coron 1, Yvo Desmedt 2, David Naccache 1, Andrew Odlyzko 3, and Julien P. Stern 4 1 Gemplus Card International {jean-sebastien.coron,david.naccache}@gemplus.com
Cryptography and Network Security Number Theory
Cryptography and Network Security Number Theory Xiang-Yang Li Introduction to Number Theory Divisors b a if a=mb for an integer m b a and c b then c a b g and b h then b (mg+nh) for any int. m,n Prime
The finite field with 2 elements The simplest finite field is
The finite field with 2 elements The simplest finite field is GF (2) = F 2 = {0, 1} = Z/2 It has addition and multiplication + and defined to be 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 0 0 = 0 0 1 = 0
Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II
Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Last week: How to find one solution to a linear Diophantine equation This week: How to find all solutions to a linear Diophantine
Chapter Objectives. Chapter 9. Sequential Search. Search Algorithms. Search Algorithms. Binary Search
Chapter Objectives Chapter 9 Search Algorithms Data Structures Using C++ 1 Learn the various search algorithms Explore how to implement the sequential and binary search algorithms Discover how the sequential
Integer Factorization
Integer Factorization Lecture given at the Joh. Gutenberg-Universität, Mainz, July 23, 1992 by ÖYSTEIN J. RÖDSETH University of Bergen, Department of Mathematics, Allégt. 55, N-5007 Bergen, Norway 1 Introduction
3. Computational Complexity.
3. Computational Complexity. (A) Introduction. As we will see, most cryptographic systems derive their supposed security from the presumed inability of any adversary to crack certain (number theoretic)
Section 4.2: The Division Algorithm and Greatest Common Divisors
Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948
Lecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
The Quadratic Sieve Factoring Algorithm
The Quadratic Sieve Factoring Algorithm Eric Landquist MATH 488: Cryptographic Algorithms December 14, 2001 1 Introduction Mathematicians have been attempting to find better and faster ways to factor composite
r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn.
Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in
Optimization of the MPQS-factoring algorithm on the Cyber 205 and the NEC SX-2
Optimization of the MPQS-factoring algorithm on the Cyber 205 and the NEC SX-2 Walter Lioen, Herman te Riele, Dik Winter CWI P.O. Box 94079, 1090 GB Amsterdam, The Netherlands ABSTRACT This paper describes
Die ganzen zahlen hat Gott gemacht
Die ganzen zahlen hat Gott gemacht Polynomials with integer values B.Sury A quote attributed to the famous mathematician L.Kronecker is Die Ganzen Zahlen hat Gott gemacht, alles andere ist Menschenwerk.
Efficient and Robust Secure Aggregation of Encrypted Data in Wireless Sensor Networks
Efficient and Robust Secure Aggregation of Encrypted Data in Wireless Sensor Networks J. M. BAHI, C. GUYEUX, and A. MAKHOUL Computer Science Laboratory LIFC University of Franche-Comté Journée thématique
MATH 168: FINAL PROJECT Troels Eriksen. 1 Introduction
MATH 168: FINAL PROJECT Troels Eriksen 1 Introduction In the later years cryptosystems using elliptic curves have shown up and are claimed to be just as secure as a system like RSA with much smaller key
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
The Sieve Re-Imagined: Integer Factorization Methods
The Sieve Re-Imagined: Integer Factorization Methods by Jennifer Smith A research paper presented to the University of Waterloo in partial fulfillment of the requirement for the degree of Master of Mathematics
Quantum Algorithms in NMR Experiments. 25 th May 2012 Ling LIN & Michael Loretz
Quantum Algorithms in NMR Experiments 25 th May 2012 Ling LIN & Michael Loretz Contents 1. Introduction 2. Shor s algorithm 3. NMR quantum computer Nuclear spin qubits in a molecule NMR principles 4. Implementing
Two Integer Factorization Methods
Two Integer Factorization Methods Christopher Koch April 22, 2014 Abstract Integer factorization methods are algorithms that find the prime divisors of any positive integer. Besides studying trial division
The cyclotomic polynomials
The cyclotomic polynomials Notes by G.J.O. Jameson 1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(s + t) = e(s)e(t) for all s, t. e( 1 ) =
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of
March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
Elements of Applied Cryptography Public key encryption
Network Security Elements of Applied Cryptography Public key encryption Public key cryptosystem RSA and the factorization problem RSA in practice Other asymmetric ciphers Asymmetric Encryption Scheme Let
Study of algorithms for factoring integers and computing discrete logarithms
Study of algorithms for factoring integers and computing discrete logarithms First Indo-French Workshop on Cryptography and Related Topics (IFW 2007) June 11 13, 2007 Paris, France Dr. Abhijit Das Department
Computational Number Theory
Computational Number Theory C. Pomerance 1 Introduction Historically, computation has been a driving force in the development of mathematics. To help measure the sizes of their fields, the Egyptians invented
A Comparison Of Integer Factoring Algorithms. Keyur Anilkumar Kanabar
A Comparison Of Integer Factoring Algorithms Keyur Anilkumar Kanabar Batchelor of Science in Computer Science with Honours The University of Bath May 2007 This dissertation may be made available for consultation
Factoring and Discrete Logarithms in Subexponential Time
Chapter 15 Factoring and Discrete Logarithms in Subexponential Time This is a chapter from version 1.1 of the book Mathematics of Public Key Cryptography by Steven Galbraith, available from http://www.isg.rhul.ac.uk/
Equivalence of Polynomial Identity Testing and Deterministic Multivariate Polynomial Factorization
Equivalence of Polynomial Identity Testing and Deterministic Multivariate Polynomial Factorization Swastik Kopparty Shubhangi Saraf Amir Shpilka Abstract In this paper we show that the problem of deterministically
On the number-theoretic functions ν(n) and Ω(n)
ACTA ARITHMETICA LXXVIII.1 (1996) On the number-theoretic functions ν(n) and Ω(n) by Jiahai Kan (Nanjing) 1. Introduction. Let d(n) denote the divisor function, ν(n) the number of distinct prime factors,
Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10
with Embedding Degree 10 University of California, Berkeley, USA ANTS-VII, 2006 Outline 1 Introduction 2 The CM Method: The Basic Construction The CM Method: Generating Families of Curves 3 Outline 1 Introduction
2 Primality and Compositeness Tests
Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 33, 1635-1642 On Factoring R. A. Mollin Department of Mathematics and Statistics University of Calgary, Calgary, Alberta, Canada, T2N 1N4 http://www.math.ucalgary.ca/
RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true?
RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e -1
9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.
9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role
How To Solve The Prime Factorization Of N With A Polynomials
THE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY. IAN KIMING 1. Forbemærkning. Det kan forekomme idiotisk, at jeg som dansktalende og skrivende i et danskbaseret tidsskrift med en (formentlig) primært dansktalende
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,
1 Digital Signatures. 1.1 The RSA Function: The eth Power Map on Z n. Crypto: Primitives and Protocols Lecture 6.
1 Digital Signatures A digital signature is a fundamental cryptographic primitive, technologically equivalent to a handwritten signature. In many applications, digital signatures are used as building blocks
A simple and fast algorithm for computing exponentials of power series
A simple and fast algorithm for computing exponentials of power series Alin Bostan Algorithms Project, INRIA Paris-Rocquencourt 7815 Le Chesnay Cedex France and Éric Schost ORCCA and Computer Science Department,
