The `Russian Roulette' problem: a probabilistic variant of the Josephus Problem
|
|
|
- Bertina Allison
- 10 years ago
- Views:
Transcription
1 The `Russian Roulette' problem: a probabilistic variant of the Josephus Problem Joshua Brulé 2013 May 2 1 Introduction The classic Josephus problem describes n people arranged in a circle, such that every m th person is removed going around the circle until only one remains. The problem is to nd the position J n,m {1, 2,..., n} at which one should stand in order to be the survivor. [1] The `Russian Roulette' problem considers n people arranged in a circle, with a (biased) coin passed from person to person. Upon receiving the coin, the k th player ips the coin and is eliminated if and only if it comes up heads. The coin is then passed to the (k + 1) th person continuing until only one person - the survivor - remains. Note that as long as the probability of elimination is non-zero, the game will almost surely terminate. To give the problem richer structure, we allow the probability of elimination to depend on the number of players still in the game (i.e. p k (0, 1] is the probability of elimination with k players remaining in the game). 1.1 Problem Denition Given n players and a list of elimination probabilities P = {p n, p n 1,..., p 2 }, nd the probability R n,k (P ) that the k th player will be the survivor? 1
2 2 Solution as a Recurrence Relation Let the list of elimination probabilities be P = {p n, p n 1,..., p 2 } and for convenience, let q n = 1 p n. Let L n,k (P ) be the probability that the k th player in an n player game will not be the survivor. (For conciseness, the list P is implied in the following calculations.) Clearly, L 1,1 = 0 (the case of only one player, who wins by default). In addition, L i,0 = 1 for all i 1 (`Player 0' represents someone who has already been eliminated, thus the probability of them not being the survivor is 1) Then, L n,k = p n 1 q n n n i=1 qn i 1 L (n 1),(k i) mod n or equivalently, L n,k = p n 1 (1 p n ) n n (1 p n ) i 1 L (n 1),(k i) mod n i=1 Proof. Suppose that the i th player is eliminated in an n player game: For k > i the k th player becomes the k i (k i) mod n player in a game with n 1 players and elimination probability p n 1 For k = i, the k th player is eliminated, and has probability 1 of not surviving the rest of the rounds, regardless of their outcome. By dening L n,0 = 1, we can consider the eliminated player as the `0 th ' player in an n 1 player game. For k < i, the k th player becomes the n i + k (k i) mod n in a game with n 1 players and elimination probability p n 1 Finally in the case of n consecutive non-eliminations, the probability of each players survival is unchanged (we `made a complete circle' where no one was eliminated). Thus: 2
3 L n,k = p n L n 1,k 1 mod n + q n (p n L n 1,k 2 mod n + q n (... q n (p n L n 1,k (n 1) mod n + q n L n,k )... )) = p n (qnl 0 n 1,k 1 mod n + qnl 1 n 1,k 2 mod n + + qn n 1 L n 1,k (n 1) mod n ) + qnl n n,k = 1 1 q p n(qnl 0 n n 1,k 1 mod n + qnl 1 n 1,k 2 mod n + + qn n 1 L n 1,k (n 1) mod n ) = pn 1 q n n n i=1 qi 1 n L n 1,(k i) mod n Since the game almost surely terminates, the probability of the k th player winning in an n player game is simply 1 L n,k Using dynamic programming, L n,k for all 1 k n can be computed in O(n 3 ) time. An example implementation in python: #create diagonal half-matrix for memoization L = [[0 for k in range(0, n + 1)] for n in range(0, max_players + 1)] #base cases for i in range(1, max_players + 1): L[i][0] = 1 L[1][1] = 0 L[0][0] = None #compute the probability of losing for n in range(2, max_players + 1): for k in range(1, n + 1): sum = 0 for i in range(1, n + 1): sum = sum + (1 - prob[n])**(i-1) * L[n - 1][mod(k - i, n)] L[n][k] = prob[n]/(1 - (1 - prob[n])**n) * sum Where prob[] is an array of the elimination probabilities (prob[i] = p i (0, 1] or a symbolic variable if an appropriate library is available. (The experiments described below were all conducted in Sage [2] which provides a symbolic computing environment.) 3
4 2.1 Bounds on the complexity of the solution In the special case of p 2 = p 3 =... = p n = p, L n,k is the ratio of two polynomials, each of degree at most n(n 1) 2 Proof. Base case: L n,1 = 1 which is clearly the ratio of two polynomials each of degree at most n(n 1) 2 = 0. p p 1 (1 p) = n In general, L n,k = n 1 (1 p) n i=1 (1 p)i 1 L n 1,(k i) mod n. Note that 1 poly(n 1) (where poly(n 1) is a polynomial of degree n 1). The summation is the sum of polynomials of degree at most (n 1) multiplied by L n 1,j for some j, which is - by the inductive hypothesis - the ratio of two polynomials each of degree at most (n 2). The multiplication of two polynomials of degrees n and m, yields a new polynomial of degree n + m. Thus, L n,k is of degree at most n 1 i=0 i = (n 1)n/2. 3 Specic solutions and experimental verication 3.1 n = 2 The case n = 2 has a simple solution that matches well with intuition: L 2,1 = 1/(2 p 2 ) L 2,2 = (1 p 2 )/(2 p 2 ) As the probability of elimination tends to 1, the probability that player 1 will not be the survivor also tends to 1. With a probability of elimination near 0, the probability of each player being the survivor is very nearly 1/2. To experimentally verify, a simulation of the game was run and the results plotted against a graph of the probability of surviving vs. probability of elimination. 4
5 (Each point represents the percent games lost out of trials.) 3.2 n=3 With n 3 more interesting results are possible - a demonstrative example is with p 3 xed at 1/2 and the probability of survival for each player (red=1, blue=2, green=3) plotted against p 2 below. 5
6 (Each point represents simulations.) As can be seen, for certain elimination probabilities, player 1 actually has a better chance of winning then player 2! However, it appears (and indeed, can be proven) that player 3 always has the best probability of winning, regardless of which elimination probabilities are used.) 3.3 n > 3 Setting p n 1 = p 2 n, p n 2 = p 3 n... and plotting probability of survival (red=1, orange=2, yellow=3,... ) against p n gives the following results: 6
7 7
8 Setting p n = p n 1 =... = p 2 and plotting probability of survival against p n gives the following results: (Similar behavior is observed for n < 6). These results (and additional experimentation with various lists of elimination probabilities) are very suggestive and motivate several conjectures. 3.4 Conjectures L n,n L n,k for all k, n, and p i 's. Given p n = p n 1 =... = p 2, L n,n L n,n 1... L n,1 for all n and p n. For all permutations k 1, k 2,..., k n 1 of 1, 2,..., n 1 there exists p i 's such that L n,k1 < L n,k2 < < L n,kn 1 In other words, there always exists a list of elimination probabilities such that sorting the players by L n,k yields every possible permutation of players - excluding player n who always has the lowest probability of losing. 8
9 With computer assistance, this last conjecture was directly proven up to n = 6 by grid searching the space of elimination probability lists. Every permutation of players' probability of survival was proven to be possible by nding a specic list of elimination probabilities that yields that permutation. Unfortunately, naive grid search is exponential in n, and is computationally intractable for n 7. A formal proof for all n remains elusive. 4 Acknowledgment I would like to thank Dr. William Gasarch for his support and guidance while conducting this research. References [1] Weisstein, Eric W. "Josephus Problem." MathWorld wolfram.com/josephusproblem.html [2] William A. Stein et al. Sage Mathematics Software sagemath.org 9
Statistics 100A Homework 4 Solutions
Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
Lecture 13 - Basic Number Theory.
Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted
Betting systems: how not to lose your money gambling
Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple
Expected Value. 24 February 2014. Expected Value 24 February 2014 1/19
Expected Value 24 February 2014 Expected Value 24 February 2014 1/19 This week we discuss the notion of expected value and how it applies to probability situations, including the various New Mexico Lottery
Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80)
Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) CS 30, Winter 2016 by Prasad Jayanti 1. (10 points) Here is the famous Monty Hall Puzzle. Suppose you are on a game show, and you
2 When is a 2-Digit Number the Sum of the Squares of its Digits?
When Does a Number Equal the Sum of the Squares or Cubes of its Digits? An Exposition and a Call for a More elegant Proof 1 Introduction We will look at theorems of the following form: by William Gasarch
Question 1 Formatted: Formatted: Formatted: Formatted:
In many situations in life, we are presented with opportunities to evaluate probabilities of events occurring and make judgments and decisions from this information. In this paper, we will explore four
arxiv:1112.0829v1 [math.pr] 5 Dec 2011
How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly
Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.
Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of
CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015
CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential
Gaming the Law of Large Numbers
Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.
$2 4 40 + ( $1) = 40
THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the
SECTION 10-2 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
Solutions for Practice problems on proofs
Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some
NIM with Cash. Abstract. loses. This game has been well studied. For example, it is known that for NIM(1, 2, 3; n)
NIM with Cash William Gasarch Univ. of MD at College Park John Purtilo Univ. of MD at College Park Abstract NIM(a 1,..., a k ; n) is a -player game where initially there are n stones on the board and the
Introduction. Appendix D Mathematical Induction D1
Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected
Probability Using Dice
Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you
6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics
Course Notes for Math 16: Mathematical Statistics Approximation Methods in Statistics Adam Merberg and Steven J. Miller August 18, 6 Abstract We introduce some of the approximation methods commonly used
Universal hashing. In other words, the probability of a collision for two different keys x and y given a hash function randomly chosen from H is 1/m.
Universal hashing No matter how we choose our hash function, it is always possible to devise a set of keys that will hash to the same slot, making the hash scheme perform poorly. To circumvent this, we
If, under a given assumption, the of a particular observed is extremely. , we conclude that the is probably not
4.1 REVIEW AND PREVIEW RARE EVENT RULE FOR INFERENTIAL STATISTICS If, under a given assumption, the of a particular observed is extremely, we conclude that the is probably not. 4.2 BASIC CONCEPTS OF PROBABILITY
Section 7C: The Law of Large Numbers
Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half
3.2 Roulette and Markov Chains
238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.
STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
John Kerrich s coin-tossing Experiment. Law of Averages - pg. 294 Moore s Text
Law of Averages - pg. 294 Moore s Text When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So, if the coin is tossed a large number of times, the number of heads and the
Worksheet for Teaching Module Probability (Lesson 1)
Worksheet for Teaching Module Probability (Lesson 1) Topic: Basic Concepts and Definitions Equipment needed for each student 1 computer with internet connection Introduction In the regular lectures in
Section 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
6 Scalar, Stochastic, Discrete Dynamic Systems
47 6 Scalar, Stochastic, Discrete Dynamic Systems Consider modeling a population of sand-hill cranes in year n by the first-order, deterministic recurrence equation y(n + 1) = Ry(n) where R = 1 + r = 1
Collinear Points in Permutations
Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,
Combinatorics 3 poker hands and Some general probability
Combinatorics 3 poker hands and Some general probability Play cards 13 ranks Heart 4 Suits Spade Diamond Club Total: 4X13=52 cards You pick one card from a shuffled deck. What is the probability that it
Integer Factorization using the Quadratic Sieve
Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 [email protected] March 16, 2011 Abstract We give
Random Fibonacci-type Sequences in Online Gambling
Random Fibonacci-type Sequences in Online Gambling Adam Biello, CJ Cacciatore, Logan Thomas Department of Mathematics CSUMS Advisor: Alfa Heryudono Department of Mathematics University of Massachusetts
Gambling Systems and Multiplication-Invariant Measures
Gambling Systems and Multiplication-Invariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously
Statistics 100A Homework 3 Solutions
Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we
Lecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
Algebra 2 C Chapter 12 Probability and Statistics
Algebra 2 C Chapter 12 Probability and Statistics Section 3 Probability fraction Probability is the ratio that measures the chances of the event occurring For example a coin toss only has 2 equally likely
THE CENTRAL LIMIT THEOREM TORONTO
THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................
2-6 13+ 120 Min. Art.No.: RIO524 Made in Germany Copyright 2015 www.riograndegames.com
This expansion can only be played with a copy of Power Grid or Power Grid deluxe Art.No.: RIO524 Made in Germany Copyright 2015 www.riograndegames.com 6 55132 00524 1 Warning! Choking hazard - small parts.
STAT 35A HW2 Solutions
STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },
MOVIES, GAMBLING, SECRET CODES, JUST MATRIX MAGIC
MOVIES, GAMBLING, SECRET CODES, JUST MATRIX MAGIC DR. LESZEK GAWARECKI 1. The Cartesian Coordinate System In the Cartesian system points are defined by giving their coordinates. Plot the following points:
9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
Collatz Sequence. Fibbonacci Sequence. n is even; Recurrence Relation: a n+1 = a n + a n 1.
Fibonacci Roulette In this game you will be constructing a recurrence relation, that is, a sequence of numbers where you find the next number by looking at the previous numbers in the sequence. Your job
That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12
That s Not Fair! ASSESSMENT # Benchmark Grades: 9-12 Summary: Students consider the difference between fair and unfair games, using probability to analyze games. The probability will be used to find ways
Practical Probability:
Practical Probability: Casino Odds and Sucker Bets Tom Davis [email protected] April 2, 2011 Abstract Gambling casinos are there to make money, so in almost every instance, the games you can bet
Thursday, October 18, 2001 Page: 1 STAT 305. Solutions
Thursday, October 18, 2001 Page: 1 1. Page 226 numbers 2 3. STAT 305 Solutions S has eight states Notice that the first two letters in state n +1 must match the last two letters in state n because they
TAKE-AWAY GAMES. ALLEN J. SCHWENK California Institute of Technology, Pasadena, California INTRODUCTION
TAKE-AWAY GAMES ALLEN J. SCHWENK California Institute of Technology, Pasadena, California L INTRODUCTION Several games of Tf take-away?f have become popular. The purpose of this paper is to determine the
Week 2: Conditional Probability and Bayes formula
Week 2: Conditional Probability and Bayes formula We ask the following question: suppose we know that a certain event B has occurred. How does this impact the probability of some other A. This question
ECE 316 Probability Theory and Random Processes
ECE 316 Probability Theory and Random Processes Chapter 4 Solutions (Part 2) Xinxin Fan Problems 20. A gambling book recommends the following winning strategy for the game of roulette. It recommends that
Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
Operation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point
Topology-based network security
Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the
Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100
Wald s Identity by Jeffery Hein Dartmouth College, Math 100 1. Introduction Given random variables X 1, X 2, X 3,... with common finite mean and a stopping rule τ which may depend upon the given sequence,
MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
Assignment 2: Option Pricing and the Black-Scholes formula The University of British Columbia Science One CS 2015-2016 Instructor: Michael Gelbart
Assignment 2: Option Pricing and the Black-Scholes formula The University of British Columbia Science One CS 2015-2016 Instructor: Michael Gelbart Overview Due Thursday, November 12th at 11:59pm Last updated
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
13.0 Central Limit Theorem
13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated
Remarks on the Concept of Probability
5. Probability A. Introduction B. Basic Concepts C. Permutations and Combinations D. Poisson Distribution E. Multinomial Distribution F. Hypergeometric Distribution G. Base Rates H. Exercises Probability
Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.
Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate
Chapter 7 Probability and Statistics
Chapter 7 Probability and Statistics In this chapter, students develop an understanding of data sampling and making inferences from representations of the sample data, with attention to both measures of
Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
Texas Hold em. From highest to lowest, the possible five card hands in poker are ranked as follows:
Texas Hold em Poker is one of the most popular card games, especially among betting games. While poker is played in a multitude of variations, Texas Hold em is the version played most often at casinos
A NOTE ON OFF-DIAGONAL SMALL ON-LINE RAMSEY NUMBERS FOR PATHS
A NOTE ON OFF-DIAGONAL SMALL ON-LINE RAMSEY NUMBERS FOR PATHS PAWE L PRA LAT Abstract. In this note we consider the on-line Ramsey numbers R(P n, P m ) for paths. Using a high performance computing clusters,
Notes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
4.1 Introduction - Online Learning Model
Computational Learning Foundations Fall semester, 2010 Lecture 4: November 7, 2010 Lecturer: Yishay Mansour Scribes: Elad Liebman, Yuval Rochman & Allon Wagner 1 4.1 Introduction - Online Learning Model
How to Beat Online Roulette!
Martin J. Silverthorne How to Beat Online Roulette! Silverthorne Publications, Inc. How to Beat Online Roulette! COPYRIGHT 2015 Silverthorne Publications Inc. All rights reserved. Except for brief passages
Stochastic Processes and Advanced Mathematical Finance. Ruin Probabilities
Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced
OpenStax-CNX module: m32633 1. Quadratic Sequences 1; 2; 4; 7; 11;... (1)
OpenStax-CNX module: m32633 1 Quadratic Sequences Rory Adams Free High School Science Texts Project Sarah Blyth Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative Commons
Chapter 5 A Survey of Probability Concepts
Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible
AMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
פרויקט מסכם לתואר בוגר במדעים )B.Sc( במתמטיקה שימושית
המחלקה למתמטיקה Department of Mathematics פרויקט מסכם לתואר בוגר במדעים )B.Sc( במתמטיקה שימושית הימורים אופטימליים ע"י שימוש בקריטריון קלי אלון תושיה Optimal betting using the Kelly Criterion Alon Tushia
The Trip Scheduling Problem
The Trip Scheduling Problem Claudia Archetti Department of Quantitative Methods, University of Brescia Contrada Santa Chiara 50, 25122 Brescia, Italy Martin Savelsbergh School of Industrial and Systems
Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.
_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic
Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
On closed-form solutions of a resource allocation problem in parallel funding of R&D projects
Operations Research Letters 27 (2000) 229 234 www.elsevier.com/locate/dsw On closed-form solutions of a resource allocation problem in parallel funding of R&D proects Ulku Gurler, Mustafa. C. Pnar, Mohamed
Every Positive Integer is the Sum of Four Squares! (and other exciting problems)
Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer
On the Relationship between Classes P and NP
Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,
15-251: Great Theoretical Ideas in Computer Science Anupam Gupta Notes on Combinatorial Games (draft!!) January 29, 2012
15-251: Great Theoretical Ideas in Computer Science Anupam Gupta Notes on Combinatorial Games (draft!!) January 29, 2012 1 A Take-Away Game Consider the following game: there are 21 chips on the table.
Colored Hats and Logic Puzzles
Colored Hats and Logic Puzzles Alex Zorn January 21, 2013 1 Introduction In this talk we ll discuss a collection of logic puzzles/games in which a number of people are given colored hats, and they try
Faster deterministic integer factorisation
David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers
The Distributive Property
The Distributive Property Objectives To recognize the general patterns used to write the distributive property; and to mentally compute products using distributive strategies. www.everydaymathonline.com
Factoring Quadratic Trinomials
Factoring Quadratic Trinomials Student Probe Factor x x 3 10. Answer: x 5 x Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials. Part 1 of the lesson consists
The Taxman Game. Robert K. Moniot September 5, 2003
The Taxman Game Robert K. Moniot September 5, 2003 1 Introduction Want to know how to beat the taxman? Legally, that is? Read on, and we will explore this cute little mathematical game. The taxman game
Responsible Gambling Education Unit: Mathematics A & B
The Queensland Responsible Gambling Strategy Responsible Gambling Education Unit: Mathematics A & B Outline of the Unit This document is a guide for teachers to the Responsible Gambling Education Unit:
Solutions to Problem Set 1
Cornell University, Physics Department Fall 2013 PHYS-3341 Statistical Physics Prof. Itai Cohen Solutions to Problem Set 1 David C. Tsang, Woosong Choi, Philip Kidd, Igor Segota, Yariv Yanay 1.3 Birthday
How To Play Classic Slots
Table of Contents Casino Help... 1 Introduction... 1 Introduction... 1 Using This Help Guide... 1 Getting Started... 2 Getting Started... 2 Web Casino... 3 Game Client... 4 To Play the Games... 4 Common
Probabilistic Strategies: Solutions
Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1
Midterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4
MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
Offline 1-Minesweeper is NP-complete
Offline 1-Minesweeper is NP-complete James D. Fix Brandon McPhail May 24 Abstract We use Minesweeper to illustrate NP-completeness proofs, arguments that establish the hardness of solving certain problems.
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
Combinatorial PCPs with ecient veriers
Combinatorial PCPs with ecient veriers Or Meir Abstract The PCP theorem asserts the existence of proofs that can be veried by a verier that reads only a very small part of the proof. The theorem was originally
