Lecture 10: Dispersion Trading
|
|
|
- Blake Carr
- 10 years ago
- Views:
Transcription
1 Lecture 0: Dserso Tradg Marco Avellaeda G Srg Semester 009
2 What s dserso tradg? Dserso tradg refers to trades whch oe -- sells dex otos ad buys otos o the dex comoets, or -- buys dex otos ad sells otos o the dex comoets All trades are delta-eutral (hedged wth stock) The ackage s mataed delta-eutral over the horzo of the trade Dserso tradg: -- sellg dex volatlty ad buyg volatlty of the dex comoets -- buyg dex volatlty ad sellg volatlty o the dex comoets
3 Why Dserso Tradg? Motvato: to roft from rce dffereces volatlty markets usg dex otos ad otos o dvdual stocks Oortutes: Market segmetato, temorary shfts correlatos betwee assets, dosycratc ews o dvdual stocks
4 dex Arbtrage versus Dserso Tradg Stock N * * * * Stock 3 dex dex Arbtrage: Recostruct a dex or ETF usg the comoet stocks Stock Stock Dserso Tradg: Recostruct a dex oto usg otos o the comoet stocks
5 Ma U.S. dces ad sectors Maor dces: SPX, DJX, NDX SPY, DA, QQQQ (Exchage-Traded Fuds) Sector dces: Semcoductors: SMH, SOX Botech: BBH, BTK Pharmaceutcals: PPH, DRG Facals: BKX, XBD, XLF, RKH Ol & Gas: XNG, XO, OSX Hgh Tech, WWW, Boxes: MSH, HHH, XBD, XC Retal: RTH
6 S ds S ds Cov S ds Var d Var w S S ds S ds w S w ds d w w S ρ, shares dex umber of tuto Far value relato for volatltes assumg a gve correlato matrx
7 The trade ctures Sell dex call dex Buy calls o dfferet stocks. Stock Stock Delta-hedge usg dex ad stocks
8 Proft-loss scearos for a dserso trade a sgle day Scearo Scearo stadard move stadard move stock # stock # Stock P/L: -.30 dex P/L: Total P/L: -.4 Stock P/L: +9.4 dex P/L: - 0. Total P/L: +9.8
9 Frst aroxmato to the dserso ackage: ``trsc Value Hedge M w S w umber of shares, scaled by ``dvsor' ' K M w K VH: use dex weghts for oto hedge max C ( K,0) w max( S K,0) M (, K, T ) w C ( S, K, T ) M VH: remum from dex s less tha remum from comoets Suer-relcato Makes sese for dee- --the-moey otos
10 trsc-value Hedgg s `exact oly f stocks are erfectly correlated ( T ) w S ( T ) M ρ N M w Fe N T N stadardzed ormal Solve for X : K Set : max K M Fe w Fe ( ( T ) K,0) w max( S ( T ) K,0) T M X T X T Smlar to Jamshda (989) for rcg bod otos -factor model
11 VH : Hedge wth ``equal-delta otos ( ) costat Deltas costat log- moeyess costat N l l + d d T K F T X T F K T X Fe K T T X
12 What haes after you eter a oto trade? Uhedged call oto Hedged oto Proft-loss for a hedged sgle oto osto (Black Scholes) P / L ( ) tme - decay (dollars), + d NV S S t, NV ormalzed Vega C ~ stadardzed move
13 Gamma P/L for a dex Oto ( ) ( ) ( ) dex P/L dex Gamma P/L M M M M w S w S ρ ρ + Assume 0 d
14 Gamma P/L for Dserso Trade th stock P/L ( ) DsersoTrade P/L M + ( ) + ( ρ ) dagoal term: realzed sgle-stock movemets vs. mled volatltes off-dagoal term: realzed cross-market movemets vs. mled correlato
15 Dserso Statstc ( ) ( ) ( ) Θ + Θ Θ Θ + + P/L, D D Y S S X Y X D N N N N N N N N N
16 Summary of Gamma P/L for Dserso Trade Θ + Gamma P/L D N dosycratc Gamma Dserso Gamma Tme-Decay Examle: ``Pure log dserso (zero dosycratc Gamma): 0 > Θ
17 30 Payoff fucto for a trade wth short dex/log otos (VH), stocks Value fucto (B&S) for the VH osto as a fucto of stock rces ( stocks) geeral: short dex VH s short-gamma alog the dagoal, log-gamma for ``trasversal moves
18 Gamma Rsk: Negatve exosure for arallel shfts, ostve exosure to trasverse shfts % 40% ρ
19 Gamma-Rsk for Baskets.E+06 8.E+05 6.E+05 4.E+05.E+05 0.E+00 -.E+05-4.E+05-6.E+05-8.E+05 -.E+06 -.E+06 ormalzed dserso dex X D D S S N N / Y Y ( X Y ) ( ) X / Y D Dserso, or cross-sectoal move, D/(Y*Y) Normalzed Dserso From realstc ortfolo
20 Vega Rsk Sestvty to volatlty: erturb all sgle-stock mled volatltes by the same ercet amout Vega P/L M M M Vega + Vega ( NV ) + ( NV ) ( NV ) + ( NV ) NV ormalzed vega V
21 Market/Volatlty Rsk 70% 80% 90% 00% 0% vol % multler 0% 30% market level Market level % 70 85% 00% 5% 30% Vol % multler Short Gamma o a erfectly correlated move Mootoe-creasg deedece o volatlty (VH)
22 ``Rega : Sestvty to correlato ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) M M M NV NV (0) () (0) () (0) () (0) () Rega Correlato P/L,, ρ ρ ρ ρ ρ ρ ρ ρ
23 Market/Correlato Sestvty corr chage market level corr chage market level Short Gamma o a erfectly correlated move Mootoe-decreasg deedece o correlato
24 A model for dserso tradg sgals (takg to accout volatlty skews) Gve a dex (DJX, SPX, NDX) costruct a roxy for the dex wth small resdual. d ds β + ε m k k k Sk (multle regresso) Alteratvely, trucate at a gve catalzato level ad kee the orgal weghts, modelg the remader as a stock w/o otos. Buld a Weghted Mote Carlo smulato for the dyamcs of the m stocks ad value the dex otos wth the model Comare the model values wth the bd/offer values for the dex otos traded the market.
25 Morga Staley Hgh-Techology 35 dex (MSH) ADP AMAT AMZN AOL BRCM CA CPQ CSCO DELL EDS EMC ERTS FDC HWP BM NTC NTU JDSU JNPR LU MOT MSFT MU NT ORCL PALM PMTC PSFT SLR STM SUNW TLAB TXN XLNX YHOO 35 Uderlyg Stocks Equal-dollar weghted dex, adusted aually Each stock has tycally O(30) otos over a yr horzo
26 Test roblem: 35 tech stocks Prce otos o basket of 35 stocks uderlyg the MSH dex Number of costrats: 876 Number of aths: 0,000 to 30,000 aths Otmzato techque: Quas-Newto method (exlct gradet)
27 OtoNameStockT ckerexdate Strke Tye trsc Bd Ask Volume Oeterest StockPrceQuoteDate ZQN AC-E AMZN /0/0 5 Call /0/00 ZQN AT-E AMZN /0/ Call /0/00 ZQN AO-E AMZN /0/0 7.5 Call /0/00 ZQN AU-E AMZN /0/ Call /0/00 ZQN AD-E AMZN /0/0 0 Call /0/00 ZQN BC-E AMZN /7/0 5 Call /0/00 ZQN BO-E AMZN /7/0 7.5 Call /0/00 ZQN BD-E AMZN /7/0 0 Call /0/00 ZQN DC-E AMZN 4//0 5 Call /0/00 ZQN DO-E AMZN 4//0 7.5 Call /0/00 ZQN DD-E AMZN 4//0 0 Call /0/00 ZQN DS-E AMZN 4//0.5 Call /0/00 ZQN GC-E AMZN 7//0 5 Call /0/00 ZQN GO-E AMZN 7//0 7.5 Call /0/00 ZQN GD-E AMZN 7//0 0 Call /0/00 ZQN GS-E AMZN 7//0.5 Call /0/00 ZQN GE-E AMZN 7//0 5 Call /0/00 AOE AZ-E AOL /0/0 3.5 Call /0/00 AOE AO-E AOL /0/ Call /0/00 AOE AG-E AOL /0/0 35 Call /0/00 AOE AU-E AOL /0/ Call /0/00 AOE AH-E AOL /0/0 40 Call /0/00 AOE AR-E AOL /0/0 4.5 Call /0/00 AOE AV-E AOL /0/0 4.5 Call /0/00 AOE AS-E AOL /0/ Call /0/00 AOE A-E AOL /0/0 45 Call /0/00 AOE BZ-E AOL /7/0 3.5 Call /0/00 AOE BG-E AOL /7/0 35 Call /0/00 AOE BU-E AOL /7/ Call /0/00 Fragmet of data for AOE BH-E AOL /7/0 40 Call /0/00 AOE BV-E AOL /7/0 4.5 Call 0.5 calbrato.45 wth costrats 37.5 /0/00 AOE B-E AOL /7/0 45 Call /0/00 AOE DZ-E AOL 4//0 3.5 Call /0/00 AOE DG-E AOL 4//0 35 Call /0/00 AOE DU-E AOL 4// Call /0/00 AOE DH-E AOL 4//0 40 Call /0/00 AOE DV-E AOL 4//0 4.5 Call /0/00 AOE D-E AOL 4//0 45 Call /0/00 AOE DW-E AOL 4// Call /0/00 AOO DJ-E AOL 4//0 50 Call /0/00 AOE GZ-E AOL 7//0 3.5 Call /0/00
28 Near-moth otos (Prcg Date: Dec 000) MSH Basket oto: model vs. market Frot Moth mled vol strke model mdmarket bd offer
29 Secod-moth otos Basket oto: model vs. market mled vol strke model mdmarket bd offer
30 Thrd-moth otos Basket oto: model vs. market mled vol model mdmarket bd offer strke
31 Sx-moth otos Basket oto: model vs. market mled vol model mdmarket bd offer strke
32 Broad Market dex Otos (OEX) Prcg Date: Oct 9, Bd Prce ---- Ask Prce ---- Model Far Value Skew Grah Volatlty Strke Prce
33 Hedgg Coverg the ``wgs every ame mles a excess Vega rsk. trsc Value Hedge mles log Volatlty Use the WMC sestvty method (regressos) to determe the best sgle co-termal oto to use for each comoet. mlemet a Theta-Neutral hedge usg the most mortat ames wth the corresodg Betas.
34 Smulato for OEX Grou: $0MM/ Targetg % daly stdev SGNALSTRENGTH > threshold 080 trades OEX turover tme 60 days aualzed retur $4,39,794 $3,09,05 $,339,77 $,966,986 ercetage Share Rato Costat-VaR ortfolo (% stdev er day) Catal s allocated evely amog sgals Trasacto costs otos/ stock tradg cluded
35 avr-04 set Dserso OEX (retur o $00) févr-0 août-0 mars-03 Results of Back-testg sgal realzed ul-0 déc-00 $-retur
36 Smulato for QQQ grou $0MM wth % target daly stdev sgal >threshold trades 96 QQQ turover tme 76 aualzed retur -$,369,46 $,078,54 $5,339,45 $,533,4 ercetage Share Rato
37 QQQ, retur o $ $ -re tu r sgal realzed 0 0 set-0 déc-0 avr-0 ul-0 oct-0 av-03 ma-03 août-03 ov-03 mars-04-0
38 QQQ; umber of sgals QQQ août-03 oct-03 u-03 avr-03 févr-03 a v-0 févr-03 avr-0 u-0 août-0 oct-0 déc-0 ov-0 set-0 ul-0 ma-0 sgals er day
39 Smulato for QQQ+OEX $0MM wth % daly stdev QQQ + OEX turover tme 65 aualzed retur $ $ $ $ ercetage Share Rato
40 OEX + QQQ, retur o $ $-retur sgal realzed 0.00 févr-0 set-0 avr-0 oct-0 ma-03 ov-03 u-04 cludes T.C., otos ad stock tradg
41 Dserso Caacty Estmate USD 0 MM ~ 00 OEX cotracts er day f we assume 000 cotracts to be a lqudty lmt, caacty s 00 MM ust for OEX Caacty s robably aroud 00 MM f we use sectors ad Euroe Dserso has hgher Share Rato: t s a arb strategy based o watg for roft oortutes
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
Report 52 Fixed Maturity EUR Industrial Bond Funds
Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:
The Time Value of Money
The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
FINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
FINANCIAL FORMULAE. Amount of One or Future Value of One ($1, 1, 1, etc.)... 2. Present Value (or Present Worth) of One ($1, 1, 1, etc.)...
Amout of Oe or Future Value of Oe ($,,, etc.)... 2 Preset Value (or Preset Worth) of Oe ($,,, etc.)... 2 Amout of Oe per Perod... 3 or Future Value of Oe per Perod Preset Value (or Preset Worth) of Oe
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
CSSE463: Image Recognition Day 27
CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)
APPLYING THE BRINSON-HOOD- BEEBOWER METHOD TO THE RISK SIDE - DECISION-ORIENTED DECOMPOSITION OF EX-ANTE RISK
ALYING TH RINSON-HOOD- OWR MTHOD TO TH RISK SID - DCISION-ORINTD DCOMOSITION OF X-ANT RISK Dr. Stefa Illmer, Clet Reportg & rojects erformace Attrbuto Roudtable Zurch, 28. September 2005 CRDIT SUISS; Clet
ANNEX 77 FINANCE MANAGEMENT. (Working material) Chief Actuary Prof. Gaida Pettere BTA INSURANCE COMPANY SE
ANNEX 77 FINANCE MANAGEMENT (Workg materal) Chef Actuary Prof. Gada Pettere BTA INSURANCE COMPANY SE 1 FUNDAMENTALS of INVESTMENT I THEORY OF INTEREST RATES 1.1 ACCUMULATION Iterest may be regarded as
Beta. A Statistical Analysis of a Stock s Volatility. Courtney Wahlstrom. Iowa State University, Master of School Mathematics. Creative Component
Beta A Statstcal Aalyss of a Stock s Volatlty Courtey Wahlstrom Iowa State Uversty, Master of School Mathematcs Creatve Compoet Fall 008 Amy Froelch, Major Professor Heather Bolles, Commttee Member Travs
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
Performance Attribution. Methodology Overview
erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace
Report 05 Global Fixed Income
Report 05 Global Fxed Icome From Dec 1999 to Dec 2014 31/12/1999 31 December 1999 31/12/2014 Rep05, Computed & Prted: 17/06/2015 11:24 New Performace Idcator (01/01/12) 100% Barclays Aggregate Global Credt
Estimating the Spot Covariation of Asset Prices. Statistical Theory and Empirical Evidence SFB 6 4 9 E C O N O M I C R I S K B E R L I N
SFB 649 Dscusso Paper 014-055 Estmatg the Spot Covarato of Asset Prces Statstcal Theory ad Emprcal Evdece Markus Bbger* Markus Ress* Nkolaus Hautsch** Peter Malec*** *Humboldt-Uverstät zu Berl, Germay
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
Geometric Mean Maximization: Expected, Observed, and Simulated Performance
GM Mamzato Geometrc Mea Mamzato: Epected, Observed, ad Smulated Performace Rafael De Satago & Javer Estrada IESE Busess School 0/16 GM Mamzato Geometrc Mea Mamzato 1. Itroducto 2. Methodology 3. Evdece
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
Stock Profit Patterns
Stock Proft Patterns Suppose a share of Farsta Shppng stock n January 004 s prce n the market to 56. Assume that a September call opton at exercse prce 50 costs 8. A September put opton at exercse prce
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
Regression Analysis. 1. Introduction
. Itroducto Regresso aalyss s a statstcal methodology that utlzes the relato betwee two or more quattatve varables so that oe varable ca be predcted from the other, or others. Ths methodology s wdely used
n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.
UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.
Questions? Ask Prof. Herz, [email protected]. General Classification of adsorption
Questos? Ask rof. Herz, [email protected] Geeral Classfcato of adsorpto hyscal adsorpto - physsorpto - dsperso forces - Va der Waals forces - weak - oly get hgh fractoal coerage of surface at low temperatures
The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0
Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
Loss Distribution Generation in Credit Portfolio Modeling
Loss Dstrbuto Geerato Credt Portfolo Modelg Igor Jouravlev, MMF, Walde Uversty, USA Ruth A. Maurer, Ph.D., Professor Emertus of Mathematcal ad Computer Sceces, Colorado School of Mes, USA Key words: Loss
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
A NON-PARAMETRIC COPULA ANALYSIS ON ESTIMATING RETURN DISTRIBUTION FOR PORTFOLIO MANAGEMENT: AN APPLICATION WITH THE US AND BRAZILIAN STOCK MARKETS 1
Ivestmet Maagemet ad Facal Iovatos, Volume 4, Issue 3, 007 57 A NON-PARAMETRIC COPULA ANALYSIS ON ESTIMATING RETURN DISTRIBUTION FOR PORTFOLIO MANAGEMENT: AN APPLICATION WITH THE US AND BRAZILIAN STOCK
Mathematics of Finance
CATE Mathematcs of ace.. TODUCTO ths chapter we wll dscuss mathematcal methods ad formulae whch are helpful busess ad persoal face. Oe of the fudametal cocepts the mathematcs of face s the tme value of
Web Services Wind Tunnel: On Performance Testing Large-scale Stateful Web Services
Web Servces Wd Tuel: O Performace Testg Large-scale Stateful Web Servces Marcelo De Barros, Jg Shau, Che Shag, Keto Gdewall, Hu Sh, Joe Forsma Mcrosoft Cororato {marcelod,shau,cshag,ketog,hush,osehfo}@mcrosoft.com
How To Value An Annuity
Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%
MODELLING OF STOCK PRICES BY THE MARKOV CHAIN MONTE CARLO METHOD
ISSN 8-80 (prt) ISSN 8-8038 (ole) INTELEKTINĖ EKONOMIKA INTELLECTUAL ECONOMICS 0, Vol. 5, No. (0), p. 44 56 MODELLING OF STOCK PRICES BY THE MARKOV CHAIN MONTE CARLO METHOD Matas LANDAUSKAS Kauas Uversty
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
Portfolio Loss Distribution
Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
Time Value of Money. (1) Calculate future value or present value or annuity? (2) Future value = PV * (1+ i) n
Problem 1 Happy Harry has just bought a scratch lottery tcket ad wo 10,000. He wats to face the future study of hs ewly bor daughter ad vests ths moey a fud wth a maturty of 18 years offerg a promsg yearly
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
2 www.activetradermag.com April 2001 ACTIVE TRADER
W h o s afraid of volatility? Not anyone who wants a true edge in his or her tra d i n g, t h a t s for sure. Get a handle on the essential concepts and learn how to improve your trading with p ractical
Geometric Motion Planning and Formation Optimization for a Fleet of Nonholonomic Wheeled Mobile Robots
Proceedgs of the 4 IEEE Iteratoal Coferece o Robotcs & Automato New Orleas, LA Arl 4 Geometrc oto Plag ad Formato Otmzato for a Fleet of Noholoomc Wheeled oble Robots Rajakumar Bhatt echacal & Aerosace
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS
A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS I Ztou, K Smaïl, S Delge, F Bmbot To cte ths verso: I Ztou, K Smaïl, S Delge, F Bmbot. A COMPARATIVE STUDY BETWEEN POLY- CLASS AND MULTICLASS
How To Make A Supply Chain System Work
Iteratoal Joural of Iformato Techology ad Kowledge Maagemet July-December 200, Volume 2, No. 2, pp. 3-35 LATERAL TRANSHIPMENT-A TECHNIQUE FOR INVENTORY CONTROL IN MULTI RETAILER SUPPLY CHAIN SYSTEM Dharamvr
Week 13 Introduction to the Greeks and Portfolio Management:
Week 13 Introduction to the Greeks and Portfolio Management: Hull, Ch. 17; Poitras, Ch.9: I, IIA, IIB, III. 1 Introduction to the Greeks and Portfolio Management Objective: To explain how derivative portfolios
Application of geographic weighted regression to establish flood-damage functions reflecting spatial variation
Applcato of geographc weghted regresso to establsh flood-damage fuctos reflectg spatal varato Lg-Fag Chag, Chu-Hug L ad Mg-Daw Su * Departmet of Boevrometal Systems Egeerg, Natoal Tawa Uversty Departmet
Compressive Sensing over Strongly Connected Digraph and Its Application in Traffic Monitoring
Compressve Sesg over Strogly Coected Dgraph ad Its Applcato Traffc Motorg Xao Q, Yogca Wag, Yuexua Wag, Lwe Xu Isttute for Iterdscplary Iformato Sceces, Tsghua Uversty, Bejg, Cha {qxao3, kyo.c}@gmal.com,
Integrating Production Scheduling and Maintenance: Practical Implications
Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk
Index Options. James Bittman. Unique Features & Strategies. Senior Instructor The Options Institute at CBOE
Index Options Unique Features & Strategies James Bittman Senior Instructor The Options Institute at CBOE Disclosures In order to simplify the computations, commissions have not been included in the examples
Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software
J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao
Three Dimensional Interpolation of Video Signals
Three Dmesoal Iterpolato of Vdeo Sgals Elham Shahfard March 0 th 006 Outle A Bref reve of prevous tals Dgtal Iterpolato Bascs Upsamplg D Flter Desg Issues Ifte Impulse Respose Fte Impulse Respose Desged
Overview of Performance Attribution. Version 2.0 Date: April 2010 Produced by: Dr. Stefan J. Illmer
Overvew of erformace Attrbuto Verso 2.0 Date: Aprl 200 roduced by: Dr. Stefa J. Illmer Ageda (/5). Itroducto to retur attrbuto.. erformace attrbuto: the bg pcture.2. Retur attrbuto as part of performace
Basic statistics formulas
Wth complmet of tattcmetor.com, the te for ole tattc help Set De Morga Law Bac tattc formula Meaure of Locato Sample mea (AUB) c A c B c Commutatvty & (A B) c A c U B c A U B B U A ad A B B A Aocatvty
Reinsurance and the distribution of term insurance claims
Resurace ad the dstrbuto of term surace clams By Rchard Bruyel FIAA, FNZSA Preseted to the NZ Socety of Actuares Coferece Queestow - November 006 1 1 Itroducto Ths paper vestgates the effect of resurace
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
Speeding up k-means Clustering by Bootstrap Averaging
Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg
Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion
2011 Iteratoal Coferece o Ecoomcs ad Face Research IPEDR vol.4 (2011 (2011 IACSIT Press, Sgapore Forecastg Tred ad Stoc Prce wth Adaptve Exteded alma Flter Data Fuso Betollah Abar Moghaddam Faculty of
Relaxation Methods for Iterative Solution to Linear Systems of Equations
Relaxato Methods for Iteratve Soluto to Lear Systems of Equatos Gerald Recktewald Portlad State Uversty Mechacal Egeerg Departmet [email protected] Prmary Topcs Basc Cocepts Statoary Methods a.k.a. Relaxato
Time Value of Money. First some technical stuff. HP10B II users
Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle
EMERGING MARKETS: STOCK MARKET INVESTING WITH POLITICAL RISK. Ephraim Clark and Radu Tunaru
EMERGING MARKETS: STOCK MARKET INVESTING WITH POLITICAL RISK By Ephram Clark ad Radu Tuaru Correspodace to: Ephram Clark Mddlesex Uversty Busess School The Burroughs Lodo NW4 4BT UK Tel: 44-(0)08-36-530
ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. [email protected]. evrenziplar@yahoo.
ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs
Settlement Prediction by Spatial-temporal Random Process
Safety, Relablty ad Rs of Structures, Ifrastructures ad Egeerg Systems Furuta, Fragopol & Shozua (eds Taylor & Fracs Group, Lodo, ISBN 978---77- Settlemet Predcto by Spatal-temporal Radom Process P. Rugbaapha
CHAPTER 13. Simple Linear Regression LEARNING OBJECTIVES. USING STATISTICS @ Sunflowers Apparel
CHAPTER 3 Smple Lear Regresso USING STATISTICS @ Suflowers Apparel 3 TYPES OF REGRESSION MODELS 3 DETERMINING THE SIMPLE LINEAR REGRESSION EQUATION The Least-Squares Method Vsual Exploratos: Explorg Smple
ROULETTE-TOURNAMENT SELECTION FOR SHRIMP DIET FORMULATION PROBLEM
28-30 August, 2013 Sarawak, Malaysa. Uverst Utara Malaysa (http://www.uum.edu.my ) ROULETTE-TOURNAMENT SELECTION FOR SHRIMP DIET FORMULATION PROBLEM Rosshary Abd. Rahma 1 ad Razam Raml 2 1,2 Uverst Utara
Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
α 2 α 1 β 1 ANTISYMMETRIC WAVEFUNCTIONS: SLATER DETERMINANTS (08/24/14)
ANTISYMMETRI WAVEFUNTIONS: SLATER DETERMINANTS (08/4/4) Wavefuctos that descrbe more tha oe electro must have two characterstc propertes. Frst, scll electros are detcal partcles, the electros coordates
Lecture 4: Exchange-Traded Funds
Lecure 4: Exchange-Traded Funds Marco Avellaneda G63.2936.001 Spring Semeser 2009 Srucure -- ETF: Invesmen vehicles, similar o funds bu ha look like socks -- raded on an exchange -- rading is similar o
Must the growth rate decline? Baumol s unbalanced growth revisited
Must the growth rate decle? Baumol s ubalaced growth rested Ncholas Oulto Bak of Eglad, Threadeedle Street, Lodo, ECR 8AH. The ews expressed are those of the author, ot ecessarly those of the Bak of Eglad.
CALCULATION OF THE VARIANCE IN SURVEYS OF THE ECONOMIC CLIMATE
Researc Isttute of Aled Ecoomcs 006 Workg Paers 006/5, ages CALCULATION OF THE VARIANCE IN SURVEYS OF THE ECONOMIC CLIMATE By Mauela Alcañz, Àlex Costa, Motserrat Gullé, Carme Lua ad Crsta Rovra Gru de
VALUATION OF AN OIL FIELD USING REAL
VALATION OF AN OIL FIELD ING REAL OPTION AND THE INFORMATION PROVIDED BY TERM TRTRE OF OMMODITY PRIE AHIER DE REHERHE D EREG N 00-06 LATIER Delphe EREG versty Pars IX & ERNA ENMP Emal : [email protected]
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute
Efficient Traceback of DoS Attacks using Small Worlds in MANET
Effcet Traceback of DoS Attacks usg Small Worlds MANET Yog Km, Vshal Sakhla, Ahmed Helmy Departmet. of Electrcal Egeerg, Uversty of Souther Calfora, U.S.A {yogkm, sakhla, helmy}@ceg.usc.edu Abstract Moble
Caput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
