1.204 Final Project Network Analysis of Urban Street Patterns

Size: px
Start display at page:

Download "1.204 Final Project Network Analysis of Urban Street Patterns"

Transcription

1 1.204 Final Project Network Analysis of Urban Street Patterns Michael T. Chang December 21, Introduction In this project, I analyze road networks as a planar graph and use tools from network analysis to measure its structural properties. Network analysis provides a new way to quantify properties of road networks, which allows us to compare cities and regions with different road layouts. This is particularly useful in comparing different road layouts, which was the approach in [Cardillo et al., 2006]. In [Cardillo et al., 2006], road layouts across the world were divided into six categories. For example, New York City has a grid-iron layout, consisting of a planned grid of perpendicular streets. London has a medieval layout, consisting of randomly-oriented streets, resulting from unplanned growth, and is usually found in older cities. Irvine, California has a lollipop layout, consisting of many cul-de-sacs and dead ends, which is a layout often found in surburban areas. While it is easy to see that these layouts differ from one another, we will use network properties, like cost and efficiency, to quantify the difference. 2 Methods and data 2.1 Representing roads as a network There are two ways that a road network can represented as a mathematical graph. The first way is a primal representation, where intersections are nodes, streets are edges, and street lengths are weights, resulting in an undirected, weighted network. This representation is intuitive, because when visualized it resembles a map, as in Figure 1. It also the road s spatial information of locations and lengths. The alternative is a dual representation, where nodes are streets and edges are intersections. This representation discards the spatial info since long streets with many intersections are collapsed into singles nodes with many edges. This representation focuses on the connectivity of the streets and is more useful for studying certain properties, like betweenness centrality, as in [Crucitti et al., 2006]. An algorithm for creating a dual representation are described in [Masucci et al., 2009]. Choosing between a primal and dual representation depends on what properties of the road network are to be studied. For this project, I wanted to focus on the spatial and geographical properties, so the primal representation of a network was the better choice. 2.2 Data The two cities chosen for study in my project are San Francisco, CA, USA, and Oldenburg, Germany. San Francisco, being relatively modern, has large areas with a grid-iron layout, whereas 1

2 Figure 1: Primal representation of San Francisco s street network, containing 9322 nodes and edges. Oldenburg is a much older cities, with a largely medieval road layout. The primal representations of the road networks of these cities are shown in Figures 1 and 2. The data used for this project was obtained online. It was provided by the Computer Science department at Florida State University 1, as text files with spatial locations of nodes and connectivity of edges. They also have data on a number of other road networks, including other cities and highways in North America. There are some flaws in the data (e.g. intersections that don t actually exist), but these errors are small and will have a negligible impact on the network properties we will measure. 2.3 Network properties of interest In measuring network properties of road networks, I follow the same approach as in [Cardillo et al., 2006]. There are three structural properties that will be analyzed: the meshedness coefficient, the cost, and the efficiency. The meshedness coefficient M measures the degree of clustering. It is defined as M = F/F max, where F is the number of faces in the graph, and F max is the number of faces in the maximally connected graph. The formulas for these quantities, as given in [Cardillo et al., 2006], in a graph with N nodes and K edges are F = K N + 1 and F max = 2N 5. The meshedness coefficient is a replacement for the clustering coefficient that we are familiar with from class. The clustering coefficient is unsuitable for planar graphs, because it only counts triangles, whereas larger cycles 1 2

3 Figure 2: Primal representation of Oldenburg s street network, containing 6105 nodes and 7035 edges. 3

4 Figure 3: Demonstration of how network efficiency is calculated. The blue line represents the Euclidean distance between two nodes in the network, and the red line traces the shortest path between the points through the network. The efficiency for these two points is the ratio between the length of the blue and the red line. Global network efficiency is the average of this ratio, for all pairs of nodes. (squares, etc.) are important features of road networks. An illustration of this problem is that many different planar graphs all have clustering coefficient of 0, such as a square grid and a tree. The cost W is defined as the sum of the lengths of all edges in the network. It is related to the real cost of the road network, since the cost of building and maintaining roads increases with the amount of roads built. The cost is given by the formula: W = i,j a ij l ij (1) The efficiency E of a network represents the efficiency of flow within the network, namely how easily it is to get from one node to another. The local measure of efficiency, for a pair of nodes i and j, is the ratio of the Euclidean distance d Eucl ij to the distance along the shortest path through the network d ij. This is illustrated in Figure 3. The global efficiency of the network is the average value of efficiency for every pair of nodes, and is given by the formula: E = 1 N(N 1) i,j,i j d Eucl ij d ij (2) 2.4 Theoretical cases as baselines for comparison In other studies of networks, the random graph and the complete graph frequently serve as extreme cases and are useful for comparison. However, these theoretical models not appropriate for planar graphs, because the networks have intersecting edges. Instead, [Cardillo et al., 2006] proposes new theoretical models to represent the minimally-connected and maximally-connected cases. 4

5 Figure 4: Illustration of theoretical cases used for comparison. Top-left: Map of a part of Savannah, GA. Top-right: network representation of roads. Bottom-left: minimum-spanning tree of the network. Bottom-right: greedy triangulation of the network. Image reproduced from [Cardillo et al., 2006] The minimal case with the fewest number of edges is the minimally-spanning tree (MST). This is a tree uses the minimum number of edges to ensure that all nodes are connected in one component, and in a way that minimizes the total length of edges. The maximal case is the greedy triangulation (GT). This is a graph that creates a maximally-connected planar graph by drawing triangles between nodes wherever possible, but also minimizes the total length of edges. An example of these cases are depicted in Figure 4. The minimally-spanning trees for San Francisco and Oldenburg road networks used in this project are shown in Figures 5 and 6. Using these baseline cases, we define relative cost W rel and relative efficiency E rel. These are useful because it allows comparison across cities, since the values are normalized and account for differences in node layouts between cities. However, I didn t have time to write a greedy triangulation algorithm for the project, so only the MST is available for comparison. Consequently, I will be measuring cost of the network as a multiple of the cost of the MST, and measuring simply the absolute values of efficiency. W rel = W W MST W GT W MST (3) E rel = E EMST E GT E MST (4) 5

6 Figure 5: Minimum-spanning tree for San Francisco s street network Figure 6: Minimum-spanning tree for Oldenburg s street network. 6

7 Degree distribution San Francisco Oldenburg 0.5 Frequency, as a fraction Degree Figure 7: Degree distribution for street networks in San Francisco and Oldenburg. Notice that the average degree of Oldenburg s street network is lower, because its layout involves less 4-way intersections, which are usually only found in a grid-like layout. Compared to other networks, this degree distribution is very narrow, due to the planarity constraint. 3 Results 3.1 Degree distribution Figure 7 shows the distribution of node degree for both road networks. The very narrow range of degree is a result of the planarity constraint. The average degree is lower in Oldenburg than in San Francisco because its road layout uses 3-way intersections more than the 4-way ones found in grids. This is characteristic of an older street layout that was created in an unplanned, self-organized way. The results from [Cardillo et al., 2006] confirm this trend on a larger scale, where the findings indicate that, in general, P (k = 3) > P (k = 4) for self-organizaed street layouts, as in Cairo and Venice, but the reverse is true for planned cities, such as New York, San Francisco, and Washington. Figures 8 and 9 are maps of San Francisco and Oldenburg with intersections colored by node degree. The results are expected, and the map reinforces our expectation from what we see visually. Intersections in grid-like areas have degree 4, and intersections in areas with irregular street patterns (like the hilly area in SF, in Figure 8) have degree 3. Intersections in Oldenburg in general have lower degree overall. Interestingly, it appears that the nodes with higher degree are spaced randomly in SF, but are more concentrated in the city center for Oldenburg. This may reveal a tendency for roads to connect to existing intersections in self-organized growth, but not in pre-planned layouts. 7

8 Grid Degree 5900 Hills Figure 8: Map of node degree, for San Francisco s street network. Note the contrast in typical intersection degrees between the grid-like and hilly regions. Network Meshedness Cost Efficiency Coefficient (relative to MST) San Francisco, CA MST GT 1 Oldenburg, Germany MST GT 1 San Francisco, CA (Cardillo et. al) Irvine, CA (Cardillo et. al) London, UK (Cardillo et. al) Table 1: Network properties of road networks. The last three rows are taken from [Cardillo et al., 2006]. 8

9 Degree Figure 9: Map of node degree, for Oldenburg s street network. 9

10 3.2 Structural properties Table 1 compares the three properties of interest for various cities. Oldenburg has a much lower meshedness coefficient than San Francisco or any other grid-like city. This is expected, because grid-like cities have intersections that are more clustered, whereas medieval layouts may have intersections near each other but don t have a road between then. Irvine, CA also has a low meshedness coefficient, due to the disconnectedness of its roads. Low meshedness coefficient also reflects the relatively fewer number of streets compared to intersections in these cities. The road network in San Francisco costs 2.29 times more than its MST, but Oldenburg costs only 1.3 times more. The Oldenburg road network is more minimalist, containing fewer redundant connections, but this may increase difficulty in navigation. This may be a result of self-organized growth, because people may prefer to build streets only when absolutely necessary to connect two points. This difference in cost could be predicted from noticing that more streets are lost in building the MST for San Francisco than for Oldenburg. San Francisco s road network has a slightly higher efficiency than Oldenburg, and both have much higher than either MST, and Irvine. Interestingly, San Francisco s planned road network performs similarly to Oldenburg s self-organized network in terms of efficiency, despite having a higher cost. Also, notice that Irivine has a similar efficiency to the MSTs, which is expected, since the structure of the lollipop layout resembles an MST, consisting of a tree-like structure with many dead-ends. This result highlights the inefficiencies associated with such a road layout. 4 Conclusion These results can be useful in trying to design a transportation-effective and cost-effective road network. While in this project I only looked at the cost and efficiency of two cities, [Cardillo et al., 2006] compared 20 cities, and the results are shown in Figure 10. This graph plots each city on a graph of efficiency vs. cost. First, there seems to be an upper limit to efficiency. Secondly, we see that efficiency increases with cost, up to a certain point. It seems that the grid-iron layouts cost more than medieval layouts without achieving higher efficiency. Finally, the trend in this graph may imply an intrinsic trade-off between efficiency and cost independent of road layout. However, it is important to note that these metrics don t account other important properties of road networks, such as difficulty of navigation or amount of information required to locate an address. Further steps for this project would be to perform the analysis on larger-scale road networks (i.e. highways) to see if similar trends can be observed. I hypothesize that the network properties (meshedness coefficient, cost, and efficiency) would be different from those of local roads because highways are designed with different rules and goals. Future work could also account for other properties of road networks, such as betweenness centrality, traffic flows, or susceptibility to congestion. One possible question would be, how many roads can be removed before the network fails catastrophically and leads to congestion? References Alessio Cardillo, Salvatore Scellato, Vito Latora, and Sergio Porta. Structural properties of planar graphs of urban street patterns. Physical Review E, 73(6):066107, June ISSN doi: /PhysRevE URL

11 Figure 10: Efficiency vs. cost for various real-world road networks. Paolo Crucitti, Vito Latora, and Sergio Porta. Centrality measures in spatial networks of urban streets. Physical Review E, 73(3):036125, March ISSN doi: /PhysRevE URL a. P. Masucci, D. Smith, A. Crooks, and M. Batty. Random planar graphs and the London street network. The European Physical Journal B, 71(2): , August ISSN doi: /epjb/e URL epjb/e

A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS INTRODUCTION

A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS INTRODUCTION A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS Kyoungjin Park Alper Yilmaz Photogrammetric and Computer Vision Lab Ohio State University park.764@osu.edu yilmaz.15@osu.edu ABSTRACT Depending

More information

Social Media Mining. Network Measures

Social Media Mining. Network Measures Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

More information

Cluster Analysis: Advanced Concepts

Cluster Analysis: Advanced Concepts Cluster Analysis: Advanced Concepts and dalgorithms Dr. Hui Xiong Rutgers University Introduction to Data Mining 08/06/2006 1 Introduction to Data Mining 08/06/2006 1 Outline Prototype-based Fuzzy c-means

More information

Grade 6 Mathematics Performance Level Descriptors

Grade 6 Mathematics Performance Level Descriptors Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this

More information

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA facoltà di scienze matematiche, fisiche e naturali corso di laurea specialistica in fisica

UNIVERSITÀ DEGLI STUDI DI CATANIA facoltà di scienze matematiche, fisiche e naturali corso di laurea specialistica in fisica UNIVERSITÀ DEGLI STUDI DI CATANIA facoltà di scienze matematiche, fisiche e naturali corso di laurea specialistica in fisica Alessio Vincenzo Cardillo Structural Properties of Planar Graphs of Urban Street

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

More information

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014 Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R.0, steen@cs.vu.nl Chapter 0: Version: April 8, 0 / Contents Chapter Description 0: Introduction

More information

Measurement with Ratios

Measurement with Ratios Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

More information

NEW MEXICO Grade 6 MATHEMATICS STANDARDS

NEW MEXICO Grade 6 MATHEMATICS STANDARDS PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

More information

A MEASURE OF GLOBAL EFFICIENCY IN NETWORKS. Aysun Aytac 1, Betul Atay 2. Faculty of Science Ege University 35100, Bornova, Izmir, TURKEY

A MEASURE OF GLOBAL EFFICIENCY IN NETWORKS. Aysun Aytac 1, Betul Atay 2. Faculty of Science Ege University 35100, Bornova, Izmir, TURKEY International Journal of Pure and Applied Mathematics Volume 03 No. 05, 6-70 ISSN: 3-8080 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/0.73/ijpam.v03i.5

More information

Mathematics. Mathematical Practices

Mathematics. Mathematical Practices Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with

More information

Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network

Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network , pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and

More information

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

More information

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

More information

STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and

STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and Clustering Techniques and STATISTICA Case Study: Defining Clusters of Shopping Center Patrons STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table

More information

Gautam Appa and H. Paul Williams A formula for the solution of DEA models

Gautam Appa and H. Paul Williams A formula for the solution of DEA models Gautam Appa and H. Paul Williams A formula for the solution of DEA models Working paper Original citation: Appa, Gautam and Williams, H. Paul (2002) A formula for the solution of DEA models. Operational

More information

Performance Level Descriptors Grade 6 Mathematics

Performance Level Descriptors Grade 6 Mathematics Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with

More information

Math. MCC6.RP.1 Understand the concept of a ratio and use

Math. MCC6.RP.1 Understand the concept of a ratio and use MCC6.RP.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, The ratio of wings to beaks in the bird house at the zoo was 2:1,

More information

COMPARING MATRIX-BASED AND GRAPH-BASED REPRESENTATIONS FOR PRODUCT DESIGN

COMPARING MATRIX-BASED AND GRAPH-BASED REPRESENTATIONS FOR PRODUCT DESIGN 12 TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELLING CONFERENCE, 22 23 JULY 2010, CAMBRIDGE, UK COMPARING MATRIX-BASED AND GRAPH-BASED REPRESENTATIONS FOR PRODUCT DESIGN Andrew H Tilstra 1, Matthew I

More information

Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret.

Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret. Programming project Task Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret. Obtaining data This project focuses upon cocktail ingredients. Data was

More information

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu

More information

Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model. An Oracle Technical White Paper May 2005

Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model. An Oracle Technical White Paper May 2005 Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model An Oracle Technical White Paper May 2005 Building GIS Applications Using the Oracle Spatial Network Data Model

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

MATHEMATICAL THOUGHT AND PRACTICE. Chapter 7: The Mathematics of Networks The Cost of Being Connected

MATHEMATICAL THOUGHT AND PRACTICE. Chapter 7: The Mathematics of Networks The Cost of Being Connected MATHEMATICAL THOUGHT AND PRACTICE Chapter 7: The Mathematics of Networks The Cost of Being Connected Network A network is a graph that is connected. In this context the term is most commonly used when

More information

1 Strategic Planning Matrix v1,0 User s Guide

1 Strategic Planning Matrix v1,0 User s Guide 1 Strategic Planning Matrix v1,0 User s Guide Page 1 2 Strategic Planning Matrix v1,0 User s Guide Table of Contents Introduction... 4 Core Strategic Planning Matrix Concepts... 4 Metrics... 4 Matrix Properties...

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

Graph Mining and Social Network Analysis

Graph Mining and Social Network Analysis Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

Multi-Robot Traffic Planning Using ACO

Multi-Robot Traffic Planning Using ACO Multi-Robot Traffic Planning Using ACO DR. ANUPAM SHUKLA, SANYAM AGARWAL ABV-Indian Institute of Information Technology and Management, Gwalior INDIA Sanyam.iiitm@gmail.com Abstract: - Path planning is

More information

Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints

Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints Michael Bauer, Srinivasan Ravichandran University of Wisconsin-Madison Department of Computer Sciences {bauer, srini}@cs.wisc.edu

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Graph-theoretic Properties of Biological Networks COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Outline Architectural features Motifs, modules,

More information

Network-Based Tools for the Visualization and Analysis of Domain Models

Network-Based Tools for the Visualization and Analysis of Domain Models Network-Based Tools for the Visualization and Analysis of Domain Models Paper presented as the annual meeting of the American Educational Research Association, Philadelphia, PA Hua Wei April 2014 Visualizing

More information

Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003

Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003 Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation

More information

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

More information

Practical Graph Mining with R. 5. Link Analysis

Practical Graph Mining with R. 5. Link Analysis Practical Graph Mining with R 5. Link Analysis Outline Link Analysis Concepts Metrics for Analyzing Networks PageRank HITS Link Prediction 2 Link Analysis Concepts Link A relationship between two entities

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

Evaluation of a New Method for Measuring the Internet Degree Distribution: Simulation Results

Evaluation of a New Method for Measuring the Internet Degree Distribution: Simulation Results Evaluation of a New Method for Measuring the Internet Distribution: Simulation Results Christophe Crespelle and Fabien Tarissan LIP6 CNRS and Université Pierre et Marie Curie Paris 6 4 avenue du président

More information

Structural constraints in complex networks

Structural constraints in complex networks Structural constraints in complex networks Dr. Shi Zhou Lecturer of University College London Royal Academy of Engineering / EPSRC Research Fellow Part 1. Complex networks and three key topological properties

More information

VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR

VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR Andrew Goldstein Yale University 68 High Street New Haven, CT 06511 andrew.goldstein@yale.edu Alexander Thornton Shawn Kerrigan Locus Energy 657 Mission St.

More information

How To Find Local Affinity Patterns In Big Data

How To Find Local Affinity Patterns In Big Data Detection of local affinity patterns in big data Andrea Marinoni, Paolo Gamba Department of Electronics, University of Pavia, Italy Abstract Mining information in Big Data requires to design a new class

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

BPS Math Year at a Glance (Adapted from A Story Of Units Curriculum Maps in Mathematics K-5) 1

BPS Math Year at a Glance (Adapted from A Story Of Units Curriculum Maps in Mathematics K-5) 1 Grade 4 Key Areas of Focus for Grades 3-5: Multiplication and division of whole numbers and fractions-concepts, skills and problem solving Expected Fluency: Add and subtract within 1,000,000 Module M1:

More information

On the Placement of Management and Control Functionality in Software Defined Networks

On the Placement of Management and Control Functionality in Software Defined Networks On the Placement of Management and Control Functionality in Software Defined Networks D.Tuncer et al. Department of Electronic & Electrical Engineering University College London, UK ManSDN/NfV 13 November

More information

Big Ideas in Mathematics

Big Ideas in Mathematics Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards

More information

Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology

More information

NodeXL for Network analysis Demo/hands-on at NICAR 2012, St Louis, Feb 24. Peter Aldhous, San Francisco Bureau Chief. peter@peteraldhous.

NodeXL for Network analysis Demo/hands-on at NICAR 2012, St Louis, Feb 24. Peter Aldhous, San Francisco Bureau Chief. peter@peteraldhous. NodeXL for Network analysis Demo/hands-on at NICAR 2012, St Louis, Feb 24 Peter Aldhous, San Francisco Bureau Chief peter@peteraldhous.com NodeXL is a template for Microsoft Excel 2007 and 2010, which

More information

Chapter ML:XI (continued)

Chapter ML:XI (continued) Chapter ML:XI (continued) XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained

More information

Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills

Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate

More information

PREDICTIVE ANALYTICS vs HOT SPOTTING

PREDICTIVE ANALYTICS vs HOT SPOTTING PREDICTIVE ANALYTICS vs HOT SPOTTING A STUDY OF CRIME PREVENTION ACCURACY AND EFFICIENCY 2014 EXECUTIVE SUMMARY For the last 20 years, Hot Spots have become law enforcement s predominant tool for crime

More information

Dmitri Krioukov CAIDA/UCSD

Dmitri Krioukov CAIDA/UCSD Hyperbolic geometry of complex networks Dmitri Krioukov CAIDA/UCSD dima@caida.org F. Papadopoulos, M. Boguñá, A. Vahdat, and kc claffy Complex networks Technological Internet Transportation Power grid

More information

Part 2: Community Detection

Part 2: Community Detection Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

More information

Complex Network Analysis of Brain Connectivity: An Introduction LABREPORT 5

Complex Network Analysis of Brain Connectivity: An Introduction LABREPORT 5 Complex Network Analysis of Brain Connectivity: An Introduction LABREPORT 5 Fernando Ferreira-Santos 2012 Title: Complex Network Analysis of Brain Connectivity: An Introduction Technical Report Authors:

More information

Extracting Information from Social Networks

Extracting Information from Social Networks Extracting Information from Social Networks Aggregating site information to get trends 1 Not limited to social networks Examples Google search logs: flu outbreaks We Feel Fine Bullying 2 Bullying Xu, Jun,

More information

Predictive Analytics: Extracts from Red Olive foundational course

Predictive Analytics: Extracts from Red Olive foundational course Predictive Analytics: Extracts from Red Olive foundational course For more details or to speak about a tailored course for your organisation please contact: Jefferson Lynch: jefferson.lynch@red-olive.co.uk

More information

Midterm Practice Problems

Midterm Practice Problems 6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

More information

VISUALIZING HIERARCHICAL DATA. Graham Wills SPSS Inc., http://willsfamily.org/gwills

VISUALIZING HIERARCHICAL DATA. Graham Wills SPSS Inc., http://willsfamily.org/gwills VISUALIZING HIERARCHICAL DATA Graham Wills SPSS Inc., http://willsfamily.org/gwills SYNONYMS Hierarchical Graph Layout, Visualizing Trees, Tree Drawing, Information Visualization on Hierarchies; Hierarchical

More information

Hierarchical Data Visualization

Hierarchical Data Visualization Hierarchical Data Visualization 1 Hierarchical Data Hierarchical data emphasize the subordinate or membership relations between data items. Organizational Chart Classifications / Taxonomies (Species and

More information

An Introduction to The A* Algorithm

An Introduction to The A* Algorithm An Introduction to The A* Algorithm Introduction The A* (A-Star) algorithm depicts one of the most popular AI methods used to identify the shortest path between 2 locations in a mapped area. The A* algorithm

More information

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar

More information

Visualizing an Auto-Generated Topic Map

Visualizing an Auto-Generated Topic Map Visualizing an Auto-Generated Topic Map Nadine Amende 1, Stefan Groschupf 2 1 University Halle-Wittenberg, information manegement technology na@media-style.com 2 media style labs Halle Germany sg@media-style.com

More information

Coordination in vehicle routing

Coordination in vehicle routing Coordination in vehicle routing Catherine Rivers Mathematics Massey University New Zealand 00.@compuserve.com Abstract A coordination point is a place that exists in space and time for the transfer of

More information

Graph/Network Visualization

Graph/Network Visualization Graph/Network Visualization Data model: graph structures (relations, knowledge) and networks. Applications: Telecommunication systems, Internet and WWW, Retailers distribution networks knowledge representation

More information

USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS

USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu ABSTRACT This

More information

Distributed Caching Algorithms for Content Distribution Networks

Distributed Caching Algorithms for Content Distribution Networks Distributed Caching Algorithms for Content Distribution Networks Sem Borst, Varun Gupta, Anwar Walid Alcatel-Lucent Bell Labs, CMU BCAM Seminar Bilbao, September 30, 2010 Introduction Scope: personalized/on-demand

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

More information

IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks

IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks Zhibin Wu, Sachin Ganu and Dipankar Raychaudhuri WINLAB, Rutgers University 2006-11-16 IAB Research Review, Fall 2006 1 Contents

More information

For example, estimate the population of the United States as 3 times 10⁸ and the

For example, estimate the population of the United States as 3 times 10⁸ and the CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

Statistical and computational challenges in networks and cybersecurity

Statistical and computational challenges in networks and cybersecurity Statistical and computational challenges in networks and cybersecurity Hugh Chipman Acadia University June 12, 2015 Statistical and computational challenges in networks and cybersecurity May 4-8, 2015,

More information

Investment Analysis using the Portfolio Analysis Machine (PALMA 1 ) Tool by Richard A. Moynihan 21 July 2005

Investment Analysis using the Portfolio Analysis Machine (PALMA 1 ) Tool by Richard A. Moynihan 21 July 2005 Investment Analysis using the Portfolio Analysis Machine (PALMA 1 ) Tool by Richard A. Moynihan 21 July 2005 Government Investment Analysis Guidance Current Government acquisition guidelines mandate the

More information

Prentice Hall Mathematics: Course 1 2008 Correlated to: Arizona Academic Standards for Mathematics (Grades 6)

Prentice Hall Mathematics: Course 1 2008 Correlated to: Arizona Academic Standards for Mathematics (Grades 6) PO 1. Express fractions as ratios, comparing two whole numbers (e.g., ¾ is equivalent to 3:4 and 3 to 4). Strand 1: Number Sense and Operations Every student should understand and use all concepts and

More information

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Nil Items included with

More information

Algebra 1 Course Information

Algebra 1 Course Information Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

More information

How Maps Can Help You Visualize and Understand Management Data

How Maps Can Help You Visualize and Understand Management Data How Maps Can Help You Visualize and Understand Management Data By Rees Morrison Altman Weil, Inc. Copyright 2015 Altman Weil, Inc., Newtown Square, PA, USA All rights for further publication or reproduction

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

In this chapter, you will learn improvement curve concepts and their application to cost and price analysis.

In this chapter, you will learn improvement curve concepts and their application to cost and price analysis. 7.0 - Chapter Introduction In this chapter, you will learn improvement curve concepts and their application to cost and price analysis. Basic Improvement Curve Concept. You may have learned about improvement

More information

DesCartes (Combined) Subject: Mathematics Goal: Data Analysis, Statistics, and Probability

DesCartes (Combined) Subject: Mathematics Goal: Data Analysis, Statistics, and Probability DesCartes (Combined) Subject: Mathematics Goal: Data Analysis, Statistics, and Probability RIT Score Range: Below 171 Below 171 171-180 Data Analysis and Statistics Data Analysis and Statistics Solves

More information

Support Vector Machines with Clustering for Training with Very Large Datasets

Support Vector Machines with Clustering for Training with Very Large Datasets Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France theodoros.evgeniou@insead.fr Massimiliano

More information

Title: Integrating Management of Truck and Rail Systems in LA. INTERIM REPORT August 2015

Title: Integrating Management of Truck and Rail Systems in LA. INTERIM REPORT August 2015 Title: Integrating Management of Truck and Rail Systems in LA Project Number: 3.1a Year: 2013-2017 INTERIM REPORT August 2015 Principal Investigator Maged Dessouky Researcher Lunce Fu MetroFreight Center

More information

Network Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan

Network Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan Network Metrics, Planar Graphs, and Software Tools Based on materials by Lala Adamic, UMichigan Network Metrics: Bowtie Model of the Web n The Web is a directed graph: n webpages link to other webpages

More information

Overview for Families

Overview for Families unit: Ratios and Rates Mathematical strand: Number The following pages will help you to understand the mathematics that your child is currently studying as well as the type of problems (s)he will solve

More information

TIBCO Spotfire Network Analytics 1.1. User s Manual

TIBCO Spotfire Network Analytics 1.1. User s Manual TIBCO Spotfire Network Analytics 1.1 User s Manual Revision date: 26 January 2009 Important Information SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR BUNDLED TIBCO

More information

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014 Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

9. Text & Documents. Visualizing and Searching Documents. Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08

9. Text & Documents. Visualizing and Searching Documents. Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08 9. Text & Documents Visualizing and Searching Documents Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08 Slide 1 / 37 Outline Characteristics of text data Detecting patterns SeeSoft

More information

Slope Density. Appendix F F-1 STATEMENT OF PURPOSE DISCUSSION OF SLOPE

Slope Density. Appendix F F-1 STATEMENT OF PURPOSE DISCUSSION OF SLOPE Appendix F Slope Density F-1 STATEMENT OF PURPOSE This document has been prepared with the intent of acquainting the general reader with the slope-density approach to determining the intensity of residential

More information

MACMILLAN/McGRAW-HILL. MATH CONNECTS and IMPACT MATHEMATICS WASHINGTON STATE MATHEMATICS STANDARDS. ESSENTIAL ACADEMIC LEARNING REQUIREMENTS (EALRs)

MACMILLAN/McGRAW-HILL. MATH CONNECTS and IMPACT MATHEMATICS WASHINGTON STATE MATHEMATICS STANDARDS. ESSENTIAL ACADEMIC LEARNING REQUIREMENTS (EALRs) MACMILLAN/McGRAW-HILL MATH CONNECTS and IMPACT MATHEMATICS TO WASHINGTON STATE MATHEMATICS STANDARDS ESSENTIAL ACADEMIC LEARNING REQUIREMENTS (EALRs) And GRADE LEVEL EXPECTATIONS (GLEs) / Edition, Copyright

More information

Measurement-aware Monitor Placement and Routing

Measurement-aware Monitor Placement and Routing Measurement-aware Monitor Placement and Routing A Joint Optimization Approach for Network-Wide Measurements Guanyao Huang 1 Chia-Wei Chang Chen-Nee Chuah 1 Bill Lin 1 University of California at Davis,

More information

Mining Social-Network Graphs

Mining Social-Network Graphs 342 Chapter 10 Mining Social-Network Graphs There is much information to be gained by analyzing the large-scale data that is derived from social networks. The best-known example of a social network is

More information

Cloud Computing is NP-Complete

Cloud Computing is NP-Complete Working Paper, February 2, 20 Joe Weinman Permalink: http://www.joeweinman.com/resources/joe_weinman_cloud_computing_is_np-complete.pdf Abstract Cloud computing is a rapidly emerging paradigm for computing,

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand

More information

Methodology for Emulating Self Organizing Maps for Visualization of Large Datasets

Methodology for Emulating Self Organizing Maps for Visualization of Large Datasets Methodology for Emulating Self Organizing Maps for Visualization of Large Datasets Macario O. Cordel II and Arnulfo P. Azcarraga College of Computer Studies *Corresponding Author: macario.cordel@dlsu.edu.ph

More information

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

More information

Course: Model, Learning, and Inference: Lecture 5

Course: Model, Learning, and Inference: Lecture 5 Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 yuille@stat.ucla.edu Abstract Probability distributions on structured representation.

More information