DECENTRALIZED SCALE-FREE NETWORK CONSTRUCTION AND LOAD BALANCING IN MASSIVE MULTIUSER VIRTUAL ENVIRONMENTS
|
|
|
- Ashlyn Daniel
- 10 years ago
- Views:
Transcription
1 DECENTRALIZED SCALE-FREE NETWORK CONSTRUCTION AND LOAD BALANCING IN MASSIVE MULTIUSER VIRTUAL ENVIRONMENTS Markus Esch, Eric Tobias - University of Luxembourg
2 MOTIVATION HyperVerse project Massive Multiuser Virtual Environment (MMVE) Global-scale Open Similar to the Web D Web
3 TWO TIER INFRASTRUCTURE Client overlay: Data distribution PS PS PS PS PS PS PS Public Server overlay: Reliable hosting Client management
4 BACKBONE OVERLAY Interconnect Public Servers Requirements: Distribute world surface Distribute load Heterogeneous set of Public Serves. Consider high client dynamics
5 CONCEPT Voronoi diagram Server position corresponding to capacities Adapt position to dynamic load shifts Scale-free link structure
6 LOAD BALANCING Assign object masses and Public Server payload Set of rules applied by Public Servers Local Rules Handle local load imbalances Global Rules Handle global load imbalances
7 LOCAL RULES Centering Move towards center of mass B Minimize nodes at Voronoi borders A
8 LOCAL RULES Unload Neighbors Move towards overburdened servers / & '()*, -()*,, '()*+, -().,!!# '()*,, -(*, '()*+, -(),, # '()+, -(), $ " '(),, -()*, % '()1, -()*, ')2)'45678)-)2)9:55)-;;8))))))))2)6<:=567:7
9 LOCAL RULES Keeping the massorder Having regions with high masses hosted by powerful servers 1. $%&'() *%&')) $%&'/) *%&) $! *!! $ # * # $%&')) *%&) # $%&'() *%&+) $%&/) *%&(), " $%&()) *%&'() #! - $%&?) *%&') $&2&$45678&*&2&9:55&*;;8&&&&&&&&2&96< =9>
10 LOCAL RULES Swapping :; Hotspot: The spot in a voronoi cell with the biggest mass within a certain radius :; := ' (?)A; & (?)<;; <; % (?)=;! (?)A; # (?)@; <= $ (?)>=; :; " (?)A= >;
11 GLOBAL RULES Jumping Epidemic aggregation Active Search ()*+,*-./1,2 #" $ & ' Active Pull %!" (4.'""
12 LOAD BALANCING Simulation Video:
13 OVERLOAD MASS Overload Mass Ratio Overall Load: 8% Step Overload Mass Ratio Overall Load: 6% Step Overload Mass Ratio Overall Load: 4% Step Self-organization scheme Unified distribution
14 OVERLOAD DURATION Duration in Steps Step Unified scheme, 4% Unified scheme, 6% Unified scheme, 8% Self-organization scheme, 4% Self-organization scheme, 6% Self-organization scheme, 8%
15 HOTSPOT ACCURACY Accuracy Step 4% 6% 8%
16 SCALE-FREE LINK STRUCTURE Immediate Neighbors & Fare Neighbors Scale-free Node Degree Distribution: P(k) k -γ (γ (2,)) Expect scale-free capacity distribution Observed in WWW Π(p i )= p i p max probability distribution a joining node estab-
17 SCALE-FREE LINK STRUCTURE Immediate Neighbors & Fare Neighbors Scale-free Node Degree Distribution: P(k) k -γ (γ (2,)) Expect scale-free capacity distribution Observed in WWW Π(p i )= p i p max probability distribution a joining node estab-
18 SCALE-FREE LINK STRUCTURE Immediate Neighbors & Fare Neighbors Scale-free Node Degree Distribution: P(k) k -γ (γ (2,)) Assume scale-free capacity distribution Observed in WWW Π(p i )= p i p max probability distribution a joining node estab-
19 ALGORITHM N
20 ALGORITHM N
21 N Web sites increases faster due to their high pro time, the providers take care for allocating capacities. That means, the scale-free link s existence of hubs with sufficient capacities em organizing manner from the different popular Transferring this observation to our scenario o environment, it means, that Public Servers ho lar world objects automatically exhibit higher this is automatically ensured by the object the scale-free capacity distribution thus emerg we just have to construct the link structure this reason, we establish links to Public Se capacities, with a higher probability. Hence connected to an existing node i with probabil on the payload p i of i and the maximum network p max : ALGORITHM Π(p i )= p i p max Based on this probability distribution a joi lishes M (M >; M is a fixed parameter o
22 γ = 2.1; M = γ = ; M = 1 1 γ = 2.7; M = Nodes 1 Nodes 1 Nodes Degree Degree Degree γ = 2.1; M = γ = ; M = 2 1 γ = 2.7; M = NODE DEGREE Nodes 1 Nodes 1 Nodes DISTRIBUTION Degree Degree Degree 1 γ = 2.1; M = 1 γ = ; M = 1 γ = 2.7; M = Nodes 1 Nodes 1 Nodes Degree Degree Degree 5 Nodes 1 Nodes
23 POWER LAW EXPONENT.2 M = 1.2 M = 2.2 M = Power-Law Exponent 2 Power-Law Exponent 2 Power-Law Exponent γ = 2.1 γ = γ = 2.7
24 CLUSTERING COEFFICIENT.4 γ = 2.1; M = 1.4 γ = ; M = 1.4 γ = 2.7; M = 1 Clustering Coefficient Clustering Coefficient Clustering Coefficient γ = 2.1; M = 2.4 γ = ; M = 2.4 γ = 2.7; M = 2 Clustering Coefficient Clustering Coefficient Clustering Coefficient γ = 2.1; M =.4 γ = ; M =.4 γ = 2.7; M = Clustering Coefficient Clustering Coefficient Clustering Coefficient Scale-Free Graph Random Graph
25 AVERAGE SHORTEST PATH Average Shortest Path γ = 2.1; M = Average Shortest Path γ = ; M = Average Shortest Path γ = 2.7; M = Average Shortest Path γ = 2.1; M = Average Shortest Path γ = ; M = Average Shortest Path γ = 2.7; M = Average Shortest Path γ = 2.1; M = Average Shortest Path γ = ; M = Average Shortest Path γ = 2.7; M = Scale-Free Graph Random Graph
26 NETWORK DIAMETER 4.5 γ = 2.1; M = γ = ; M = γ = 2.7; M = Diameter.5 Diameter.5 Diameter γ = 2.1; M = γ = ; M = γ = 2.7; M = Diameter.5 Diameter.5 Diameter γ = 2.1; M = 4.5 γ = ; M = 4.5 γ = 2.7; M = Diameter.5 Diameter.5 Diameter
27 CHURN SIMULATIONS = 1.2 M = 1 Power Law Exponent. 2. γ = 2.1 γ = γ = Step
28 CHURN SIMULATIONS.4 γ = 2.1; M = 1.4 γ = ; M = 1.4 γ = 2.7; M = 1 Clustering Coefficient Clustering Coefficient Clustering Coefficient Step Step Step Scale-Free Graph Random Graph.4 γ = 2.1; M = 1.4 γ = ; M = 1.4 γ = 2.7; M = 1 Average Shortest Path Average Shortest Path Average Shortest Path Step Step Step Scale-Free Graph Random Graph 4.5 γ = 2.1; M = γ = ; M = γ = 2.7; M = Diameter.5 Diameter.5 Diameter Step Step Step
29 CONCLUSION Backbone overlay for MMVE scenario Dynamic load balancing Scale-free small-world network Simulation results show viability for intended scenario
30 THANK YOU FOR YOUR ATTENTION QUESTIONS?
A Novel Switch Mechanism for Load Balancing in Public Cloud
International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) A Novel Switch Mechanism for Load Balancing in Public Cloud Kalathoti Rambabu 1, M. Chandra Sekhar 2 1 M. Tech (CSE), MVR College
A discussion of Statistical Mechanics of Complex Networks P. Part I
A discussion of Statistical Mechanics of Complex Networks Part I Review of Modern Physics, Vol. 74, 2002 Small Word Networks Clustering Coefficient Scale-Free Networks Erdös-Rényi model cover only parts
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA [email protected]
Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks
Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks Imre Varga Abstract In this paper I propose a novel method to model real online social networks where the growing
Graph Theory and Complex Networks: An Introduction. Chapter 08: Computer networks
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, [email protected] Chapter 08: Computer networks Version: March 3, 2011 2 / 53 Contents
Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network
, pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and
Dmitri Krioukov CAIDA/UCSD
Hyperbolic geometry of complex networks Dmitri Krioukov CAIDA/UCSD [email protected] F. Papadopoulos, M. Boguñá, A. Vahdat, and kc claffy Complex networks Technological Internet Transportation Power grid
International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.
RESEARCH ARTICLE ISSN: 2321-7758 GLOBAL LOAD DISTRIBUTION USING SKIP GRAPH, BATON AND CHORD J.K.JEEVITHA, B.KARTHIKA* Information Technology,PSNA College of Engineering & Technology, Dindigul, India Article
Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics
Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Zhao Wenbin 1, Zhao Zhengxu 2 1 School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu
How To Understand The Network Of A Network
Roles in Networks Roles in Networks Motivation for work: Let topology define network roles. Work by Kleinberg on directed graphs, used topology to define two types of roles: authorities and hubs. (Each
Complex Networks Analysis: Clustering Methods
Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich [email protected] 1 Outline Purpose to give an overview of modern graph-clustering methods and their applications
DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS
International Scientific Conference & International Workshop Present Day Trends of Innovations 2012 28 th 29 th May 2012 Łomża, Poland DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS Lubos Takac 1 Michal Zabovsky
D1.1 Service Discovery system: Load balancing mechanisms
D1.1 Service Discovery system: Load balancing mechanisms VERSION 1.0 DATE 2011 EDITORIAL MANAGER Eddy Caron AUTHORS STAFF Eddy Caron, Cédric Tedeschi Copyright ANR SPADES. 08-ANR-SEGI-025. Contents Introduction
Scalable Source Routing
Scalable Source Routing January 2010 Thomas Fuhrmann Department of Informatics, Self-Organizing Systems Group, Technical University Munich, Germany Routing in Networks You re there. I m here. Scalable
Introduction to Networks and Business Intelligence
Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological
Greedy Routing on Hidden Metric Spaces as a Foundation of Scalable Routing Architectures
Greedy Routing on Hidden Metric Spaces as a Foundation of Scalable Routing Architectures Dmitri Krioukov, kc claffy, and Kevin Fall CAIDA/UCSD, and Intel Research, Berkeley Problem High-level Routing is
An Optimization Model of Load Balancing in P2P SIP Architecture
An Optimization Model of Load Balancing in P2P SIP Architecture 1 Kai Shuang, 2 Liying Chen *1, First Author, Corresponding Author Beijing University of Posts and Telecommunications, [email protected]
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 349 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 349 Load Balancing Heterogeneous Request in DHT-based P2P Systems Mrs. Yogita A. Dalvi Dr. R. Shankar Mr. Atesh
GENERATING AN ASSORTATIVE NETWORK WITH A GIVEN DEGREE DISTRIBUTION
International Journal of Bifurcation and Chaos, Vol. 18, o. 11 (2008) 3495 3502 c World Scientific Publishing Company GEERATIG A ASSORTATIVE ETWORK WITH A GIVE DEGREE DISTRIBUTIO JI ZHOU, XIAOKE XU, JIE
Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, [email protected] Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter
Simulating a File-Sharing P2P Network
Simulating a File-Sharing P2P Network Mario T. Schlosser, Tyson E. Condie, and Sepandar D. Kamvar Department of Computer Science Stanford University, Stanford, CA 94305, USA Abstract. Assessing the performance
Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003
Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation
Bioinformatics: Network Analysis
Bioinformatics: Network Analysis Graph-theoretic Properties of Biological Networks COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Outline Architectural features Motifs, modules,
Healthcare Analytics. Aryya Gangopadhyay UMBC
Healthcare Analytics Aryya Gangopadhyay UMBC Two of many projects Integrated network approach to personalized medicine Multidimensional and multimodal Dynamic Analyze interactions HealthMask Need for sharing
Load balancing in a heterogeneous computer system by self-organizing Kohonen network
Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.
Load Balancing in Structured P2P Systems
1 Load Balancing in Structured P2P Systems Ananth Rao Karthik Lakshminarayanan Sonesh Surana Richard Karp Ion Stoica ananthar, karthik, sonesh, karp, istoica @cs.berkeley.edu Abstract Most P2P systems
JBoss Data Grid Performance Study Comparing Java HotSpot to Azul Zing
JBoss Data Grid Performance Study Comparing Java HotSpot to Azul Zing January 2014 Legal Notices JBoss, Red Hat and their respective logos are trademarks or registered trademarks of Red Hat, Inc. Azul
Why Rumors Spread Fast in Social Networks
Why Rumors Spread Fast in Social Networks Benjamin Doerr 1, Mahmoud Fouz 2, and Tobias Friedrich 1,2 1 Max-Planck-Institut für Informatik, Saarbrücken, Germany 2 Universität des Saarlandes, Saarbrücken,
Load Balancing in Structured Peer to Peer Systems
Load Balancing in Structured Peer to Peer Systems DR.K.P.KALIYAMURTHIE 1, D.PARAMESWARI 2 Professor and Head, Dept. of IT, Bharath University, Chennai-600 073 1 Asst. Prof. (SG), Dept. of Computer Applications,
Load Balancing in Structured Peer to Peer Systems
Load Balancing in Structured Peer to Peer Systems Dr.K.P.Kaliyamurthie 1, D.Parameswari 2 1.Professor and Head, Dept. of IT, Bharath University, Chennai-600 073. 2.Asst. Prof.(SG), Dept. of Computer Applications,
Structural constraints in complex networks
Structural constraints in complex networks Dr. Shi Zhou Lecturer of University College London Royal Academy of Engineering / EPSRC Research Fellow Part 1. Complex networks and three key topological properties
Graph Mining and Social Network Analysis
Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann
Redistribution of Load in Cloud Using Improved Distributed Load Balancing Algorithm with Security
ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference
PERFORMANCE STUDY AND SIMULATION OF AN ANYCAST PROTOCOL FOR WIRELESS MOBILE AD HOC NETWORKS
PERFORMANCE STUDY AND SIMULATION OF AN ANYCAST PROTOCOL FOR WIRELESS MOBILE AD HOC NETWORKS Reza Azizi Engineering Department, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran [email protected]
Mining Social Network Graphs
Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand
DYNAMIC LOAD BALANCING IN A DECENTRALISED DISTRIBUTED SYSTEM
DYNAMIC LOAD BALANCING IN A DECENTRALISED DISTRIBUTED SYSTEM 1 Introduction In parallel distributed computing system, due to the lightly loaded and overloaded nodes that cause load imbalance, could affect
Detecting spam using social networking concepts Honours Project COMP4905 Carleton University Terrence Chiu 100605339
Detecting spam using social networking concepts Honours Project COMP4905 Carleton University Terrence Chiu 100605339 Supervised by Dr. Tony White School of Computer Science Summer 2007 Abstract This paper
Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations
Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Jurij Leskovec, CMU Jon Kleinberg, Cornell Christos Faloutsos, CMU 1 Introduction What can we do with graphs? What patterns
Effects of node buffer and capacity on network traffic
Chin. Phys. B Vol. 21, No. 9 (212) 9892 Effects of node buffer and capacity on network traffic Ling Xiang( 凌 翔 ) a), Hu Mao-Bin( 胡 茂 彬 ) b), and Ding Jian-Xun( 丁 建 勋 ) a) a) School of Transportation Engineering,
Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina [email protected]
Seminar Path planning using Voronoi diagrams and B-Splines Stefano Martina [email protected] 23 may 2016 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
Mapping the Gnutella Network: Macroscopic Properties of Large-Scale Peer-to-Peer Systems
Mapping the Gnutella Network: Macroscopic Properties of Large-Scale Peer-to-Peer Systems Matei Ripeanu, Ian Foster {matei, foster}@cs.uchicago.edu Abstract Despite recent excitement generated by the peer-to-peer
Link Prediction in Social Networks
CS378 Data Mining Final Project Report Dustin Ho : dsh544 Eric Shrewsberry : eas2389 Link Prediction in Social Networks 1. Introduction Social networks are becoming increasingly more prevalent in the daily
A PROXIMITY-AWARE INTEREST-CLUSTERED P2P FILE SHARING SYSTEM
A PROXIMITY-AWARE INTEREST-CLUSTERED P2P FILE SHARING SYSTEM Dr.S. DHANALAKSHMI 1, R. ANUPRIYA 2 1 Prof & Head, 2 Research Scholar Computer Science and Applications, Vivekanandha College of Arts and Sciences
Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of Sina Microblogging
Mathematical Problems in Engineering, Article ID 578713, 6 pages http://dx.doi.org/10.1155/2014/578713 Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of
Computing Load Aware and Long-View Load Balancing for Cluster Storage Systems
215 IEEE International Conference on Big Data (Big Data) Computing Load Aware and Long-View Load Balancing for Cluster Storage Systems Guoxin Liu and Haiying Shen and Haoyu Wang Department of Electrical
Distance Degree Sequences for Network Analysis
Universität Konstanz Computer & Information Science Algorithmics Group 15 Mar 2005 based on Palmer, Gibbons, and Faloutsos: ANF A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02. Motivation
Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers
Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Ho Trong Viet, Yves Deville, Olivier Bonaventure, Pierre François ICTEAM, Université catholique de Louvain (UCL), Belgium.
Load Balancing. Load Balancing 1 / 24
Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait
Enabling Multi-pipeline Data Transfer in HDFS for Big Data Applications
Enabling Multi-pipeline Data Transfer in HDFS for Big Data Applications Liqiang (Eric) Wang, Hong Zhang University of Wyoming Hai Huang IBM T.J. Watson Research Center Background Hadoop: Apache Hadoop
Efficient Content Location Using Interest-Based Locality in Peer-to-Peer Systems
Efficient Content Location Using Interest-Based Locality in Peer-to-Peer Systems Kunwadee Sripanidkulchai Bruce Maggs Hui Zhang Carnegie Mellon University, Pittsburgh, PA 15213 {kunwadee,bmm,hzhang}@cs.cmu.edu
Strategies for Optimizing Public Train Transport Networks in China: Under a Viewpoint of Complex Networks
Strategies for Optimizing Public Train Transport Networks in China: Under a Viewpoint of Complex Networks Zhichong ZHAO, Jie LIU Research Centre of Nonlinear Science, College of Science, Wuhan University
CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS
137 CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 8.1 CONCLUSION In this thesis, efficient schemes have been designed and analyzed to control congestion and distribute the load in the routing process of
Content. Massively Multiplayer Online Games Previous Work. Cluster-based Approach. Evaluation Conclusions. P2P-based Infrastructure
Clustering Players for Load Balancing in Virtual Worlds Simon Rieche, Klaus Wehrle Group Chair of Computer Science IV RWTH Aachen University Marc Fouquet, Heiko Niedermayer, Timo Teifel, Georg Carle Computer
Intelligent Content Delivery Network (CDN) The New Generation of High-Quality Network
White paper Intelligent Content Delivery Network (CDN) The New Generation of High-Quality Network July 2001 Executive Summary Rich media content like audio and video streaming over the Internet is becoming
Energy Efficient Load Balancing among Heterogeneous Nodes of Wireless Sensor Network
Energy Efficient Load Balancing among Heterogeneous Nodes of Wireless Sensor Network Chandrakant N Bangalore, India [email protected] Abstract Energy efficient load balancing in a Wireless Sensor
TÓPICOS AVANÇADOS EM REDES ADVANCED TOPICS IN NETWORKS
Mestrado em Engenharia de Redes de Comunicações TÓPICOS AVANÇADOS EM REDES ADVANCED TOPICS IN NETWORKS 2009-2010 Projecto de Rede / Sistema - Network / System Design 1 Hierarchical Network Design 2 Hierarchical
2. Research and Development on the Autonomic Operation. Control Infrastructure Technologies in the Cloud Computing Environment
R&D supporting future cloud computing infrastructure technologies Research and Development on Autonomic Operation Control Infrastructure Technologies in the Cloud Computing Environment DEMPO Hiroshi, KAMI
General Network Analysis: Graph-theoretic. COMP572 Fall 2009
General Network Analysis: Graph-theoretic Techniques COMP572 Fall 2009 Networks (aka Graphs) A network is a set of vertices, or nodes, and edges that connect pairs of vertices Example: a network with 5
TÓPICOS AVANÇADOS EM REDES ADVANCED TOPICS IN NETWORKS
Mestrado em Engenharia de Redes de Comunicações TÓPICOS AVANÇADOS EM REDES ADVANCED TOPICS IN NETWORKS 2008-2009 Exemplos de Projecto - Network Design Examples 1 Hierarchical Network Design 2 Hierarchical
Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation
Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation Huibo Bi and Erol Gelenbe Intelligent Systems and Networks Group Department of Electrical and Electronic Engineering Imperial College
Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin *
Send Orders for Reprints to [email protected] 766 The Open Electrical & Electronic Engineering Journal, 2014, 8, 766-771 Open Access Research on Application of Neural Network in Computer Network
LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS
LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS Saranya.S 1, Menakambal.S 2 1 M.E., Embedded System Technologies, Nandha Engineering College (Autonomous), (India)
Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R.0, [email protected] Chapter 0: Version: April 8, 0 / Contents Chapter Description 0: Introduction
Exploring Big Data in Social Networks
Exploring Big Data in Social Networks [email protected] ([email protected]) INWEB National Science and Technology Institute for Web Federal University of Minas Gerais - UFMG May 2013 Some thoughts about
A REPORT ON ANALYSIS OF OSPF ROUTING PROTOCOL NORTH CAROLINA STATE UNIVERSITY
A REPORT ON ANALYSIS OF OSPF ROUTING PROTOCOL Using OPNET 14.5 Modeler NORTH CAROLINA STATE UNIVERSITY SUBMITTED BY: SHOBHANK SHARMA [email protected] Page 1 ANALYSIS OF OSPF ROUTING PROTOCOL A. Introduction
arxiv:physics/0601033 v1 6 Jan 2006
Analysis of telephone network traffic based on a complex user network Yongxiang Xia, Chi K. Tse, Francis C. M. Lau, Wai Man Tam, Michael Small arxiv:physics/0601033 v1 6 Jan 2006 Department of Electronic
SOCIAL NETWORK ANALYSIS EVALUATING THE CUSTOMER S INFLUENCE FACTOR OVER BUSINESS EVENTS
SOCIAL NETWORK ANALYSIS EVALUATING THE CUSTOMER S INFLUENCE FACTOR OVER BUSINESS EVENTS Carlos Andre Reis Pinheiro 1 and Markus Helfert 2 1 School of Computing, Dublin City University, Dublin, Ireland
The Effect of Caches for Mobile Broadband Internet Access
The Effect of s for Mobile Jochen Eisl, Nokia Siemens Networks, Munich, Germany Haßlinger, Deutsche Telekom Technik,, Darmstadt, Germany IP-based content delivery: CDN & cache architecture Impact of access
Dynamic Load Balancing for Cluster-based Publish/Subscribe System
Dynamic Load Balancing for Cluster-based Publish/Subscribe System Hojjat Jafarpour, Sharad Mehrotra and Nalini Venkatasubramanian Department of Computer Science University of California, Irvine {hjafarpo,
Costs and Benefits of Reputation Management Systems
Costs and Benefits of Reputation Management Systems Roberto G. Cascella University of Trento Dipartimento di Ingegneria e Scienza dell Informazione Via Sommarive 14, I-381 Povo (TN), Italy [email protected]
ModelingandSimulationofthe OpenSourceSoftware Community
ModelingandSimulationofthe OpenSourceSoftware Community Yongqin Gao, GregMadey Departmentof ComputerScience and Engineering University ofnotre Dame ygao,[email protected] Vince Freeh Department of ComputerScience
The Network Structure of Hard Combinatorial Landscapes
The Network Structure of Hard Combinatorial Landscapes Marco Tomassini 1, Sebastien Verel 2, Gabriela Ochoa 3 1 University of Lausanne, Lausanne, Switzerland 2 University of Nice Sophia-Antipolis, France
How To Understand The Power Of Icdn
MobiArch 2014 R-iCDN: an Approach Supporting Flexible Content Routing for ISP-operated CDN Song Ci High Performance Network Lab, Institute of Acoustics, Chinese Academy of Sciences Outline I. Background
Proposition of a new approach to adapt SIP protocol to Ad hoc Networks
, pp.133-148 http://dx.doi.org/10.14257/ijseia.2014.8.7,11 Proposition of a new approach to adapt SIP protocol to Ad hoc Networks I. Mourtaji, M. Bouhorma, M. Benahmed and A. Bouhdir Computer and Communication
A Survey on Load Balancing Techniques Using ACO Algorithm
A Survey on Load Balancing Techniques Using ACO Algorithm Preeti Kushwah Department of Computer Science & Engineering, Acropolis Institute of Technology and Research Indore bypass road Mangliya square
How To Build A Clustered Storage Area Network (Csan) From Power All Networks
Power-All Networks Clustered Storage Area Network: A scalable, fault-tolerant, high-performance storage system. Power-All Networks Ltd Abstract: Today's network-oriented computing environments require
Quality of Service Routing Network and Performance Evaluation*
Quality of Service Routing Network and Performance Evaluation* Shen Lin, Cui Yong, Xu Ming-wei, and Xu Ke Department of Computer Science, Tsinghua University, Beijing, P.R.China, 100084 {shenlin, cy, xmw,
Internet (IPv4) Topology Mapping. Department of Computer Science The University of Texas at Dallas
Internet (IPv4) Topology Mapping Kamil Sarac ([email protected]) Department of Computer Science The University of Texas at Dallas Internet topology measurement/mapping Need for Internet topology measurement
Driving Value From Big Data
Big Data Executive Forum Data Discovery, Modern Architecture & Visualization Driving Value From Big Data Bill Franks Chief Analytics Officer, Teradata It s Not So Much Big Data As it is different data.
On Design Principles for Self-Organizing Network Functions. IWSON @ ISWCS, Barcelona, August 2014
On Design Principles for Self-Organizing Network Functions IWSON @ ISWCS, Barcelona, August 2014 Means to Manage Potential SON Conflicts When introducing automation features such as SON, there can be concerns
Towards a Load Balancing in a Three-level Cloud Computing Network
Towards a Load Balancing in a Three-level Cloud Computing Network Shu-Ching Wang, Kuo-Qin Yan * (Corresponding author), Wen-Pin Liao and Shun-Sheng Wang Chaoyang University of Technology Taiwan, R.O.C.
