1 Introductory Comments. 2 Bayesian Probability
|
|
|
- Paula Singleton
- 10 years ago
- Views:
Transcription
1 Introductory Comments First, I would like to point out that I got this material from two sources: The first was a page from Paul Graham s website at and the second was a paper by I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, and C. D. Spyropoulos, titled An Experimental Comparison of Naive Bayesian and Keyword-Based Anti-Spam Filtering with Personal Messages, which appeared in the Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pages 60-67). The Graham paper is interesting, but is written more for those with almost no mathematical background, and it doesn t explain the math behind the algorithm; and, even though Graham s paper gives a link to a page describing the math, that linked page also does not do an adequeate job, since it does not place the result proved and used in its proper Bayesian context. Here in these notes I will give a more formal treatment, and will be explicit about the conditional independence assumptions that one makes. 2 Bayesian Probability In this section I will prove a few basic results that we will use. Some of these results are proved in your book, but I will prove them here again anyway, to make these notes self-contained. First, we have Bayes s Theorem: Theorem (Bayes s Theorem). Suppose that S is a sample space, and Σ is a σ-algebra on S having probability measure P. Further, suppose that we have a partition of S into (disjoint) events C, C 2,..., C k ; that is, S = k C i, and, for i j, C i C j =. i= Then, for any i =, 2,..., k, we have P (C i A) = P (A C i )P (C i ) k P (A C j)p (C j ).
2 Proof. The proof is really obvious, once you know what everything means. First, we note that A can be partitioned as follows: A = k A C j, where we notice that the sets A C j are all disjoint, since the sets C j are disjoint. Thus, we have P (A) = k P (A C j ) = k P (A C j )P (C j ). () The second equality here just follows from the definition of conditional probability P (C D) P (C D) =. P (D) Now, then, via obvious manipulations we get P (C i A) = P (A C i)p (C i ), P (A) and then replacing the P (A) on the denominator with the right-hand-side in () the theorem now follows. The theorem we will actually use is what I will call the Spam Theorem. The setup is as follows: Suppose we have two classes of objects, spam and Legitimate . We will use Spam to denote the spam messages, and Legit to denote the legitimate ones. We also suppose we have a series of k attributes that a Spam or Legit message can have. Our sample space for the probability theory will be as follows: S will be all ordered (k + )-tuples of the form (Spam, t,..., t k ) or (Legit, t,..., t k ), where each t i is or 0; t i = 0 means the message does not have attribute i, and t i = means it does have attribute i. In total there are 2 k+ elements in S. These elements of S you can think of as the space of all possible message attributes. For example, if k = 3, a typical element of S looks like 2
3 (Spam,, 0, ), which would mean that you have a Spam message having attributes and 3, but not attribute 2. These k attributes you can think of as corresponding to whether or not the message contains a particular word. So, for example, attribute might be The message contains the word SAVE, attribute 2 might be The message contains the word MONEY, and attribute 3 might be The message contains the word NOW. Thus, a message having attribute vector (Spam,, 0, ) would be a spam containing the words SAVE and NOW, but not the word MONEY. We assume that we have some probability measure P on Σ = 2 S. Now, we let Spam denote the subset of S consisting of all vectors with Spam for the first entry; and we let Legit denote the vectors in S that begin with Legit. We let W i denote the subset of S consisting of all vectors with t i = ; that is, you can think of a message as having an attribute vector lying inside W i if it is a message that contains the ith word somewhere in its text. We further make the following, crucial conditional independence assumptions: Conditional Independence Assumptions. Suppose that W i,..., W il are distinct words chosen from among W,..., W k. Then, we assume that P (W i W i2 W il Spam) = P (W i W i2 W il Legit) = P (W ij Spam); and P (W ij Legit). Comments: The first assumption here roughly says that for any given piece of spam, the probability that that message contains any given word on our list is independent of the probability that it contains any other combination of the other words on our list. This is maybe not a valid assumption, since for instance, if a spam contains the word SAVE, it very likely contains the word MONEY ; so, these probabilities are not independent, or uncorrelated. Nonetheless, we will assume that these conditions hold in order to make our model simple. The second assumption has a similar interpretation. Now we come to our theorem 3
4 Spam Theorem. Suppose that S, Σ, and P as above, and let p i = P (Spam W i ). Further, suppose that the conditional independence assumption holds. Then, for any subset W i,..., W il of W,..., W k we have that P (Spam W i W il ) = where x = P (Spam). p i p il p i p il + ( ) x l x ( pi ) ( p il ), This theorem is telling us that if we are given a document containing the words W i,..., W il, then we can calculate the probability that it is a spam message by plugging in the respective probabilities into the formula. How do we determine the probabilities p i? That will be described in the next section. For now we will just assume we know what they are. Let us now see how to prove the theorem. Proof. We apply Bayes s Theorem with the disjoint events C = Spam, and C 2 = Legit = C (which partition S), and with A = W i W il. With these choices of parameters we get that the numerator in the formula for P (C A) in Bayes s Theorem has the value P (A C )P (C ) = P (C ) = x l P (W ij C ) = P (C ) p ij P (W ij ). P (C W ij ) P (W i j ) P (C ) To get this expansion we have used our conditional independence assumption, together with the basic fact that P (F G) = P (G F )P (F )/P (G). Note here that we also made the substitution P (C ) = P (Spam) = x. To get the denominator in Bayes s formula for P (C A), we have to find P (A C )P (C ) + P (A C 2 )P (C 2 ). We have already found the first term here; so, we just need to find the second term, which is P (A C 2 )P (C 2 ) = P (C 2 ) = P (W ij C 2 ) = P (C 2 ) ( x) l P (W ij )( p ij ). 4 P (C 2 W ij ) P (W i j ) P (C 2 )
5 So, we have P (C A) = = l x l p i j P (W ij ) l x l p i j P (W ij ) + l ( x) l ( p i j )P (W ij ) p i p il p i p il + ( x x ) l ( pi ) ( p il ). The theorem now follows. 3 Applying the Spam Theorem to do the Filtering The idea is to start with, say 000 messages, with 500 of them spam, and 500 legitimate. Then, you find the best 20 words which appear in a significant percentage of the spam and legit messages. By best I mean here that the word is biased towards being in either a spam or legit message. For example, if I were told that I am about to receive a message containing the word sell, and if I know that I typically get as many spams as legit s, then there is a better than 50 percent chance that the message is spam. On the other hand, if I was told the message contains the word the, then that would tell me little about whether the message is spam or legit; that is, I would only know the message is spam with 50 percent chance. So, the word the would not go on my list of best words, but the word sell just might. The correct balance between how often a word appears in s, and how biased it is to being spam or legit, in determining whether the word is one of the best words, is left up to the user. After we have our list of words, we then compute the numbers p i = P (Spam W i ) as follows: Given a word W i, let N be the total number of my 500 spam s containing W i, and let M be the total number of my 500 legit s containing W i. Then, we let P (W i Spam) = N/500 and P (W i Legit) = M/500. The quantity P (Spam) is the parameter x in the spam theorem, which is left up to the user to supply. Finally, by Bayes s Theorem we have p i = P (W i Spam)P (Spam) P (W i Spam)P (Spam) + P (W i Legit)P (Legit) = xn xn + M( x). 5
6 Now suppose you are given some message. It is not too difficult to have a computer program read through the message to determine which of our 20 best words appear in the message. After this is done, suppose that the words appearing in the message, which are among our 20 best, are W i,..., W il. Then, the computer can calculate the probability that that message is a spam using the spam theorem. If the chance that the message is spam is sufficiently high, then you can have the computer reject the message or to put it into some kind of holding folder, which you can look through from time to time, just in case a legit message was misclassified as spam. 6
A Three-Way Decision Approach to Email Spam Filtering
A Three-Way Decision Approach to Email Spam Filtering Bing Zhou, Yiyu Yao, and Jigang Luo Department of Computer Science, University of Regina Regina, Saskatchewan, Canada S4S 0A2 {zhou200b,yyao,luo226}@cs.uregina.ca
Discrete Structures for Computer Science
Discrete Structures for Computer Science Adam J. Lee [email protected] 6111 Sennott Square Lecture #20: Bayes Theorem November 5, 2013 How can we incorporate prior knowledge? Sometimes we want to know
Spam Filtering based on Naive Bayes Classification. Tianhao Sun
Spam Filtering based on Naive Bayes Classification Tianhao Sun May 1, 2009 Abstract This project discusses about the popular statistical spam filtering process: naive Bayes classification. A fairly famous
CAS-ICT at TREC 2005 SPAM Track: Using Non-Textual Information to Improve Spam Filtering Performance
CAS-ICT at TREC 2005 SPAM Track: Using Non-Textual Information to Improve Spam Filtering Performance Shen Wang, Bin Wang and Hao Lang, Xueqi Cheng Institute of Computing Technology, Chinese Academy of
Naive Bayes Spam Filtering Using Word-Position-Based Attributes
Naive Bayes Spam Filtering Using Word-Position-Based Attributes Johan Hovold Department of Computer Science Lund University Box 118, 221 00 Lund, Sweden [email protected] Abstract This paper
If n is odd, then 3n + 7 is even.
Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that
Week 2: Conditional Probability and Bayes formula
Week 2: Conditional Probability and Bayes formula We ask the following question: suppose we know that a certain event B has occurred. How does this impact the probability of some other A. This question
A Game Theoretical Framework for Adversarial Learning
A Game Theoretical Framework for Adversarial Learning Murat Kantarcioglu University of Texas at Dallas Richardson, TX 75083, USA muratk@utdallas Chris Clifton Purdue University West Lafayette, IN 47907,
Adaptive Filtering of SPAM
Adaptive Filtering of SPAM L. Pelletier, J. Almhana, V. Choulakian GRETI, University of Moncton Moncton, N.B.,Canada E1A 3E9 {elp6880, almhanaj, choulav}@umoncton.ca Abstract In this paper, we present
Impact of Feature Selection Technique on Email Classification
Impact of Feature Selection Technique on Email Classification Aakanksha Sharaff, Naresh Kumar Nagwani, and Kunal Swami Abstract Being one of the most powerful and fastest way of communication, the popularity
Abstract. Find out if your mortgage rate is too high, NOW. Free Search
Statistics and The War on Spam David Madigan Rutgers University Abstract Text categorization algorithms assign texts to predefined categories. The study of such algorithms has a rich history dating back
Email Filters that use Spammy Words Only
Email Filters that use Spammy Words Only Vasanth Elavarasan Department of Computer Science University of Texas at Austin Advisors: Mohamed Gouda Department of Computer Science University of Texas at Austin
Three-Way Decisions Solution to Filter Spam Email: An Empirical Study
Three-Way Decisions Solution to Filter Spam Email: An Empirical Study Xiuyi Jia 1,4, Kan Zheng 2,WeiweiLi 3, Tingting Liu 2, and Lin Shang 4 1 School of Computer Science and Technology, Nanjing University
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
Worksheet for Teaching Module Probability (Lesson 1)
Worksheet for Teaching Module Probability (Lesson 1) Topic: Basic Concepts and Definitions Equipment needed for each student 1 computer with internet connection Introduction In the regular lectures in
Image Spam Filtering by Content Obscuring Detection
Image Spam Filtering by Content Obscuring Detection Battista Biggio, Giorgio Fumera, Ignazio Pillai, Fabio Roli Dept. of Electrical and Electronic Eng., University of Cagliari Piazza d Armi, 09123 Cagliari,
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
Simple Language Models for Spam Detection
Simple Language Models for Spam Detection Egidio Terra Faculty of Informatics PUC/RS - Brazil Abstract For this year s Spam track we used classifiers based on language models. These models are used to
An Efficient Three-phase Email Spam Filtering Technique
An Efficient Three-phase Email Filtering Technique Tarek M. Mahmoud 1 *, Alaa Ismail El-Nashar 2 *, Tarek Abd-El-Hafeez 3 *, Marwa Khairy 4 * 1, 2, 3 Faculty of science, Computer Sci. Dept., Minia University,
Groundbreaking Technology Redefines Spam Prevention. Analysis of a New High-Accuracy Method for Catching Spam
Groundbreaking Technology Redefines Spam Prevention Analysis of a New High-Accuracy Method for Catching Spam October 2007 Introduction Today, numerous companies offer anti-spam solutions. Most techniques
Math 141. Lecture 2: More Probability! Albyn Jones 1. [email protected] www.people.reed.edu/ jones/courses/141. 1 Library 304. Albyn Jones Math 141
Math 141 Lecture 2: More Probability! Albyn Jones 1 1 Library 304 [email protected] www.people.reed.edu/ jones/courses/141 Outline Law of total probability Bayes Theorem the Multiplication Rule, again Recall
Notes from February 11
Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
Image Spam Filtering Using Visual Information
Image Spam Filtering Using Visual Information Battista Biggio, Giorgio Fumera, Ignazio Pillai, Fabio Roli, Dept. of Electrical and Electronic Eng., Univ. of Cagliari Piazza d Armi, 09123 Cagliari, Italy
TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS
TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS VIPUL NAIK Abstract. In this journey, we are going to explore the so called separation axioms in greater detail. We shall try to understand how these axioms
The Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
Partitioned Logistic Regression for Spam Filtering
Partitioned Logistic Regression for Spam Filtering Ming-wei Chang University of Illinois 201 N Goodwin Ave Urbana, IL, USA [email protected] Wen-tau Yih Microsoft Research One Microsoft Way Redmond, WA,
Chapter 6: Sensitivity Analysis
Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
Recursive Estimation
Recursive Estimation Raffaello D Andrea Spring 04 Problem Set : Bayes Theorem and Bayesian Tracking Last updated: March 8, 05 Notes: Notation: Unlessotherwisenoted,x, y,andz denoterandomvariables, f x
Machine Learning in Spam Filtering
Machine Learning in Spam Filtering A Crash Course in ML Konstantin Tretyakov [email protected] Institute of Computer Science, University of Tartu Overview Spam is Evil ML for Spam Filtering: General Idea, Problems.
How To Filter Spam With A Poa
A Multiobjective Evolutionary Algorithm for Spam E-mail Filtering A.G. López-Herrera 1, E. Herrera-Viedma 2, F. Herrera 2 1.Dept. of Computer Sciences, University of Jaén, E-23071, Jaén (Spain), [email protected]
An Efficient Spam Filtering Techniques for Email Account
American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-10, pp-63-73 www.ajer.org Research Paper Open Access An Efficient Spam Filtering Techniques for Email
If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
Detecting E-mail Spam Using Spam Word Associations
Detecting E-mail Spam Using Spam Word Associations N.S. Kumar 1, D.P. Rana 2, R.G.Mehta 3 Sardar Vallabhbhai National Institute of Technology, Surat, India 1 [email protected] 2 [email protected]
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
Game Theory: Supermodular Games 1
Game Theory: Supermodular Games 1 Christoph Schottmüller 1 License: CC Attribution ShareAlike 4.0 1 / 22 Outline 1 Introduction 2 Model 3 Revision questions and exercises 2 / 22 Motivation I several solution
Accelerating Techniques for Rapid Mitigation of Phishing and Spam Emails
Accelerating Techniques for Rapid Mitigation of Phishing and Spam Emails Pranil Gupta, Ajay Nagrale and Shambhu Upadhyaya Computer Science and Engineering University at Buffalo Buffalo, NY 14260 {pagupta,
Combining Global and Personal Anti-Spam Filtering
Combining Global and Personal Anti-Spam Filtering Richard Segal IBM Research Hawthorne, NY 10532 Abstract Many of the first successful applications of statistical learning to anti-spam filtering were personalized
Bayesian Spam Filtering
Bayesian Spam Filtering Ahmed Obied Department of Computer Science University of Calgary [email protected] http://www.cpsc.ucalgary.ca/~amaobied Abstract. With the enormous amount of spam messages propagating
Section 2.5 Average Rate of Change
Section.5 Average Rate of Change Suppose that the revenue realized on the sale of a company s product can be modeled by the function R( x) 600x 0.3x, where x is the number of units sold and R( x ) is given
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
Tweaking Naïve Bayes classifier for intelligent spam detection
682 Tweaking Naïve Bayes classifier for intelligent spam detection Ankita Raturi 1 and Sunil Pranit Lal 2 1 University of California, Irvine, CA 92697, USA. [email protected] 2 School of Computing, Information
Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett
Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected
1 Portfolio Selection
COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # Scribe: Nadia Heninger April 8, 008 Portfolio Selection Last time we discussed our model of the stock market N stocks start on day with
LINES AND PLANES CHRIS JOHNSON
LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance
IMPROVING SPAM EMAIL FILTERING EFFICIENCY USING BAYESIAN BACKWARD APPROACH PROJECT
IMPROVING SPAM EMAIL FILTERING EFFICIENCY USING BAYESIAN BACKWARD APPROACH PROJECT M.SHESHIKALA Assistant Professor, SREC Engineering College,Warangal Email: [email protected], Abstract- Unethical
Lan, Mingjun and Zhou, Wanlei 2005, Spam filtering based on preference ranking, in Fifth International Conference on Computer and Information
Lan, Mingjun and Zhou, Wanlei 2005, Spam filtering based on preference ranking, in Fifth International Conference on Computer and Information Technology : CIT 2005 : proceedings : 21-23 September, 2005,
Detecting Spam Bots in Online Social Networking Sites: A Machine Learning Approach
Detecting Spam Bots in Online Social Networking Sites: A Machine Learning Approach Alex Hai Wang College of Information Sciences and Technology, The Pennsylvania State University, Dunmore, PA 18512, USA
Spam Filters: Bayes vs. Chi-squared; Letters vs. Words
Spam Filters: Bayes vs. Chi-squared; Letters vs. Words Cormac O Brien & Carl Vogel Abstract We compare two statistical methods for identifying spam or junk electronic mail. The proliferation of spam email
Lecture 19: Chapter 8, Section 1 Sampling Distributions: Proportions
Lecture 19: Chapter 8, Section 1 Sampling Distributions: Proportions Typical Inference Problem Definition of Sampling Distribution 3 Approaches to Understanding Sampling Dist. Applying 68-95-99.7 Rule
A MACHINE LEARNING APPROACH TO SERVER-SIDE ANTI-SPAM E-MAIL FILTERING 1 2
UDC 004.75 A MACHINE LEARNING APPROACH TO SERVER-SIDE ANTI-SPAM E-MAIL FILTERING 1 2 I. Mashechkin, M. Petrovskiy, A. Rozinkin, S. Gerasimov Computer Science Department, Lomonosov Moscow State University,
Savita Teli 1, Santoshkumar Biradar 2
Effective Spam Detection Method for Email Savita Teli 1, Santoshkumar Biradar 2 1 (Student, Dept of Computer Engg, Dr. D. Y. Patil College of Engg, Ambi, University of Pune, M.S, India) 2 (Asst. Proff,
4: SINGLE-PERIOD MARKET MODELS
4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market
Recall this chart that showed how most of our course would be organized:
Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
Email Spam Detection A Machine Learning Approach
Email Spam Detection A Machine Learning Approach Ge Song, Lauren Steimle ABSTRACT Machine learning is a branch of artificial intelligence concerned with the creation and study of systems that can learn
Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification
Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification Tina R. Patil, Mrs. S. S. Sherekar Sant Gadgebaba Amravati University, Amravati [email protected], [email protected]
Bayes and Naïve Bayes. cs534-machine Learning
Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule
17.6.1 Introduction to Auction Design
CS787: Advanced Algorithms Topic: Sponsored Search Auction Design Presenter(s): Nilay, Srikrishna, Taedong 17.6.1 Introduction to Auction Design The Internet, which started of as a research project in
Chapter ML:IV. IV. Statistical Learning. Probability Basics Bayes Classification Maximum a-posteriori Hypotheses
Chapter ML:IV IV. Statistical Learning Probability Basics Bayes Classification Maximum a-posteriori Hypotheses ML:IV-1 Statistical Learning STEIN 2005-2015 Area Overview Mathematics Statistics...... Stochastics
Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand
Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such
9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
CHAPTER 1. Compound Interest
CHAPTER 1 Compound Interest 1. Compound Interest The simplest example of interest is a loan agreement two children might make: I will lend you a dollar, but every day you keep it, you owe me one more penny.
Chapter 21: The Discounted Utility Model
Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal
GENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
Spam Filtering Based on Latent Semantic Indexing
Spam Filtering Based on Latent Semantic Indexing Wilfried N. Gansterer Andreas G. K. Janecek Robert Neumayer Abstract In this paper, a study on the classification performance of a vector space model (VSM)
Chapter 7: Products and quotients
Chapter 7: Products and quotients Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 7: Products
BREAK-EVEN ANALYSIS. In your business planning, have you asked questions like these?
BREAK-EVEN ANALYSIS In your business planning, have you asked questions like these? How much do I have to sell to reach my profit goal? How will a change in my fixed costs affect net income? How much do
How To Reduce Spam To A Legitimate Email From A Spam Message To A Spam Email
Enhancing Scalability in Anomaly-based Email Spam Filtering Carlos Laorden DeustoTech Computing - S 3 Lab, University of Deusto Avenida de las Universidades 24, 48007 Bilbao, Spain [email protected] Borja
Monte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE
A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE DANIEL A. RAMRAS In these notes we present a construction of the universal cover of a path connected, locally path connected, and semi-locally simply
Find-The-Number. 1 Find-The-Number With Comps
Find-The-Number 1 Find-The-Number With Comps Consider the following two-person game, which we call Find-The-Number with Comps. Player A (for answerer) has a number x between 1 and 1000. Player Q (for questioner)
Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way
Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)
Lesson Plan. N.RN.3: Use properties of rational and irrational numbers.
N.RN.3: Use properties of rational irrational numbers. N.RN.3: Use Properties of Rational Irrational Numbers Use properties of rational irrational numbers. 3. Explain why the sum or product of two rational
Bayesian Spam Detection
Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal Volume 2 Issue 1 Article 2 2015 Bayesian Spam Detection Jeremy J. Eberhardt University or Minnesota, Morris Follow this and additional
Blocking Blog Spam with Language Model Disagreement
Blocking Blog Spam with Language Model Disagreement Gilad Mishne Informatics Institute, University of Amsterdam Kruislaan 403, 1098SJ Amsterdam The Netherlands [email protected] David Carmel, Ronny
Learning is a very general term denoting the way in which agents:
What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);
Part II Management Accounting Decision-Making Tools
Part II Management Accounting Decision-Making Tools Chapter 7 Chapter 8 Chapter 9 Cost-Volume-Profit Analysis Comprehensive Business Budgeting Incremental Analysis and Decision-making Costs Chapter 10
2.2. Instantaneous Velocity
2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
Antispam Evaluation Guide. White Paper
Antispam Evaluation Guide White Paper Table of Contents 1 Testing antispam products within an organization: 10 steps...3 2 What is spam?...4 3 What is a detection rate?...4 4 What is a false positive rate?...4
Using Biased Discriminant Analysis for Email Filtering
Using Biased Discriminant Analysis for Email Filtering Juan Carlos Gomez 1 and Marie-Francine Moens 2 1 ITESM, Eugenio Garza Sada 2501, Monterrey NL 64849, Mexico [email protected] 2
ECUE: A Spam Filter that Uses Machine Learning to Track Concept Drift
ECUE: A Spam Filter that Uses Machine Learning to Track Concept Drift Sarah Jane Delany 1 and Pádraig Cunningham 2 and Barry Smyth 3 Abstract. While text classification has been identified for some time
High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.
Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations
Linear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
Duplicating and its Applications in Batch Scheduling
Duplicating and its Applications in Batch Scheduling Yuzhong Zhang 1 Chunsong Bai 1 Shouyang Wang 2 1 College of Operations Research and Management Sciences Qufu Normal University, Shandong 276826, China
