M LTO Multilingual On-Line Translation
|
|
|
- Paul Miles
- 10 years ago
- Views:
Transcription
1 O non multa, sed multum M LTO Multilingual On-Line Translation MOLTO Consortium FP
2 Project summary MOLTO s goal is to develop a set of tools for translating texts between multiple languages in real time with high quality. Languages are separate modules in the tool and can be varied; prototypes covering a majority of the EU s 23 official languages will be built.
3 Consortium
4 How much? Dissemination 10%! Total: 3,000,000 EUR, EC contribution 2,375,000 EUR Management 4%! 90% for work (390 person months)! 1 March February 2013 RTD 86%
5 What s new target user input coverage Google/Babelfish consumer unpredictable unlimited MOLTO producer predictable limited quality browsing publishing
6 Translation directions Statistical methods work best to English " rigid word order " simple morphology Grammar-based methods work equally well for different languages " German word order " Finnish cases
7 MOLTO domains! Mathematical exercises (WebALT)! Biomedical and pharmaceutical patents! Museum object descriptions
8 More potential uses! Wikipedia articles! E-commerce sites! Medical treatment recommendations! Tourist phrasebooks! Social media! SMS
9 MOLTO technologies GF grammaticalframework.org Statistical Machine Translation OWL Ontologies
10 GF - Grammatical Framework Core of MOLTO is a multilingual GF grammar:! meaning-preserving translation by composition of parsing and generation! abstract syntax as interlingua! RGL, GF Resource Grammar Library, for inflectional morphology and syntactic combination functions of 16 languages
11 MOLTO Languages Abstract Syntax
12 Domain-specific interlinguas The abstract syntax must be formally specified, well-understood " semantic model for translation " fixed word senses " proper idioms e.g. a mathematical theory, an ontology
13 Grammar tools Scale up production of domain interpreters 100 s of words GF experts months hand-crafting a grammar 1000 s of words domain experts & translators days translating a set of examples hallenge
14 Mathematics Grammar generalization Abstract syntax Nat : Set Even : Exp -> Prop Odd : Exp -> Prop Gt : Exp -> Exp -> Prop Sum : Exp -> Exp English concrete syntax (by examples) Nat = "number" Even x = "x is even" Odd x = "x is odd" Gt x y = "x is greater than y" Sum x = "the sum of x"... every even number that is greater than 0 is the sum of two odd numbers German concrete syntax (by examples) Nat = "Zahl" Even x = "x ist gerade" Odd x = "x ist ungerade" Gt x y = "x ist größer als y" Sum x = "die Summe von x"... jede gerade Zahl, die größer als 0 ist, ist die Summe von zwei ungeraden Zahlen
15 Translator s tools " text input + prediction " syntax editor for modification " disambiguation " on the fly extension " normal workflows: API for plug-ins in standard tools, web, mobile phones...
16 Authoring: document edits
17 Authoring: document edits Chère Madame X, j ai l honneur de vous informer que vous avez été promue chargée de projet. Avec mes salutations distinguées, le président.
18 Authoring: document edits Madame X! Monsieur Y Chère Monsieur Y, j ai l honneur de vous informer que vous avez été promue chargée de projet. Avec mes salutations distinguées, le président.
19 Authoring: syntax edits Mrs X! Mr Y Letter (Dear (Mrs "X")) (Honour (Promote ProjectManager)) (Formal President) Letter (Dear (Mr "Y")) (Honour (Promote ProjectManager)) (Formal President) Chère Madame X, j ai l honneur de vous informer que vous avez été promue chargée de projet. Avec mes salutations distinguées, le président. Cher Monsieur Y, j ai l honneur de vous informer que vous avez été promu chargé de projet. Avec mes salutations distinguées, le président.
20 Statistical Machine Translation Main goal: improve robustness of raw GF on a quasi-open domain by statistical machine translation
21 Robustness & statistics " Statistical Machine Translation as fall-back " Hybrid systems " Learning of GF grammars by statistics " Improving SMT by grammars hallenge
22 Models of hybrid MT systems " baseline: cascade of independent MT systems; " hard integration: GF partial output is fixed in a regular SMT decoding; " soft integration I: GF partial output, as phrase pairs, is integrated as a discriminative probability feature model in a phrase-based SMT system; " soft integration II: GF partial output, as tree fragment pairs, is integrated as a discriminative probability model in a syntax-based SMT system.
23 Innovation: OWL interoperability OWL as a way to specify interlinguas: " 2-way transformation ontology-grammar " Web pages with ontologies... will soon be equipped by translation systems " Natural language search and inference
24 NL Knowledge Management The MOLTO infrastructure will " semi-automatically create abstract grammars from ontologies; " derive ontologies from grammars; " retrieve instance level knowledge from/in NL by transforming queries to semantic queries, and by expressing the knowledge in NL.
25 OWL Grammar (sketch) Class(pp:Nat...) cat Nat ObjectProperty(pp:Odd domain(pp:nat)) fun Odd: Nat->Prop ObjectProperty(pp:Gt domain(pp:nat) range(pp:nat)) fun Gt: Nat->Nat->Prop
26 First results # Online Demo, Jun 2010 at molto-project.eu # Knowledge Representation Infrastructure, Nov 2010 # GF Grammar Compiler API, Mar 2011
PROMT Technologies for Translation and Big Data
PROMT Technologies for Translation and Big Data Overview and Use Cases Julia Epiphantseva PROMT About PROMT EXPIRIENCED Founded in 1991. One of the world leading machine translation provider DIVERSIFIED
Towards a RB-SMT Hybrid System for Translating Patent Claims Results and Perspectives
Towards a RB-SMT Hybrid System for Translating Patent Claims Results and Perspectives Ramona Enache and Adam Slaski Department of Computer Science and Engineering Chalmers University of Technology and
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 5 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 5 INTELLIGENT MULTIDIMENSIONAL DATABASE INTERFACE Mona Gharib Mohamed Reda Zahraa E. Mohamed Faculty of Science,
Extracting translation relations for humanreadable dictionaries from bilingual text
Extracting translation relations for humanreadable dictionaries from bilingual text Overview 1. Company 2. Translate pro 12.1 and AutoLearn 3. Translation workflow 4. Extraction method 5. Extended
Hybrid Strategies. for better products and shorter time-to-market
Hybrid Strategies for better products and shorter time-to-market Background Manufacturer of language technology software & services Spin-off of the research center of Germany/Heidelberg Founded in 1999,
D2.4: Two trained semantic decoders for the Appointment Scheduling task
D2.4: Two trained semantic decoders for the Appointment Scheduling task James Henderson, François Mairesse, Lonneke van der Plas, Paola Merlo Distribution: Public CLASSiC Computational Learning in Adaptive
HOPS Project presentation
HOPS Project presentation Enabling an Intelligent Natural Language Based Hub for the Deployment of Advanced Semantically Enriched Multi-channel Mass-scale Online Public Services IST-2002-507967 (HOPS)
Statistical Machine Translation
Statistical Machine Translation Some of the content of this lecture is taken from previous lectures and presentations given by Philipp Koehn and Andy Way. Dr. Jennifer Foster National Centre for Language
COCOVILA Compiler-Compiler for Visual Languages
LDTA 2005 Preliminary Version COCOVILA Compiler-Compiler for Visual Languages Pavel Grigorenko, Ando Saabas and Enn Tyugu 1 Institute of Cybernetics, Tallinn University of Technology Akadeemia tee 21 12618
Machine Translation at the European Commission
Directorate-General for Translation Machine Translation at the European Commission Konferenz 10 Jahre Verbmobil Saarbrücken, 16. November 2010 Andreas Eisele Project Manager Machine Translation, ICT Unit
Comprendium Translator System Overview
Comprendium System Overview May 2004 Table of Contents 1. INTRODUCTION...3 2. WHAT IS MACHINE TRANSLATION?...3 3. THE COMPRENDIUM MACHINE TRANSLATION TECHNOLOGY...4 3.1 THE BEST MT TECHNOLOGY IN THE MARKET...4
How To Use Networked Ontology In E Health
A practical approach to create ontology networks in e-health: The NeOn take Tomás Pariente Lobo 1, *, Germán Herrero Cárcel 1, 1 A TOS Research and Innovation, ATOS Origin SAE, 28037 Madrid, Spain. Abstract.
KHRESMOI. Medical Information Analysis and Retrieval
KHRESMOI Medical Information Analysis and Retrieval Integrated Project Budget: EU Contribution: Partners: Duration: 10 Million Euro 8 Million Euro 12 Institutions 9 Countries 4 Years 1 Sep 2010-31 Aug
Automatic Speech Recognition and Hybrid Machine Translation for High-Quality Closed-Captioning and Subtitling for Video Broadcast
Automatic Speech Recognition and Hybrid Machine Translation for High-Quality Closed-Captioning and Subtitling for Video Broadcast Hassan Sawaf Science Applications International Corporation (SAIC) 7990
Application Architectures
Software Engineering Application Architectures Based on Software Engineering, 7 th Edition by Ian Sommerville Objectives To explain the organization of two fundamental models of business systems - batch
Statistical NLP Spring 2008. Machine Translation: Examples
Statistical NLP Spring 2008 Lecture 11: Word Alignment Dan Klein UC Berkeley Machine Translation: Examples 1 Machine Translation Madame la présidente, votre présidence de cette institution a été marquante.
An Overview of a Role of Natural Language Processing in An Intelligent Information Retrieval System
An Overview of a Role of Natural Language Processing in An Intelligent Information Retrieval System Asanee Kawtrakul ABSTRACT In information-age society, advanced retrieval technique and the automatic
Online multilingual generation of Cultural Heritage content
Online multilingual generation of Cultural Heritage content Dana Dannélls Språkbanken, Department of Swedish Language University of Gothenburg MOLTO 2012 2012-03-07 Motivation New developments in technologies
Language and Computation
Language and Computation week 13, Thursday, April 24 Tamás Biró Yale University [email protected] http://www.birot.hu/courses/2014-lc/ Tamás Biró, Yale U., Language and Computation p. 1 Practical matters
How the Computer Translates. Svetlana Sokolova President and CEO of PROMT, PhD.
Svetlana Sokolova President and CEO of PROMT, PhD. How the Computer Translates Machine translation is a special field of computer application where almost everyone believes that he/she is a specialist.
Embedded Software Development with MPS
Embedded Software Development with MPS Markus Voelter independent/itemis The Limitations of C and Modeling Tools Embedded software is usually implemented in C. The language is relatively close to the hardware,
A Case Study of Question Answering in Automatic Tourism Service Packaging
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 13, Special Issue Sofia 2013 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.2478/cait-2013-0045 A Case Study of Question
Semantic annotation of requirements for automatic UML class diagram generation
www.ijcsi.org 259 Semantic annotation of requirements for automatic UML class diagram generation Soumaya Amdouni 1, Wahiba Ben Abdessalem Karaa 2 and Sondes Bouabid 3 1 University of tunis High Institute
Design with Reuse. Building software from reusable components. Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 1
Design with Reuse Building software from reusable components. Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 1 Objectives To explain the benefits of software reuse and some reuse
HIERARCHICAL HYBRID TRANSLATION BETWEEN ENGLISH AND GERMAN
HIERARCHICAL HYBRID TRANSLATION BETWEEN ENGLISH AND GERMAN Yu Chen, Andreas Eisele DFKI GmbH, Saarbrücken, Germany May 28, 2010 OUTLINE INTRODUCTION ARCHITECTURE EXPERIMENTS CONCLUSION SMT VS. RBMT [K.
Learning Translation Rules from Bilingual English Filipino Corpus
Proceedings of PACLIC 19, the 19 th Asia-Pacific Conference on Language, Information and Computation. Learning Translation s from Bilingual English Filipino Corpus Michelle Wendy Tan, Raymond Joseph Ang,
Web-based automatic translation: the Yandex.Translate API
Maarten van Hees [email protected] Web-based automatic translation: the Yandex.Translate API Paulina Kozłowska [email protected] Nana Tian [email protected] ABSTRACT Yandex.Translate
Parsing Technology and its role in Legacy Modernization. A Metaware White Paper
Parsing Technology and its role in Legacy Modernization A Metaware White Paper 1 INTRODUCTION In the two last decades there has been an explosion of interest in software tools that can automate key tasks
TRANSFoRm: Vision of a learning healthcare system
TRANSFoRm: Vision of a learning healthcare system Vasa Curcin, Imperial College London Theo Arvanitis, University of Birmingham Derek Corrigan, Royal College of Surgeons Ireland TRANSFoRm is partially
WIRIS quizzes web services Getting started with PHP and Java
WIRIS quizzes web services Getting started with PHP and Java Document Release: 1.3 2011 march, Maths for More www.wiris.com Summary This document provides client examples for PHP and Java. Contents WIRIS
ONTOLOGY-BASED MULTIMEDIA AUTHORING AND INTERFACING TOOLS 3 rd Hellenic Conference on Artificial Intelligence, Samos, Greece, 5-8 May 2004
ONTOLOGY-BASED MULTIMEDIA AUTHORING AND INTERFACING TOOLS 3 rd Hellenic Conference on Artificial Intelligence, Samos, Greece, 5-8 May 2004 By Aristomenis Macris (e-mail: [email protected]), University of
Module Catalogue for the Bachelor Program in Computational Linguistics at the University of Heidelberg
Module Catalogue for the Bachelor Program in Computational Linguistics at the University of Heidelberg March 1, 2007 The catalogue is organized into sections of (1) obligatory modules ( Basismodule ) that
Semantic Web. Prof. Dr. Steffen Staab Dipl.-Med.Inf. Bernhard Tausch. Steffen Staab ISWeb Lecture Semantic Web
Semantic Web Prof. Dr. Dipl.-Med.Inf. Bernhard Tausch Organizational Issues Contact: [email protected] [email protected] Send mail to arrange for consultation Web site: http://www.uni-koblenz.de/~staab/lehre/ss05/sw/
Performance Analysis, Data Sharing, Tools Integration: New Approach based on Ontology
Performance Analysis, Data Sharing, Tools Integration: New Approach based on Ontology Hong-Linh Truong Institute for Software Science, University of Vienna, Austria [email protected] Thomas Fahringer
Combining SAWSDL, OWL DL and UDDI for Semantically Enhanced Web Service Discovery
Combining SAWSDL, OWL DL and UDDI for Semantically Enhanced Web Service Discovery Dimitrios Kourtesis, Iraklis Paraskakis SEERC South East European Research Centre, Greece Research centre of the University
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired
CA4003 - Compiler Construction
CA4003 - Compiler Construction David Sinclair Overview This module will cover the compilation process, reading and parsing a structured language, storing it in an appropriate data structure, analysing
Ontology-Based Query Expansion Widget for Information Retrieval
Ontology-Based Query Expansion Widget for Information Retrieval Jouni Tuominen, Tomi Kauppinen, Kim Viljanen, and Eero Hyvönen Semantic Computing Research Group (SeCo) Helsinki University of Technology
Integration of Content Optimization Software into the Machine Translation Workflow. Ben Gottesman Acrolinx
Integration of Content Optimization Software into the Machine Translation Workflow Ben Gottesman Acrolinx What is Acrolinx? Acrolinx is Content Optimization Software. It helps authors make their text!
Semantic Lifting of Unstructured Data Based on NLP Inference of Annotations 1
Semantic Lifting of Unstructured Data Based on NLP Inference of Annotations 1 Ivo Marinchev Abstract: The paper introduces approach to semantic lifting of unstructured data with the help of natural language
Developing a Web-Based Application using OWL and SWRL
Developing a Web-Based Application using OWL and SWRL Martin J. O Connor, Ravi Shankar, Csongor Nyulas, Samson Tu, Amar Das Stanford Medical Informatics, Stanford University, Stanford, CA 94305-5479 {martin.oconnor,
Processing: current projects and research at the IXA Group
Natural Language Processing: current projects and research at the IXA Group IXA Research Group on NLP University of the Basque Country Xabier Artola Zubillaga Motivation A language that seeks to survive
Model Driven Interoperability through Semantic Annotations using SoaML and ODM
Model Driven Interoperability through Semantic Annotations using SoaML and ODM JiuCheng Xu*, ZhaoYang Bai*, Arne J.Berre*, Odd Christer Brovig** *SINTEF, Pb. 124 Blindern, NO-0314 Oslo, Norway (e-mail:
Parsing Software Requirements with an Ontology-based Semantic Role Labeler
Parsing Software Requirements with an Ontology-based Semantic Role Labeler Michael Roth University of Edinburgh [email protected] Ewan Klein University of Edinburgh [email protected] Abstract Software
Genomic CDS: an example of a complex ontology for pharmacogenetics and clinical decision support
Genomic CDS: an example of a complex ontology for pharmacogenetics and clinical decision support Matthias Samwald 1 1 Medical University of Vienna, Vienna, Austria [email protected] Abstract.
CREATING AND APPLYING KNOWLEDGE IN ELECTRONIC HEALTH RECORD SYSTEMS. Prof Brendan Delaney, King s College London
CREATING AND APPLYING KNOWLEDGE IN ELECTRONIC HEALTH RECORD SYSTEMS Prof Brendan Delaney, King s College London www.transformproject.eu 7.5M European Commission March 2010-May 2015 Funded under the Patient
ACE GIS Project Overview: Adaptable and Composable E-commerce and Geographic Information Services
ACE GIS Project Overview: Adaptable and Composable E-commerce and Geographic Information Services José Poveda, Michael Gould, Carlos Granell 64 Departamento de Lenguajes y Sistemas Informáticos Universitat
Elena Baralis, Silvia Chiusano Politecnico di Torino. Pag. 1. Query optimization. DBMS Architecture. Query optimizer. Query optimizer.
DBMS Architecture INSTRUCTION OPTIMIZER Database Management Systems MANAGEMENT OF ACCESS METHODS BUFFER MANAGER CONCURRENCY CONTROL RELIABILITY MANAGEMENT Index Files Data Files System Catalog BASE It
The Semantic Web Rule Language. Martin O Connor Stanford Center for Biomedical Informatics Research, Stanford University
The Semantic Web Rule Language Martin O Connor Stanford Center for Biomedical Informatics Research, Stanford University Talk Outline Rules and the Semantic Web Basic SWRL Rules SWRL s Semantics SWRLTab:
Introduction. Philipp Koehn. 28 January 2016
Introduction Philipp Koehn 28 January 2016 Administrativa 1 Class web site: http://www.mt-class.org/jhu/ Tuesdays and Thursdays, 1:30-2:45, Hodson 313 Instructor: Philipp Koehn (with help from Matt Post)
The MOLTO Translation Tools API
The MOLTO Translation Tools API Lauri Carlson et al. MOLTO Deliverable 3.1 Introduction Translation scenarios Translation industry standards Translation tools survey The translation process The translation
1/20/2016 INTRODUCTION
INTRODUCTION 1 Programming languages have common concepts that are seen in all languages This course will discuss and illustrate these common concepts: Syntax Names Types Semantics Memory Management We
Semester Review. CSC 301, Fall 2015
Semester Review CSC 301, Fall 2015 Programming Language Classes There are many different programming language classes, but four classes or paradigms stand out:! Imperative Languages! assignment and iteration!
Overview of MT techniques. Malek Boualem (FT)
Overview of MT techniques Malek Boualem (FT) This section presents an standard overview of general aspects related to machine translation with a description of different techniques: bilingual, transfer,
Christian Leibold CMU Communicator 12.07.2005. CMU Communicator. Overview. Vorlesung Spracherkennung und Dialogsysteme. LMU Institut für Informatik
CMU Communicator Overview Content Gentner/Gentner Emulator Sphinx/Listener Phoenix Helios Dialog Manager Datetime ABE Profile Rosetta Festival Gentner/Gentner Emulator Assistive Listening Systems (ALS)
Statistical Machine Translation
Statistical Machine Translation What works and what does not Andreas Maletti Universität Stuttgart [email protected] Stuttgart May 14, 2013 Statistical Machine Translation A. Maletti 1 Main
ADVANTAGES AND DISADVANTAGES OF TRANSLATION MEMORY: A COST/BENEFIT ANALYSIS by Lynn E. Webb BA, San Francisco State University, 1992 Submitted in
: A COST/BENEFIT ANALYSIS by Lynn E. Webb BA, San Francisco State University, 1992 Submitted in partial satisfaction of the requirements for the Degree of MASTER OF ARTS in Translation of German Graduate
Simplifying e Business Collaboration by providing a Semantic Mapping Platform
Simplifying e Business Collaboration by providing a Semantic Mapping Platform Abels, Sven 1 ; Sheikhhasan Hamzeh 1 ; Cranner, Paul 2 1 TIE Nederland BV, 1119 PS Amsterdam, Netherlands 2 University of Sunderland,
How To Write A Drupal 5.5.2.2 Rdf Plugin For A Site Administrator To Write An Html Oracle Website In A Blog Post In A Flashdrupal.Org Blog Post
RDFa in Drupal: Bringing Cheese to the Web of Data Stéphane Corlosquet, Richard Cyganiak, Axel Polleres and Stefan Decker Digital Enterprise Research Institute National University of Ireland, Galway Galway,
Semantics and Ontology of Logistic Cloud Services*
Semantics and Ontology of Logistic Cloud s* Dr. Sudhir Agarwal Karlsruhe Institute of Technology (KIT), Germany * Joint work with Julia Hoxha, Andreas Scheuermann, Jörg Leukel Usage Tasks Query Execution
Question template for interviews
Question template for interviews This interview template creates a framework for the interviews. The template should not be considered too restrictive. If an interview reveals information not covered by
Implementing reusable software components for SNOMED CT diagram and expression concept representations
1028 e-health For Continuity of Care C. Lovis et al. (Eds.) 2014 European Federation for Medical Informatics and IOS Press. This article is published online with Open Access by IOS Press and distributed
Generating SQL Queries Using Natural Language Syntactic Dependencies and Metadata
Generating SQL Queries Using Natural Language Syntactic Dependencies and Metadata Alessandra Giordani and Alessandro Moschitti Department of Computer Science and Engineering University of Trento Via Sommarive
Multilingual and Localization Support for Ontologies
Multilingual and Localization Support for Ontologies Mauricio Espinoza, Asunción Gómez-Pérez and Elena Montiel-Ponsoda UPM, Laboratorio de Inteligencia Artificial, 28660 Boadilla del Monte, Spain {jespinoza,
CS 6740 / INFO 6300. Ad-hoc IR. Graduate-level introduction to technologies for the computational treatment of information in humanlanguage
CS 6740 / INFO 6300 Advanced d Language Technologies Graduate-level introduction to technologies for the computational treatment of information in humanlanguage form, covering natural-language processing
Semantic analysis of text and speech
Semantic analysis of text and speech SGN-9206 Signal processing graduate seminar II, Fall 2007 Anssi Klapuri Institute of Signal Processing, Tampere University of Technology, Finland Outline What is semantic
Theodoros. N. Arvanitis, RT, DPhil, CEng, MIET, MIEEE, AMIA, FRSM
TRANSFoRm Theodoros. N. Arvanitis, RT, DPhil, CEng, MIET, MIEEE, AMIA, FRSM Biomedical Informatics, Signals & Systems Research Laboratory School of Electronic, Electrical & Computer Engineering College
Pragmatic Web 4.0. Towards an active and interactive Semantic Media Web. Fachtagung Semantische Technologien 26.-27. September 2013 HU Berlin
Pragmatic Web 4.0 Towards an active and interactive Semantic Media Web Prof. Dr. Adrian Paschke Arbeitsgruppe Corporate Semantic Web (AG-CSW) Institut für Informatik, Freie Universität Berlin [email protected]
IRIS - English-Irish Translation System
IRIS - English-Irish Translation System Mihael Arcan, Unit for Natural Language Processing of the Insight Centre for Data Analytics at the National University of Ireland, Galway Introduction about me,
Hybrid Machine Translation Guided by a Rule Based System
Hybrid Machine Translation Guided by a Rule Based System Cristina España-Bonet, Gorka Labaka, Arantza Díaz de Ilarraza, Lluís Màrquez Kepa Sarasola Universitat Politècnica de Catalunya University of the
Statistical Machine Translation Lecture 4. Beyond IBM Model 1 to Phrase-Based Models
p. Statistical Machine Translation Lecture 4 Beyond IBM Model 1 to Phrase-Based Models Stephen Clark based on slides by Philipp Koehn p. Model 2 p Introduces more realistic assumption for the alignment
SEMANTIC WEB BASED INFERENCE MODEL FOR LARGE SCALE ONTOLOGIES FROM BIG DATA
SEMANTIC WEB BASED INFERENCE MODEL FOR LARGE SCALE ONTOLOGIES FROM BIG DATA J.RAVI RAJESH PG Scholar Rajalakshmi engineering college Thandalam, Chennai. [email protected] Mrs.
Department of Computer Science and Engineering, Kurukshetra Institute of Technology &Management, Haryana, India
Volume 5, Issue 4, 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Survey of Natural
Knowledge based system to support the design of tools for the HFQ forming process for aluminium-based products
MATEC Web of Conferences 21, 05008 (2015) DOI: 10.1051/matecconf/20152105008 C Owned by the authors, published by EDP Sciences, 2015 Knowledge based system to support the design of tools for the HFQ forming
The Ontological Approach for SIEM Data Repository
The Ontological Approach for SIEM Data Repository Igor Kotenko, Olga Polubelova, and Igor Saenko Laboratory of Computer Science Problems, Saint-Petersburg Institute for Information and Automation of Russian
Implementing Ontology-based Information Sharing in Product Lifecycle Management
Implementing Ontology-based Information Sharing in Product Lifecycle Management Dillon McKenzie-Veal, Nathan W. Hartman, and John Springer College of Technology, Purdue University, West Lafayette, Indiana
ISA OR NOT ISA: THE INTERLINGUAL DILEMMA FOR MACHINE TRANSLATION
ISA OR NOT ISA: THE INTERLINGUAL DILEMMA FOR MACHINE TRANSLATION FLORENCE REEDER The MITRE Corporation 1 / George Mason University [email protected] ABSTRACT Developing a system that accurately produces
Joint Steering Committee for Development of RDA
Page 1 of 11 To: From: Subject: Joint Steering Committee for Development of RDA Gordon Dunsire, Chair, JSC Technical Working Group RDA models for authority data Abstract This paper discusses the models
Open Data Integration Using SPARQL and SPIN
Open Data Integration Using SPARQL and SPIN A Case Study for the Tourism Domain Antonino Lo Bue, Alberto Machi ICAR-CNR Sezione di Palermo, Italy Research funded by Italian PON SmartCities Dicet-InMoto-Orchestra
