Kinematical Animation

Size: px
Start display at page:

Download "Kinematical Animation. lionel.reveret@inria.fr 2013-14"

Transcription

1 Kinematical Animation

2 3D animation in CG Goal : capture visual attention Motion of characters Believable Expressive Realism? Controllability Limits of purely physical simulation : - little interactivity - high complexity for expressive characters

3 animation in 3D CG Two heritages Cartoons How to represent motion on a 2D visualization Robotics Mathematics foundation of 3D motion

4 Heritage from cartoon Sampled motion, film framework (24 images per second) Animation workflow from photographs (Muybridge, Marey)

5 Early Mathematics of motion Etienne-Jules Marey ( ) physiologist inventor of chronophotography (1882) cinematography invented in 1895 (L. Lumière) The graphical method : one motion can be represented by a curve

6 Heritage from robotics Chain of rigid articulations + Forward kinematics + Inverse-Kinematics algorithm + Motion planning Animation skeleton : appropriate degrees of freedom for expressivity

7 3D animation : interpolation+skeleton Keyframes and tangents

8 Interpolation Interpolation of a 1D-scalar value One function p(u) with unknown parameters, Typically cubic polynomial: p(u)=σ n=0..3 a n u n known constrains on points { u i, (d n p/du)(u i )= b i } 4 are enough for exact cubic polynomial Direct solving for a n p(u) is thus known for every u

9 Interpolation Practical case : Hermit polynomial (spline) C 1 continuity between sets of 2 points 2 positions and tangents at these positions p(u) = [ a 0 a 1 a 2 a 3 ] [ 1 u u 2 u 3 ] t = A t Q(u) p(0) = A t Q(0) = b 0 p (0) = A t Q (0) = b 1 p(1) = A t Q(1) = b 2 p (1) = A t Q (1) = b 3 A t [ Q(0) Q (0) Q(1) Q (1) ] = [ b 0 b 1 b 2 b 3 ] t A t Q 4x4 = B t => A t = B t Q -1 p(u) = B t Q -1 Q(u) p( u=(t-t0)/(t-t1) )

10 Interpolation Interpolating 3D rotation Canonic representation : SO(3) matrix but M 0,M 1 SO(3) > (1-α)M 0 +αm 1 SO(3) Represent SO(3) matrix with Euler angles any rotation in R 3 can be represented by 3 angles M = R x,ψ R y,θ R z,ф = Multiplication order matters! Local transformation Rzyx : yaw, pitch and roll can be R z,ψ R y,θ R z,φ => Animation by interpolating angles

11 Interpolating 3D rotation Limitations of Euler angles Non-uniqueness of position and path [θ x,θ y,θ z ]=[0,0,0] [θ x,θ y,θ z ]=[0,0,0] [θ x,θ y,θ z ]=[π,0,0] M = [θ x,θ y,θ z ]=[0,π,π] M =

12 Interpolating 3D rotation Limitations of Euler angles Gimbal lock θx, [θ x,θ y,θ z ]=[0,0,0] [θ x,θ y,θ z ]=[0,π/4,0] [θ x,θ y,θ z ]=[0,π/2,0] 1 degree of freedom is lost : change in θ x change in θ z

13 3D rotation Axis-angle any rotation in R 3 is a planar rotation around an axis strong link with quaternion n v = R θ,n v = cosθ v + sinθ n v + (1- cosθ)(v n) n R θ,n = cosθ I + sinθ [n] + (1- cosθ)nn t v o θ v [n] = 0 -n z n y n z 0 -n x -n y n x 0 Rodrigues formula R θ,n = exp( [θn] x ) = I + Σ k=1 [θn] x k /k!

14 Quaternion H: Extension of standard complex q = [ s, x, y, z ] = s +ix + jy + kz = [ s, n ] with i 2 =j 2 =k 2 =ijk=-1 q.q = [ ss n.n, s n + s n + n x n ] q* = [s, -x, -y, -z ] q 2 = q. q* = s 2 + x 2 + y 2 + z 2 q -1 = q*/ q 2 q =1 q = [ cosθ, (sinθ)n ] H 1 with n R 3 and n =1 Any rotation in R 3 can be represented in H 1 x R 3, x = R θ,n x [0,x ] = q[0,x]q -1 with q = [ cos(θ/2), sin(θ/2)n ]

15 Interpolating 3D rotation Quaternion Linear interpolation in H does not work well q(t) = (1-t).q 0 + t.q 1 Angular velocity is not constant q 0 q 1 Spherical linear interpolation is fine (SLERP) q 0 q 1

16 Interpolating 3D rotation Log and exp in H 1 q = [ cosθ, (sinθ)n ] = exp([0,θn]) log(q) = [0,θn] q t = exp(t.log(q)) dq t /dt = logq q t dq t /dt = logq = [0,θn] = θ Application to SLERP (q i : unit quaternion, p i : geometrical point on sphere) SLERP(q0,q1,t) = (q 1 q 0-1 ) t q 0 SLERP(p0,p1,t) = (sin[(1-t)ω]p 0 + sin[ωt]p 1 )/sinω with cosω = p 0 p 1

17 Two fundamental cases Unconstrained motion waving arms, nodding head, etc => Forward Kinematics (FK) Constrained motion grasping an object, walking on the ground, etc => Inverse Kinematics (IK)

18 Forward Kinematics Direct application of 3D framework

19 Inverse Kinematics Articulated object Translational and rotational links Goal to reach M

20 Inverse Kinematics input : goal to reach (M) model parameter : Θ = ( θ 1, θ 2,, t 1, t 2, ), model parameters f(θ) position of kinematic chain end Find Θ /M=f(Θ ) 2 or 3 rotations: direct computation in R 2 or R 3 N articulations :?

21 Difficulties Two solutions : Range of solutions : No solutions :

22 f : direct kinematics Concatenation of matrix transforms f (Θ)= R 1 (θ 1 )T 1 (t 1 )R 2 (θ 2 ) T 2 (t 2 ) M 0 M 0 : position in rest pose (no rotations) Non linearity because of rotations

23 Zero of non-linear function Find Θ / f(θ)-m = 0 Linearization : given a current Θ and error E = f(θ)-m find h / E = f(θ+h) - f(θ) = f (Θ)h => h = f (Θ) -1 E => Θ := Θ + h iterate

24 Linearization Taylor series : Multivariate case : J Jacobian of f, linear form in h H Hessian of f, quadratic form in h

25 Jacobian Matrix of derivatives of several functions with severable variables : J:3xN matrix => not squared Use Pseudo-inverse for inversion : J + = J t (JJ t ) -1 if N>3 or J + = (J t J) -1 J t if N<3

26 Algorithm inversekinematics() { start with current Θ; E := target - computeendpoint(); for(k=0; k<k max && E > eps; k++){ J := computejacobian(); solve J h = E; Θ := Θ + h; E := target - computeendpoint(); } }

27 Joint limits Joint may have limits of variation For example realistic elbow is limited To enforce limits : test for limitation violation cancel parameter if violation in practice, remove column in J compute new J and J + compute new h

28 Adding constrains 1. if KerJ 0, degrees of freedom left to enforce a new constrains Ω JΩ = 0 2. if Θ solves JΘ = E, thus Θ+Ω is also solution J(Θ+Ω) = JΘ +JΩ = E + 0 = E 3. if general constrain C, need to project on KerJ: C p = (J + J I ) C check: J C p = J ( J + J I ) C = ( J J ) C = 0

29 Example: preferred angle Value : Θ pref Constraint C : C i = Θ i -Θ pref Modified algorithm : use h = J + E + (J + J-I)C => preserve convergence

30 Inverse Kinematics Other methods use J t instead of J + theory of infinitesimal works h = J t E use several 1D optimization Cyclic Coordinate Descent => faster but less accurate

31 Inverse Kinematics A good source:

Computer Animation. Lecture 2. Basics of Character Animation

Computer Animation. Lecture 2. Basics of Character Animation Computer Animation Lecture 2. Basics of Character Animation Taku Komura Overview Character Animation Posture representation Hierarchical structure of the body Joint types Translational, hinge, universal,

More information

Metrics on SO(3) and Inverse Kinematics

Metrics on SO(3) and Inverse Kinematics Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction

More information

Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau

Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau 04/02 Introduction & projective rendering 11/02 Prodedural modeling, Interactive modeling with parametric surfaces 25/02 Introduction

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics Lecture 18 Kinematics and Animation Interactive Graphics Lecture 18: Slide 1 Animation of 3D models In the early days physical models were altered frame by frame to create

More information

3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala)

3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala) 3D Tranformations CS 4620 Lecture 6 1 Translation 2 Translation 2 Translation 2 Translation 2 Scaling 3 Scaling 3 Scaling 3 Scaling 3 Rotation about z axis 4 Rotation about z axis 4 Rotation about x axis

More information

Essential Mathematics for Computer Graphics fast

Essential Mathematics for Computer Graphics fast John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

More information

CIS 536/636 Introduction to Computer Graphics. Kansas State University. CIS 536/636 Introduction to Computer Graphics

CIS 536/636 Introduction to Computer Graphics. Kansas State University. CIS 536/636 Introduction to Computer Graphics 2 Lecture Outline Animation 2 of 3: Rotations, Quaternions Dynamics & Kinematics William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre

More information

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008.

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008. COMP60321 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE M.Sc. in Advanced Computer Science Computer Animation Friday 18 th January 2008 Time: 09:45 11:45 Please answer any THREE Questions

More information

animation animation shape specification as a function of time

animation animation shape specification as a function of time animation animation shape specification as a function of time animation representation many ways to represent changes with time intent artistic motion physically-plausible motion efficiency control typically

More information

CS 4620 Practicum Programming Assignment 6 Animation

CS 4620 Practicum Programming Assignment 6 Animation CS 4620 Practicum Programming Assignment 6 Animation out: Friday 14th November 2014 due: : Monday 24th November 2014 1 Introduction In this assignment, we will explore a common topic in animation: key

More information

Animation (-4, -2, 0 ) + (( 2, 6, -4 ) - (-4, -2, 0 ))*.75 = (-4, -2, 0 ) + ( 6, 8, -4)*.75 = (.5, 4, -3 ).

Animation (-4, -2, 0 ) + (( 2, 6, -4 ) - (-4, -2, 0 ))*.75 = (-4, -2, 0 ) + ( 6, 8, -4)*.75 = (.5, 4, -3 ). Animation A Series of Still Images We Call Animation Animation needs no explanation. We see it in movies and games. We grew up with it in cartoons. Some of the most popular, longest-running television

More information

Fundamentals of Computer Animation

Fundamentals of Computer Animation Fundamentals of Computer Animation Quaternions as Orientations () page 1 Visualizing a Unit Quaternion Rotation in 4D Space ( ) = w + x + y z q = Norm q + q = q q [ w, v], v = ( x, y, z) w scalar q =,

More information

animation shape specification as a function of time

animation shape specification as a function of time animation 1 animation shape specification as a function of time 2 animation representation many ways to represent changes with time intent artistic motion physically-plausible motion efficiency typically

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics Computer Animation Adapted from notes by Yong Cao Virginia Tech 1 Outline Principles of Animation Keyframe Animation Additional challenges in animation 2 Classic animation Luxo

More information

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

More information

Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD)

Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD) Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD) Jatin Dave Assistant Professor Nirma University Mechanical Engineering Department, Institute

More information

the points are called control points approximating curve

the points are called control points approximating curve Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.

More information

INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users

INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users INSTRUCTOR WORKBOOK for MATLAB /Simulink Users Developed by: Amir Haddadi, Ph.D., Quanser Peter Martin, M.A.SC., Quanser Quanser educational solutions are powered by: CAPTIVATE. MOTIVATE. GRADUATE. PREFACE

More information

Goldsmiths, University of London. Computer Animation. Goldsmiths, University of London

Goldsmiths, University of London. Computer Animation. Goldsmiths, University of London Computer Animation Goldsmiths, University of London Computer Animation Introduction Computer animation is about making things move, a key part of computer graphics. In film animations are created off-line,

More information

Motion Capture Technologies. Jessica Hodgins

Motion Capture Technologies. Jessica Hodgins Motion Capture Technologies Jessica Hodgins Motion Capture Animation Video Games Robot Control What games use motion capture? NBA live PGA tour NHL hockey Legends of Wrestling 2 Lords of Everquest Lord

More information

3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials

3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials 3. Interpolation Closing the Gaps of Discretization... Beyond Polynomials Closing the Gaps of Discretization... Beyond Polynomials, December 19, 2012 1 3.3. Polynomial Splines Idea of Polynomial Splines

More information

Computers in Film Making

Computers in Film Making Computers in Film Making Snow White (1937) Computers in Film Making Slide 1 Snow White - Disney s Folly Moral: Original Budget $250,000 Production Cost $1,488,422 Frames 127,000 Production time 3.5 years

More information

ME 115(b): Solution to Homework #1

ME 115(b): Solution to Homework #1 ME 115(b): Solution to Homework #1 Solution to Problem #1: To construct the hybrid Jacobian for a manipulator, you could either construct the body Jacobian, JST b, and then use the body-to-hybrid velocity

More information

B4 Computational Geometry

B4 Computational Geometry 3CG 2006 / B4 Computational Geometry David Murray david.murray@eng.o.ac.uk www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation

More information

Understanding Rotations

Understanding Rotations Understanding Rotations Jim Van Verth Senior Engine Programmer, Insomniac Games jim@essentialmath.com Introductions. Name a little misleading, as truly understanding rotations would require a deep understanding

More information

This week. CENG 732 Computer Animation. Challenges in Human Modeling. Basic Arm Model

This week. CENG 732 Computer Animation. Challenges in Human Modeling. Basic Arm Model CENG 732 Computer Animation Spring 2006-2007 Week 8 Modeling and Animating Articulated Figures: Modeling the Arm, Walking, Facial Animation This week Modeling the arm Different joint structures Walking

More information

Graphics. Computer Animation 고려대학교 컴퓨터 그래픽스 연구실. kucg.korea.ac.kr 1

Graphics. Computer Animation 고려대학교 컴퓨터 그래픽스 연구실. kucg.korea.ac.kr 1 Graphics Computer Animation 고려대학교 컴퓨터 그래픽스 연구실 kucg.korea.ac.kr 1 Computer Animation What is Animation? Make objects change over time according to scripted actions What is Simulation? Predict how objects

More information

ACTUATOR DESIGN FOR ARC WELDING ROBOT

ACTUATOR DESIGN FOR ARC WELDING ROBOT ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar-388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda-391760,

More information

Rotation and Inter interpolation Using Quaternion Representation

Rotation and Inter interpolation Using Quaternion Representation This week CENG 732 Computer Animation Spring 2006-2007 Week 2 Technical Preliminaries and Introduction to Keframing Recap from CEng 477 The Displa Pipeline Basic Transformations / Composite Transformations

More information

The 3D rendering pipeline (our version for this class)

The 3D rendering pipeline (our version for this class) The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in camera coordinates Pixels in image coordinates Scene graph Camera Rasterization

More information

Kinematics & Dynamics

Kinematics & Dynamics Overview Kinematics & Dynamics Adam Finkelstein Princeton University COS 46, Spring 005 Kinematics Considers only motion Determined by positions, velocities, accelerations Dynamics Considers underlying

More information

Chapter. 4 Mechanism Design and Analysis

Chapter. 4 Mechanism Design and Analysis Chapter. 4 Mechanism Design and Analysis 1 All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

C O M P U C O M P T U T E R G R A E R G R P A H I C P S Computer Animation Guoying Zhao 1 / 66 /

C O M P U C O M P T U T E R G R A E R G R P A H I C P S Computer Animation Guoying Zhao 1 / 66 / Computer Animation Guoying Zhao 1 / 66 Basic Elements of Computer Graphics Modeling construct the 3D model of the scene Rendering Render the 3D model, compute the color of each pixel. The color is related

More information

Modeling Curves and Surfaces

Modeling Curves and Surfaces Modeling Curves and Surfaces Graphics I Modeling for Computer Graphics!? 1 How can we generate this kind of objects? Umm!? Mathematical Modeling! S Do not worry too much about your difficulties in mathematics,

More information

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example. An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

IMD4003 3D Computer Animation

IMD4003 3D Computer Animation Contents IMD4003 3D Computer Animation Strange from MoCap G03 Correcting Animation in MotionBuilder Prof. Chris Joslin Overview This document covers how to correct animation (specifically rotations) in

More information

How To Draw A 3D Virtual World In 3D Space (Computer Graphics)

How To Draw A 3D Virtual World In 3D Space (Computer Graphics) 2 Computer Graphics What You Will Learn: The objectives of this chapter are quite ambitious; you should refer to the references cited in each Section to get a deeper explanation of the topics presented.

More information

CG T17 Animation L:CC, MI:ERSI. Miguel Tavares Coimbra (course designed by Verónica Orvalho, slides adapted from Steve Marschner)

CG T17 Animation L:CC, MI:ERSI. Miguel Tavares Coimbra (course designed by Verónica Orvalho, slides adapted from Steve Marschner) CG T17 Animation L:CC, MI:ERSI Miguel Tavares Coimbra (course designed by Verónica Orvalho, slides adapted from Steve Marschner) Suggested reading Shirley et al., Fundamentals of Computer Graphics, 3rd

More information

CATIA V5 Tutorials. Mechanism Design & Animation. Release 18. Nader G. Zamani. University of Windsor. Jonathan M. Weaver. University of Detroit Mercy

CATIA V5 Tutorials. Mechanism Design & Animation. Release 18. Nader G. Zamani. University of Windsor. Jonathan M. Weaver. University of Detroit Mercy CATIA V5 Tutorials Mechanism Design & Animation Release 18 Nader G. Zamani University of Windsor Jonathan M. Weaver University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com

More information

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

More information

Chapter 1. Introduction. 1.1 The Challenge of Computer Generated Postures

Chapter 1. Introduction. 1.1 The Challenge of Computer Generated Postures Chapter 1 Introduction 1.1 The Challenge of Computer Generated Postures With advances in hardware technology, more powerful computers become available for the majority of users. A few years ago, computer

More information

Geometric Constraints

Geometric Constraints Simulation in Computer Graphics Geometric Constraints Matthias Teschner Computer Science Department University of Freiburg Outline introduction penalty method Lagrange multipliers local constraints University

More information

Today. Keyframing. Procedural Animation. Physically-Based Animation. Articulated Models. Computer Animation & Particle Systems

Today. Keyframing. Procedural Animation. Physically-Based Animation. Articulated Models. Computer Animation & Particle Systems Today Computer Animation & Particle Systems Some slides courtesy of Jovan Popovic & Ronen Barzel How do we specify or generate motion? Keyframing Procedural Animation Physically-Based Animation Forward

More information

Dynamics of Multibody Systems: Conventional and Graph-Theoretic Approaches

Dynamics of Multibody Systems: Conventional and Graph-Theoretic Approaches Dynamics of Multibody Systems: Conventional and Graph-Theoretic Approaches SD 65 John McPhee Systems Design Engineering University of Waterloo, Canada Summary of Course: 1. Review of kinematics and dynamics.

More information

On-line trajectory planning of robot manipulator s end effector in Cartesian Space using quaternions

On-line trajectory planning of robot manipulator s end effector in Cartesian Space using quaternions On-line trajectory planning of robot manipulator s end effector in Cartesian Space using quaternions Ignacio Herrera Aguilar and Daniel Sidobre (iherrera, daniel)@laas.fr LAAS-CNRS Université Paul Sabatier

More information

Numerical Analysis An Introduction

Numerical Analysis An Introduction Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs

More information

CMSC 425: Lecture 13 Animation for Games: Basics Tuesday, Mar 26, 2013

CMSC 425: Lecture 13 Animation for Games: Basics Tuesday, Mar 26, 2013 CMSC 425: Lecture 13 Animation for Games: Basics Tuesday, Mar 26, 2013 Reading: Chapt 11 of Gregory, Game Engine Architecture. Game Animation: Most computer games revolve around characters that move around

More information

Maya 2014 Basic Animation & The Graph Editor

Maya 2014 Basic Animation & The Graph Editor Maya 2014 Basic Animation & The Graph Editor When you set a Keyframe (or Key), you assign a value to an object s attribute (for example, translate, rotate, scale, color) at a specific time. Most animation

More information

CHAPTER 6 TEXTURE ANIMATION

CHAPTER 6 TEXTURE ANIMATION CHAPTER 6 TEXTURE ANIMATION 6.1. INTRODUCTION Animation is the creating of a timed sequence or series of graphic images or frames together to give the appearance of continuous movement. A collection of

More information

Animation. Persistence of vision: Visual closure:

Animation. Persistence of vision: Visual closure: Animation Persistence of vision: The visual system smoothes in time. This means that images presented to the eye are perceived by the visual system for a short time after they are presented. In turn, this

More information

Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview

Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview Matthew T. Mason Mechanics of Manipulation Today s outline Readings, etc. We are starting chapter 3 of the text Lots of stuff online on representing rotations Murray, Li, and Sastry for matrix exponential

More information

Quaternions. Jason Lawrence CS445: Graphics. Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Quaternions. Jason Lawrence CS445: Graphics. Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin Jason Lawrence CS445: Graphics Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin Overview Cross Products and (Skew) Symmetric Matrices Quaternions

More information

Mean value theorem, Taylors Theorem, Maxima and Minima.

Mean value theorem, Taylors Theorem, Maxima and Minima. MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

More information

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot

More information

Curves and Surfaces. Goals. How do we draw surfaces? How do we specify a surface? How do we approximate a surface?

Curves and Surfaces. Goals. How do we draw surfaces? How do we specify a surface? How do we approximate a surface? Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] Goals How do we draw surfaces? Approximate with polygons Draw polygons

More information

Discrete mechanics, optimal control and formation flying spacecraft

Discrete mechanics, optimal control and formation flying spacecraft Discrete mechanics, optimal control and formation flying spacecraft Oliver Junge Center for Mathematics Munich University of Technology joint work with Jerrold E. Marsden and Sina Ober-Blöbaum partially

More information

G.A. Pavliotis. Department of Mathematics. Imperial College London

G.A. Pavliotis. Department of Mathematics. Imperial College London EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

More information

Computer Animation in Future Technologies

Computer Animation in Future Technologies Computer Animation in Future Technologies Nadia Magnenat Thalmann MIRALab, University of Geneva Daniel Thalmann Computer Graphics Lab, Swiss Federal Institute of Technology Abstract In this introductory

More information

SO(3) Camillo J. Taylor and David J. Kriegman. Yale University. Technical Report No. 9405

SO(3) Camillo J. Taylor and David J. Kriegman. Yale University. Technical Report No. 9405 Minimization on the Lie Group SO(3) and Related Manifolds amillo J. Taylor and David J. Kriegman Yale University Technical Report No. 945 April, 994 Minimization on the Lie Group SO(3) and Related Manifolds

More information

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11 Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 216-8440 This paper

More information

Dhiren Bhatia Carnegie Mellon University

Dhiren Bhatia Carnegie Mellon University Dhiren Bhatia Carnegie Mellon University University Course Evaluations available online Please Fill! December 4 : In-class final exam Held during class time All students expected to give final this date

More information

Computer Animation. Computer Animation. Principles of Traditional Animation. Outline. Principles of Traditional Animation

Computer Animation. Computer Animation. Principles of Traditional Animation. Outline. Principles of Traditional Animation Computer Animation What is animation? Make objects change over time according to scripted actions Computer Animation What is simulation? Predict how objects change over time according to physical laws

More information

Kinematics and Dynamics of Mechatronic Systems. Wojciech Lisowski. 1 An Introduction

Kinematics and Dynamics of Mechatronic Systems. Wojciech Lisowski. 1 An Introduction Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Kinematics and Dynamics of Mechatronic Systems Wojciech Lisowski 1 An Introduction KADOMS KRIM, WIMIR, AGH Kraków 1 The course contents:

More information

Kinematics of Robots. Alba Perez Gracia

Kinematics of Robots. Alba Perez Gracia Kinematics of Robots Alba Perez Gracia c Draft date August 31, 2007 Contents Contents i 1 Motion: An Introduction 3 1.1 Overview.......................................... 3 1.2 Introduction.........................................

More information

Fundamentals of Computer Animation

Fundamentals of Computer Animation Fundamentals of Computer Animation Principles of Traditional Animation How to create maximum impact page 1 How to create maximum impact Early animators worked from scratch to analyze and improve upon silence

More information

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

Constraint satisfaction and global optimization in robotics

Constraint satisfaction and global optimization in robotics Constraint satisfaction and global optimization in robotics Arnold Neumaier Universität Wien and Jean-Pierre Merlet INRIA Sophia Antipolis 1 The design, validation, and use of robots poses a number of

More information

Computer Games. CSCI-GA.3033-010 Spring 2012. Hubertus Franke. ( frankeh@cims.nyu.edu )

Computer Games. CSCI-GA.3033-010 Spring 2012. Hubertus Franke. ( frankeh@cims.nyu.edu ) Computer Games CSCI-GA.3033-010 Spring 01 Hubertus Franke ( frankeh@cims.nyu.edu ) Thanks Many thanks to: William H. Hsu Department of Computing and Information Sciences, KSU For allowing the reuse of

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Blender 3D Animation

Blender 3D Animation Bachelor Maths/Physics/Computer Science University Paris-Sud Digital Imaging Course Blender 3D Animation Christian Jacquemin Introduction to Computer Animation Animation Basics animation consists in changing

More information

GAME ENGINE DESIGN. A Practical Approach to Real-Time Computer Graphics. ahhb. DAVID H. EBERLY Geometrie Tools, Inc.

GAME ENGINE DESIGN. A Practical Approach to Real-Time Computer Graphics. ahhb. DAVID H. EBERLY Geometrie Tools, Inc. 3D GAME ENGINE DESIGN A Practical Approach to Real-Time Computer Graphics SECOND EDITION DAVID H. EBERLY Geometrie Tools, Inc. ahhb _ jfw H NEW YORK-OXFORD-PARIS-SAN DIEGO fl^^h ' 4M arfcrgsbjlilhg, SAN

More information

Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions.

Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions. Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions. Indrek Mandre http://www.mare.ee/indrek/ February 26, 2008 1 Motivation I became interested in the angular dynamics

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Quaternion Algebra and Calculus

Quaternion Algebra and Calculus Quaternion Algebra and Calculus David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: March 2, 1999 Last Modified: August 18, 2010 Contents

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

Constrained curve and surface fitting

Constrained curve and surface fitting Constrained curve and surface fitting Simon Flöry FSP-Meeting Strobl (June 20, 2006), floery@geoemtrie.tuwien.ac.at, Vienna University of Technology Overview Introduction Motivation, Overview, Problem

More information

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore. Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

(Refer Slide Time: 1:42)

(Refer Slide Time: 1:42) Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 10 Curves So today we are going to have a new topic. So far

More information

INTRODUCTION. Robotics is a relatively young field of modern technology that crosses traditional

INTRODUCTION. Robotics is a relatively young field of modern technology that crosses traditional 1 INTRODUCTION Robotics is a relatively young field of modern technology that crosses traditional engineering boundaries. Understanding the complexity of robots and their applications requires knowledge

More information

Computing Euler angles from a rotation matrix

Computing Euler angles from a rotation matrix Computing Euler angles from a rotation matrix Gregory G. Slabaugh Abstract This document discusses a simple technique to find all possible Euler angles from a rotation matrix. Determination of Euler angles

More information

Using Autodesk HumanIK Middleware to Enhance Character Animation for Games

Using Autodesk HumanIK Middleware to Enhance Character Animation for Games Autodesk HumanIK 4.5 Using Autodesk HumanIK Middleware to Enhance Character Animation for Games Unlock your potential for creating more believable characters and more engaging, innovative gameplay with

More information

Geometric algebra rotors for skinned character animation blending

Geometric algebra rotors for skinned character animation blending Geometric algebra rotors for skinned character animation blending briefs_0080* QLB: 320 FPS GA: 381 FPS QLB: 301 FPS GA: 341 FPS DQB: 290 FPS GA: 325 FPS Figure 1: Comparison between animation blending

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Scooter, 3 wheeled cobot North Western University. PERCRO Exoskeleton

Scooter, 3 wheeled cobot North Western University. PERCRO Exoskeleton Scooter, 3 wheeled cobot North Western University A cobot is a robot for direct physical interaction with a human operator, within a shared workspace PERCRO Exoskeleton Unicycle cobot the simplest possible

More information

importantly the motion of objects and the camera. Theoretically, all the animation systems generate not a single image of a virtual world, but a

importantly the motion of objects and the camera. Theoretically, all the animation systems generate not a single image of a virtual world, but a Chapter 13 ANIMATION Animation introduces time-varying features into computer graphics, most importantly the motion of objects and the camera. Theoretically, all the parameters dening a scene in the virtual

More information

Logistic Regression (1/24/13)

Logistic Regression (1/24/13) STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

More information

Path Tracking for a Miniature Robot

Path Tracking for a Miniature Robot Path Tracking for a Miniature Robot By Martin Lundgren Excerpt from Master s thesis 003 Supervisor: Thomas Hellström Department of Computing Science Umeå University Sweden 1 Path Tracking Path tracking

More information

Computer Animation. CS 445/645 Fall 2001

Computer Animation. CS 445/645 Fall 2001 Computer Animation CS 445/645 Fall 2001 Let s talk about computer animation Must generate 30 frames per second of animation (24 fps for film) Issues to consider: Is the goal to replace or augment the artist?

More information

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

Advanced Computer Graphics (2IV40) ~ 3D Transformations. Types (geometric) Types (algebraic) 3D Transformations. y + c 1. x = a 1.

Advanced Computer Graphics (2IV40) ~ 3D Transformations. Types (geometric) Types (algebraic) 3D Transformations. y + c 1. x = a 1. Advanced Computer Graphics (2IV40) ~ 3D Transformations Kees Huiing Huub van de Wetering Winter 2005/6 Tpes (geometric) maintain distances & orientation (LH/RH): rigid bod transforms (rotations, translations)

More information