Measurement-aware Monitor Placement and Routing

Size: px
Start display at page:

Download "Measurement-aware Monitor Placement and Routing"

Transcription

1 Measurement-aware Monitor Placement and Routing A Joint Optimization Approach for Network-Wide Measurements Guanyao Huang 1 Chia-Wei Chang Chen-Nee Chuah 1 Bill Lin 1 University of California at Davis, CA USA University of California at San Diego, CA USA 010

2 task: measure network traffic with limited resources and QoS constraints in mind

3 question: which monitors should be activated, how to route traffic over them to maximize measurement gain, given limited resources

4 current state of the art

5 pick monitor locations without changing routing decison

6 might miss important traffic

7 decide on routing based on static monitors (MeasuRouting)

8 might violate QoS constraints

9 MMPR Motivational Example

10 find monitor locations first, then use MeasuRouting

11 maximize measurement resolution function β β = y θ (i,j) E I y p (i,j) u (i,j) Γ x y Υ x G(V, E) - network graph V - set of nodes E - set of edges (i, j) - tuple denoting edge in E θ - mutually exclusive flowsets x - an OD pair Υ x - set of flowsets belonging to OD pair x y - flowset, part of an Υ x I y - measurement utility of flowset y u (i,j) - boolean monitor placement for link (i, j) p i,j - sampling rate of link (i, j) Γ x y Υ x - original routing γ y θ (i,j) E - traffic demand flowset y places on link (i, j) ψ y - traffic demand of flowset y

12 search for best γ y (i,j) and u (i,j) assignments in network with M nodes, minimizing β with limiting amount of monitors to K

13 K-Best algorithm 1. start with All-On configuration, calculate maximum β and optimal traffic assignment γ y i,j. rank monitors according to a metric least utility y p (i,j)γ y (i,j) I y least traffic y γy (i,j) ψ y least importance y γy (i,j) I y least rate p (i,j) least neighbours 3. remove the top M-K monitors

14 Successive Selection

15 Greedy Algorithm

16 Quasi-Greedy Algorithm

17 Experimental Evaluation I y = f v y i f b f Abilene public academic network in the US 11 nodes 8 10Gbps links AS6461 RocketFuel (Topology Mapping Engine) topology 19 nodes 68 links GEANT European research/education network 3 nodes 74 (155Mbps - 10Gbps) links

18 All-On, Placement-only, MR-only, β Abiliene 10 x All On Placement only MR only β AS x All On 1 Placement only MR only β GEANT 4 x All On 1 Placement only MR only

19 MMPR performance using K-Best β Abiliene 10 x KB/utility KB/traffic 4 KB/importance KB/rate KB/neighbor β AS x KB/utility KB/traffic KB/importance 1 KB/rate KB/neighbor β GEANT 4 x KB/utility KB/traffic KB/importance 1 KB/rate KB/neighbor KB/utility 0.11 KB/traffic KB/importance KB/rate KB/neighbor CPU Time AS KB/utility KB/traffic 1.1 KB/importance KB/rate KB/neighbor CPU Time GEANT KB/utility KB/traffic 1.6 KB/importance KB/rate KB/neighbor

20 MMPR performance using Successive Selection β Abiliene 10 x SS/utility SS/traffic SS/importance β AS x SS/utility SS/traffic SS/importance β GEANT 3.5 x SS/utility SS/traffic SS/importance

21 MMPR performance using Quasi-Greedy β AS x QG/λ=0.05 QG/λ=0.1 QG/λ=0. CPU Time AS QG/λ=0.05 QG/λ=0.1 QG/λ=

22 Compare different heuristics 3 x x x 106 β Abiliene KB/utility SS/utility QG/λ=0.15 β AS KB/utility SS/utility QG/λ=0.15 β GEANT Network 3.5 KB/utility SS/utility QG/λ= CPU Time Abiliene 3 1 KB/utility SS/utility QG/λ= CPU Time AS KB/utility SS/utility QG/λ= CPU Time GEANT KB/utility SS/utility QG/λ=

23 best choice: K-Best using least utility reduces computation time by 3X, 46X and 33X for Abilene, AS6461 and GEANT respectively produces near optimal solution

24 opportunities sampling rates as another degree of freedom future implementation in OpenFlow (programmable routing platform) issues in practice how to select traffic importance? what routing protocol? how to estimate flow importance dynamically? how to configure routing tables dynamically?

25 questions?

On the effect of forwarding table size on SDN network utilization

On the effect of forwarding table size on SDN network utilization IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz

More information

Bandwidth Allocation in a Network Virtualization Environment

Bandwidth Allocation in a Network Virtualization Environment Bandwidth Allocation in a Network Virtualization Environment Juan Felipe Botero [email protected] Xavier Hesselbach [email protected] Department of Telematics Technical University of Catalonia

More information

A Framework For Maximizing Traffic Monitoring Utility In Network V.Architha #1, Y.Nagendar *2

A Framework For Maximizing Traffic Monitoring Utility In Network V.Architha #1, Y.Nagendar *2 A Framework For Maximizing Traffic Monitoring Utility In Network V.Architha #1, Y.Nagendar *2 #1 M.Tech, CSE, SR Engineering College, Warangal, Andhra Pradesh, India *2 Assistant Professor, Department

More information

Router Group Monitoring: Making Traffic Trajectory Error Detection More Efficient

Router Group Monitoring: Making Traffic Trajectory Error Detection More Efficient Router Group Monitoring: Making Traffic Trajectory Error Detection More Efficient Bo Zhang Guohui Wang Angela Yun Zhu T. S. Eugene Ng Department of Computer Science Rice University Abstract Detecting errors

More information

Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints

Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints Michael Bauer, Srinivasan Ravichandran University of Wisconsin-Madison Department of Computer Sciences {bauer, srini}@cs.wisc.edu

More information

DESIGN AND ANALYSIS OF TECHNIQUES FOR MAPPING VIRTUAL NETWORKS TO SOFTWARE- DEFINED NETWORK SUBSTRATES

DESIGN AND ANALYSIS OF TECHNIQUES FOR MAPPING VIRTUAL NETWORKS TO SOFTWARE- DEFINED NETWORK SUBSTRATES DESIGN AND ANALYSIS OF TECHNIQUES FOR MAPPING VIRTUAL NETWORKS TO SOFTWARE- DEFINED NETWORK SUBSTRATES Tran Song Dat Phuc - Uyanga Department of Computer Science and Engineering SeoulTech 2014 Table of

More information

CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks

CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks (or: How to Provide Security Monitoring as a Service in Clouds?) Seungwon Shin SUCCESS Lab Texas A&M University Email:

More information

Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 [email protected],

More information

Reformulating the monitor placement problem: Optimal Network-wide wide Sampling

Reformulating the monitor placement problem: Optimal Network-wide wide Sampling Reformulating the monitor placement problem: Optimal Network-wide wide Sampling Gianluca Iannaccone Intel Research @ Cambridge Joint work with: G. Cantieni,, P. Thiran (EPFL) C. Barakat (INRIA), C. Diot

More information

A hierarchical multicriteria routing model with traffic splitting for MPLS networks

A hierarchical multicriteria routing model with traffic splitting for MPLS networks A hierarchical multicriteria routing model with traffic splitting for MPLS networks João Clímaco, José Craveirinha, Marta Pascoal jclimaco@inesccpt, jcrav@deecucpt, marta@matucpt University of Coimbra

More information

Central Control over Distributed Routing fibbing.net

Central Control over Distributed Routing fibbing.net Central Control over Distributed Routing fibbing.net Stefano Vissicchio UCLouvain SIGCOMM 8th August 205 Joint work with O. Tilmans (UCLouvain), L. Vanbever (ETH Zurich) and J. Rexford (Princeton) SDN

More information

LOGICAL TOPOLOGY DESIGN Practical tools to configure networks

LOGICAL TOPOLOGY DESIGN Practical tools to configure networks LOGICAL TOPOLOGY DESIGN Practical tools to configure networks Guido. A. Gavilanes February, 2010 1 Introduction to LTD " Design a topology for specific requirements " A service provider must optimize its

More information

Adaptive Resource Management and Control in Software Defined Networks

Adaptive Resource Management and Control in Software Defined Networks 1 Adaptive Resource Management and Control in Software Defined Networks Daphne Tuncer, Marinos Charalambides, Stuart Clayman, and George Pavlou Abstract The heterogeneous nature of the applications, technologies

More information

Stability of QOS. Avinash Varadarajan, Subhransu Maji {avinash,smaji}@cs.berkeley.edu

Stability of QOS. Avinash Varadarajan, Subhransu Maji {avinash,smaji}@cs.berkeley.edu Stability of QOS Avinash Varadarajan, Subhransu Maji {avinash,smaji}@cs.berkeley.edu Abstract Given a choice between two services, rest of the things being equal, it is natural to prefer the one with more

More information

On the Placement of Management and Control Functionality in Software Defined Networks

On the Placement of Management and Control Functionality in Software Defined Networks On the Placement of Management and Control Functionality in Software Defined Networks D.Tuncer et al. Department of Electronic & Electrical Engineering University College London, UK ManSDN/NfV 13 November

More information

LOAD BALANCING IN WDM NETWORKS THROUGH DYNAMIC ROUTE CHANGES

LOAD BALANCING IN WDM NETWORKS THROUGH DYNAMIC ROUTE CHANGES LOAD BALANCING IN WDM NETWORKS THROUGH DYNAMIC ROUTE CHANGES S.Ramanathan 1, G.Karthik 1, Ms.G.Sumathi 2 1 Dept. of computer science Sri Venkateswara College of engineering, Sriperumbudur, 602 105. 2 Asst.professor,

More information

Beyond the Stars: Revisiting Virtual Cluster Embeddings

Beyond the Stars: Revisiting Virtual Cluster Embeddings Beyond the Stars: Revisiting Virtual Cluster Embeddings Matthias Rost Technische Universität Berlin September 7th, 2015, Télécom-ParisTech Joint work with Carlo Fuerst, Stefan Schmid Published in ACM SIGCOMM

More information

LEISURE: A Framework for Load-Balanced Network-Wide Traffic Measurement

LEISURE: A Framework for Load-Balanced Network-Wide Traffic Measurement LEISURE: A Framework for Load-Balanced Network-Wide Traffic Measurement Chia-Wei Chang, Guanyao Huang, Bill Lin, Chen-Nee Chuah University of California, San Diego, University of California, Davis ABSTRACT

More information

Experimentation driven traffic monitoring and engineering research

Experimentation driven traffic monitoring and engineering research Experimentation driven traffic monitoring and engineering research Amir KRIFA ([email protected]) 11/20/09 ECODE FP7 Project 1 Outline i. Future directions of Internet traffic monitoring and engineering

More information

Dynamic Network Resources Allocation in Grids through a Grid Network Resource Broker

Dynamic Network Resources Allocation in Grids through a Grid Network Resource Broker INGRID 2007 Instrumenting the GRID Second International Workshop on Distributed Cooperative Laboratories Session 2: Networking for the GRID Dynamic Network Resources Allocation in Grids through a Grid

More information

SDN IN WAN NETWORK PROGRAMMABILITY THROUGH CENTRALIZED PATH COMPUTATION. 1 st September 2014

SDN IN WAN NETWORK PROGRAMMABILITY THROUGH CENTRALIZED PATH COMPUTATION. 1 st September 2014 SDN IN WAN NETWORK PROGRAMMABILITY THROUGH CENTRALIZED PATH COMPUTATION st September 04 Aaron Tong Senior Manager High IQ Networking Centre of Excellence JUNIPER S AUTOMATION HORIZON SDN IS A JOURNEY NOT

More information

Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network

Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network 1 Gliederung Einführung Vergleich und Problemstellung Algorithmen Evaluation 2 Aspects Backbone Last mile access stationary commodity equipment

More information

EQ-BGP: an efficient inter-domain QoS routing protocol

EQ-BGP: an efficient inter-domain QoS routing protocol EQ-BGP: an efficient inter-domain QoS routing protocol Andrzej Beben Institute of Telecommunications Warsaw University of Technology Nowowiejska 15/19, 00-665 Warsaw, Poland [email protected] Abstract

More information

Hedera: Dynamic Flow Scheduling for Data Center Networks

Hedera: Dynamic Flow Scheduling for Data Center Networks Hedera: Dynamic Flow Scheduling for Data Center Networks Mohammad Al-Fares Sivasankar Radhakrishnan Barath Raghavan * Nelson Huang Amin Vahdat UC San Diego * Williams College - USENIX NSDI 2010 - Motivation!"#$%&'($)*

More information

Quality of Service Routing in Ad-Hoc Networks Using OLSR

Quality of Service Routing in Ad-Hoc Networks Using OLSR Quality of Service Routing in Ad-Hoc Networks Using OLSR Ying Ge Communications Research Centre [email protected] Thomas Kunz Carleton University [email protected] Louise Lamont Communications Research

More information

SHIN, WANG AND GU: A FIRST STEP TOWARDS NETWORK SECURITY VIRTUALIZATION: FROM CONCEPT TO PROTOTYPE 1

SHIN, WANG AND GU: A FIRST STEP TOWARDS NETWORK SECURITY VIRTUALIZATION: FROM CONCEPT TO PROTOTYPE 1 SHIN, WANG AND GU: A FIRST STEP TOWARDS NETWORK SECURITY VIRTUALIZATION: FROM CONCEPT TO PROTOTYPE 1 A First Step Towards Network Security Virtualization: From Concept To Prototype Seungwon Shin, Haopei

More information

Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis

Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Felipe Augusto Nunes de Oliveira - GRR20112021 João Victor Tozatti Risso - GRR20120726 Abstract. The increasing

More information

2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above

2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above CCNA1 V3.0 Mod 10 (Ch 8) 1. How many bits are in an IP C. 64 2. What is the maximum value of each octet in an IP A. 28 55 C. 256 3. The network number plays what part in an IP A. It specifies the network

More information

Path Selection Methods for Localized Quality of Service Routing

Path Selection Methods for Localized Quality of Service Routing Path Selection Methods for Localized Quality of Service Routing Xin Yuan and Arif Saifee Department of Computer Science, Florida State University, Tallahassee, FL Abstract Localized Quality of Service

More information

A Scalable Monitoring Approach Based on Aggregation and Refinement

A Scalable Monitoring Approach Based on Aggregation and Refinement IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL 20, NO 4, MAY 2002 677 A Scalable Monitoring Approach Based on Aggregation and Refinement Yow-Jian Lin, Member, IEEE and Mun Choon Chan, Member, IEEE

More information

Kevin Webb, Alex Snoeren, Ken Yocum UC San Diego Computer Science March 29, 2011 Hot-ICE 2011

Kevin Webb, Alex Snoeren, Ken Yocum UC San Diego Computer Science March 29, 2011 Hot-ICE 2011 Topology witching for Data Center Networks Kevin Webb, Alex noeren, Ken Yocum UC an Diego Computer cience March 29, 2011 Hot-ICE 2011 Data Center Networks Hosting myriad of applications: Big data: MapReduce

More information

Proactive Surge Protection: A Defense Mechanism for Bandwidth-Based Attacks

Proactive Surge Protection: A Defense Mechanism for Bandwidth-Based Attacks Proactive Surge Protection: A Defense Mechanism for Bandwidth-Based Attacks Jerry Chou, Bill Lin University of California, San Diego Subhabrata Sen, Oliver Spatscheck AT&T Labs-Research USENIX Security

More information

Satisfiability Checking

Satisfiability Checking Satisfiability Checking SAT-Solving Prof. Dr. Erika Ábrahám Theory of Hybrid Systems Informatik 2 WS 10/11 Prof. Dr. Erika Ábrahám - Satisfiability Checking 1 / 40 A basic SAT algorithm Assume the CNF

More information

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE/ACM TRANSACTIONS ON NETWORKING 1 A Greedy Link Scheduler for Wireless Networks With Gaussian Multiple-Access and Broadcast Channels Arun Sridharan, Student Member, IEEE, C Emre Koksal, Member, IEEE,

More information

Search Heuristics for Load Balancing in IP-networks

Search Heuristics for Load Balancing in IP-networks Search Heuristics for Load Balancing in IP-networks Mattias Söderqvist Swedish Institute of Computer Science [email protected] 3rd March 25 SICS Technical Report T25:4 ISSN 11-3154 ISRN:SICS-T--25/4-SE Abstract

More information

Distributed Network Monitoring with Bounded Link Utilization in IP Networks

Distributed Network Monitoring with Bounded Link Utilization in IP Networks Distributed Network Monitoring with Bounded Link Utilization in IP Networks Li Li Center for Networking Research Lucent Bell Labs Marina Thottan Center for Networking Research Lucent Bell Labs Bin Yao

More information

Dynamic Controller Deployment in SDN

Dynamic Controller Deployment in SDN Dynamic Controller Deployment in SDN Marc Huang, Sherrill Lin, Dominic Yan Department of Computer Science, University of Toronto Table of Contents Introduction... 1 Background and Motivation... 1 Problem

More information

Hypothesis Testing for Network Security

Hypothesis Testing for Network Security Hypothesis Testing for Network Security Philip Godfrey, Matthew Caesar, David Nicol, William H. Sanders, Dong Jin INFORMATION TRUST INSTITUTE University of Illinois at Urbana-Champaign We need a science

More information

Using Adversary Structures to Analyze Network Models,

Using Adversary Structures to Analyze Network Models, MTAT.07.007 Graduate seminar in cryptography Using Adversary Structures to Analyze Network Models University of Tartu [email protected] 1 Outline of the talk Problems in distributed systems Adversary Structure

More information

TRUFFLE Broadband Bonding Network Appliance. A Frequently Asked Question on. Link Bonding vs. Load Balancing

TRUFFLE Broadband Bonding Network Appliance. A Frequently Asked Question on. Link Bonding vs. Load Balancing TRUFFLE Broadband Bonding Network Appliance A Frequently Asked Question on Link Bonding vs. Load Balancing 5703 Oberlin Dr Suite 208 San Diego, CA 92121 P:888.842.1231 F: 858.452.1035 [email protected]

More information

Wireless LAN Services for Hot-Spot

Wireless LAN Services for Hot-Spot Wireless LAN Services for Hot-Spot Woo-Yong Choi Electronics and Telecommunications Research Institute [email protected] ETRI Contents Overview Wireless LAN Services Current IEEE 802.11 MAC Protocol

More information

Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers

Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Ho Trong Viet, Yves Deville, Olivier Bonaventure, Pierre François ICTEAM, Université catholique de Louvain (UCL), Belgium.

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Probe Station Placement for Robust Monitoring of Networks

Probe Station Placement for Robust Monitoring of Networks Probe Station Placement for Robust Monitoring of Networks Maitreya Natu Dept. of Computer and Information Science University of Delaware Newark, DE, USA, 97 Email: [email protected] Adarshpal S. Sethi

More information

BEHAVIORAL SECURITY THREAT DETECTION STRATEGIES FOR DATA CENTER SWITCHES AND ROUTERS

BEHAVIORAL SECURITY THREAT DETECTION STRATEGIES FOR DATA CENTER SWITCHES AND ROUTERS BEHAVIORAL SECURITY THREAT DETECTION STRATEGIES FOR DATA CENTER SWITCHES AND ROUTERS Ram (Ramki) Krishnan, Brocade Communications Dilip Krishnaswamy, IBM Research Dave Mcdysan, Verizon AGENDA Introduction

More information

Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph

Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph Assignment #3 Routing and Network Analysis CIS3210 Computer Networks University of Guelph Part I Written (50%): 1. Given the network graph diagram above where the nodes represent routers and the weights

More information

Individual security and network design

Individual security and network design Individual security and network design Diego Cerdeiro Marcin Dziubiński Sanjeev Goyal FIT 2015 Motivation Networks often face external threats in form of strategic or random attacks The attacks can be

More information

NFV chaining, placement and orchestration

NFV chaining, placement and orchestration NFV chaining, placement and orchestration MATHIEU BOUET (THALES COMMUNICATIONS & SECURITY) www.thalesgroup.com Agenda NFV introduction vdpi placement problem Centrality-based heuristic Performance evaluation

More information

An Improved ACO Algorithm for Multicast Routing

An Improved ACO Algorithm for Multicast Routing An Improved ACO Algorithm for Multicast Routing Ziqiang Wang and Dexian Zhang School of Information Science and Engineering, Henan University of Technology, Zheng Zhou 450052,China [email protected]

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 9, September 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Experimental

More information

Open Source Network: Software-Defined Networking (SDN) and OpenFlow

Open Source Network: Software-Defined Networking (SDN) and OpenFlow Open Source Network: Software-Defined Networking (SDN) and OpenFlow Insop Song, Ericsson LinuxCon North America, Aug. 2012, San Diego CA Objectives Overview of OpenFlow Overview of Software Defined Networking

More information

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS 133 CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS The proposed scheduling algorithms along with the heuristic intensive weightage factors, parameters and ß and their impact on the performance of the algorithms

More information

THE last two decades have witnessed an exponential

THE last two decades have witnessed an exponential IEEE JSAC - SAMPLING 2006 1 Practical Beacon Placement for Link Monitoring Using Network Tomography Ritesh Kumar and Jasleen Kaur Abstract Recent interest in using tomography for network monitoring has

More information

Cracking Network Monitoring in DCNs with SDN

Cracking Network Monitoring in DCNs with SDN Cracking Network Monitoring in DCNs with SDN Zhiming Hu Jun Luo Nanyang Technological University Singapore by Jean-Philippe Gauthier Paper presenta*on Fall 2015 Cheriton School of Computer Science Faculty

More information

Towards Accurate Online Traffic Matrix Estimation in Software-Defined Networks

Towards Accurate Online Traffic Matrix Estimation in Software-Defined Networks Towards Accurate Online Traffic Matrix Estimation in Software-Defined Networks ABSTRACT Yanlei Gong [email protected] Sheng Wang [email protected] Xiong Wang [email protected] Shizhong Xu [email protected]

More information

Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol

Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol Lecture 2 : The DSDV Protocol Lecture 2.1 : The Distributed Bellman-Ford Algorithm Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol The Routing Problem S S D D The routing problem

More information

OpenFlow and Onix. OpenFlow: Enabling Innovation in Campus Networks. The Problem. We also want. How to run experiments in campus networks?

OpenFlow and Onix. OpenFlow: Enabling Innovation in Campus Networks. The Problem. We also want. How to run experiments in campus networks? OpenFlow and Onix Bowei Xu [email protected] [1] McKeown et al., "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM CCR, 38(2):69-74, Apr. 2008. [2] Koponen et al., "Onix: a Distributed Control

More information

Load Balancing Mechanisms in Data Center Networks

Load Balancing Mechanisms in Data Center Networks Load Balancing Mechanisms in Data Center Networks Santosh Mahapatra Xin Yuan Department of Computer Science, Florida State University, Tallahassee, FL 33 {mahapatr,xyuan}@cs.fsu.edu Abstract We consider

More information

Télécom SudParis. Djamal Zeghlache Professor. Département Réseaux et Services Multimédia Mobiles

Télécom SudParis. Djamal Zeghlache Professor. Département Réseaux et Services Multimédia Mobiles Télécom SudParis Djamal Zeghlache Professor Département Réseaux et Services Multimédia Mobiles Resource Management Group (in wireless, fixed and computer networks) Département RS2M Méthodes, modèles et

More information

Multi-Commodity Flow Traffic Engineering with Hybrid MPLS/OSPF Routing

Multi-Commodity Flow Traffic Engineering with Hybrid MPLS/OSPF Routing Multi-Commodity Flow Traffic Engineering with Hybrid MPLS/ Routing Mingui Zhang Tsinghua University Beijing, China [email protected] Bin Liu Tsinghua University Beijing, China [email protected]

More information

PortLand:! A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric

PortLand:! A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric PortLand:! A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya,

More information

Xiaoqiao Meng, Vasileios Pappas, Li Zhang IBM T.J. Watson Research Center Presented by: Payman Khani

Xiaoqiao Meng, Vasileios Pappas, Li Zhang IBM T.J. Watson Research Center Presented by: Payman Khani Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement Xiaoqiao Meng, Vasileios Pappas, Li Zhang IBM T.J. Watson Research Center Presented by: Payman Khani Overview:

More information

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

More information

Outline. EE 122: Interdomain Routing Protocol (BGP) BGP Routing. Internet is more complicated... Ion Stoica TAs: Junda Liu, DK Moon, David Zats

Outline. EE 122: Interdomain Routing Protocol (BGP) BGP Routing. Internet is more complicated... Ion Stoica TAs: Junda Liu, DK Moon, David Zats Outline EE 22: Interdomain Routing Protocol (BGP) Ion Stoica TAs: Junda Liu, DK Moon, David Zats http://inst.eecs.berkeley.edu/~ee22/fa9 (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues

More information

SOFTWARE DEFINED NETWORKS REALITY CHECK. DENOG5, Darmstadt, 14/11/2013 Carsten Michel

SOFTWARE DEFINED NETWORKS REALITY CHECK. DENOG5, Darmstadt, 14/11/2013 Carsten Michel SOFTWARE DEFINED NETWORKS REALITY CHECK DENOG5, Darmstadt, 14/11/2013 Carsten Michel Software Defined Networks (SDN)! Why Software Defined Networking? There s a hype in the industry!! Dispelling some myths

More information

CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING

CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING R.Kohila

More information

Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen

Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen Mobile Security Wireless Mesh Network Security Sascha Alexander Jopen Overview Introduction Wireless Ad-hoc Networks Wireless Mesh Networks Security in Wireless Networks Attacks on Wireless Mesh Networks

More information

Binary vs Analogue Path Monitoring in IP Networks

Binary vs Analogue Path Monitoring in IP Networks Binary vs Analogue Path Monitoring in IP Networks Hung X. Nguyen and Patrick Thiran School of Computer and Communication Sciences, EPFL CH-1015 Lausanne, Switzerland {hung.nguyen, patrick.thiran}@epfl.ch

More information

New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints

New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints Santosh Kulkarni 1, Reema Sharma 2,Ishani Mishra 3 1 Department of ECE, KSSEM Bangalore,MIEEE, MIETE & ISTE 2 Department

More information

Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach

Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach Fangming Liu 1,2 In collaboration with Jian Guo 1,2, Haowen Tang 1,2, Yingnan Lian 1,2, Hai Jin 2 and John C.S.

More information

A Resilient Path Management for BGP/MPLS VPN

A Resilient Path Management for BGP/MPLS VPN A Resilient Path Management for BGP/MPLS VPN APNOMS2003 1 Introduction APNOMS2003 2 APNOMS2003 3 BGP/MPLS VPN Configuration MPLS/MP-iBGP VPN 1 VPN 1 VPN 2 VPN 2 BGP/MPLS VPN Overview BGP/MPLS Virtual Private

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information