Measurement-aware Monitor Placement and Routing
|
|
|
- Bennett Day
- 10 years ago
- Views:
Transcription
1 Measurement-aware Monitor Placement and Routing A Joint Optimization Approach for Network-Wide Measurements Guanyao Huang 1 Chia-Wei Chang Chen-Nee Chuah 1 Bill Lin 1 University of California at Davis, CA USA University of California at San Diego, CA USA 010
2 task: measure network traffic with limited resources and QoS constraints in mind
3 question: which monitors should be activated, how to route traffic over them to maximize measurement gain, given limited resources
4 current state of the art
5 pick monitor locations without changing routing decison
6 might miss important traffic
7 decide on routing based on static monitors (MeasuRouting)
8 might violate QoS constraints
9 MMPR Motivational Example
10 find monitor locations first, then use MeasuRouting
11 maximize measurement resolution function β β = y θ (i,j) E I y p (i,j) u (i,j) Γ x y Υ x G(V, E) - network graph V - set of nodes E - set of edges (i, j) - tuple denoting edge in E θ - mutually exclusive flowsets x - an OD pair Υ x - set of flowsets belonging to OD pair x y - flowset, part of an Υ x I y - measurement utility of flowset y u (i,j) - boolean monitor placement for link (i, j) p i,j - sampling rate of link (i, j) Γ x y Υ x - original routing γ y θ (i,j) E - traffic demand flowset y places on link (i, j) ψ y - traffic demand of flowset y
12 search for best γ y (i,j) and u (i,j) assignments in network with M nodes, minimizing β with limiting amount of monitors to K
13 K-Best algorithm 1. start with All-On configuration, calculate maximum β and optimal traffic assignment γ y i,j. rank monitors according to a metric least utility y p (i,j)γ y (i,j) I y least traffic y γy (i,j) ψ y least importance y γy (i,j) I y least rate p (i,j) least neighbours 3. remove the top M-K monitors
14 Successive Selection
15 Greedy Algorithm
16 Quasi-Greedy Algorithm
17 Experimental Evaluation I y = f v y i f b f Abilene public academic network in the US 11 nodes 8 10Gbps links AS6461 RocketFuel (Topology Mapping Engine) topology 19 nodes 68 links GEANT European research/education network 3 nodes 74 (155Mbps - 10Gbps) links
18 All-On, Placement-only, MR-only, β Abiliene 10 x All On Placement only MR only β AS x All On 1 Placement only MR only β GEANT 4 x All On 1 Placement only MR only
19 MMPR performance using K-Best β Abiliene 10 x KB/utility KB/traffic 4 KB/importance KB/rate KB/neighbor β AS x KB/utility KB/traffic KB/importance 1 KB/rate KB/neighbor β GEANT 4 x KB/utility KB/traffic KB/importance 1 KB/rate KB/neighbor KB/utility 0.11 KB/traffic KB/importance KB/rate KB/neighbor CPU Time AS KB/utility KB/traffic 1.1 KB/importance KB/rate KB/neighbor CPU Time GEANT KB/utility KB/traffic 1.6 KB/importance KB/rate KB/neighbor
20 MMPR performance using Successive Selection β Abiliene 10 x SS/utility SS/traffic SS/importance β AS x SS/utility SS/traffic SS/importance β GEANT 3.5 x SS/utility SS/traffic SS/importance
21 MMPR performance using Quasi-Greedy β AS x QG/λ=0.05 QG/λ=0.1 QG/λ=0. CPU Time AS QG/λ=0.05 QG/λ=0.1 QG/λ=
22 Compare different heuristics 3 x x x 106 β Abiliene KB/utility SS/utility QG/λ=0.15 β AS KB/utility SS/utility QG/λ=0.15 β GEANT Network 3.5 KB/utility SS/utility QG/λ= CPU Time Abiliene 3 1 KB/utility SS/utility QG/λ= CPU Time AS KB/utility SS/utility QG/λ= CPU Time GEANT KB/utility SS/utility QG/λ=
23 best choice: K-Best using least utility reduces computation time by 3X, 46X and 33X for Abilene, AS6461 and GEANT respectively produces near optimal solution
24 opportunities sampling rates as another degree of freedom future implementation in OpenFlow (programmable routing platform) issues in practice how to select traffic importance? what routing protocol? how to estimate flow importance dynamically? how to configure routing tables dynamically?
25 questions?
On the effect of forwarding table size on SDN network utilization
IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz
Bandwidth Allocation in a Network Virtualization Environment
Bandwidth Allocation in a Network Virtualization Environment Juan Felipe Botero [email protected] Xavier Hesselbach [email protected] Department of Telematics Technical University of Catalonia
A Framework For Maximizing Traffic Monitoring Utility In Network V.Architha #1, Y.Nagendar *2
A Framework For Maximizing Traffic Monitoring Utility In Network V.Architha #1, Y.Nagendar *2 #1 M.Tech, CSE, SR Engineering College, Warangal, Andhra Pradesh, India *2 Assistant Professor, Department
Router Group Monitoring: Making Traffic Trajectory Error Detection More Efficient
Router Group Monitoring: Making Traffic Trajectory Error Detection More Efficient Bo Zhang Guohui Wang Angela Yun Zhu T. S. Eugene Ng Department of Computer Science Rice University Abstract Detecting errors
Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints
Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints Michael Bauer, Srinivasan Ravichandran University of Wisconsin-Madison Department of Computer Sciences {bauer, srini}@cs.wisc.edu
DESIGN AND ANALYSIS OF TECHNIQUES FOR MAPPING VIRTUAL NETWORKS TO SOFTWARE- DEFINED NETWORK SUBSTRATES
DESIGN AND ANALYSIS OF TECHNIQUES FOR MAPPING VIRTUAL NETWORKS TO SOFTWARE- DEFINED NETWORK SUBSTRATES Tran Song Dat Phuc - Uyanga Department of Computer Science and Engineering SeoulTech 2014 Table of
CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks
CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks (or: How to Provide Security Monitoring as a Service in Clouds?) Seungwon Shin SUCCESS Lab Texas A&M University Email:
Network (Tree) Topology Inference Based on Prüfer Sequence
Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 [email protected],
Reformulating the monitor placement problem: Optimal Network-wide wide Sampling
Reformulating the monitor placement problem: Optimal Network-wide wide Sampling Gianluca Iannaccone Intel Research @ Cambridge Joint work with: G. Cantieni,, P. Thiran (EPFL) C. Barakat (INRIA), C. Diot
A hierarchical multicriteria routing model with traffic splitting for MPLS networks
A hierarchical multicriteria routing model with traffic splitting for MPLS networks João Clímaco, José Craveirinha, Marta Pascoal jclimaco@inesccpt, jcrav@deecucpt, marta@matucpt University of Coimbra
Central Control over Distributed Routing fibbing.net
Central Control over Distributed Routing fibbing.net Stefano Vissicchio UCLouvain SIGCOMM 8th August 205 Joint work with O. Tilmans (UCLouvain), L. Vanbever (ETH Zurich) and J. Rexford (Princeton) SDN
LOGICAL TOPOLOGY DESIGN Practical tools to configure networks
LOGICAL TOPOLOGY DESIGN Practical tools to configure networks Guido. A. Gavilanes February, 2010 1 Introduction to LTD " Design a topology for specific requirements " A service provider must optimize its
Adaptive Resource Management and Control in Software Defined Networks
1 Adaptive Resource Management and Control in Software Defined Networks Daphne Tuncer, Marinos Charalambides, Stuart Clayman, and George Pavlou Abstract The heterogeneous nature of the applications, technologies
Stability of QOS. Avinash Varadarajan, Subhransu Maji {avinash,smaji}@cs.berkeley.edu
Stability of QOS Avinash Varadarajan, Subhransu Maji {avinash,smaji}@cs.berkeley.edu Abstract Given a choice between two services, rest of the things being equal, it is natural to prefer the one with more
On the Placement of Management and Control Functionality in Software Defined Networks
On the Placement of Management and Control Functionality in Software Defined Networks D.Tuncer et al. Department of Electronic & Electrical Engineering University College London, UK ManSDN/NfV 13 November
LOAD BALANCING IN WDM NETWORKS THROUGH DYNAMIC ROUTE CHANGES
LOAD BALANCING IN WDM NETWORKS THROUGH DYNAMIC ROUTE CHANGES S.Ramanathan 1, G.Karthik 1, Ms.G.Sumathi 2 1 Dept. of computer science Sri Venkateswara College of engineering, Sriperumbudur, 602 105. 2 Asst.professor,
Beyond the Stars: Revisiting Virtual Cluster Embeddings
Beyond the Stars: Revisiting Virtual Cluster Embeddings Matthias Rost Technische Universität Berlin September 7th, 2015, Télécom-ParisTech Joint work with Carlo Fuerst, Stefan Schmid Published in ACM SIGCOMM
LEISURE: A Framework for Load-Balanced Network-Wide Traffic Measurement
LEISURE: A Framework for Load-Balanced Network-Wide Traffic Measurement Chia-Wei Chang, Guanyao Huang, Bill Lin, Chen-Nee Chuah University of California, San Diego, University of California, Davis ABSTRACT
Experimentation driven traffic monitoring and engineering research
Experimentation driven traffic monitoring and engineering research Amir KRIFA ([email protected]) 11/20/09 ECODE FP7 Project 1 Outline i. Future directions of Internet traffic monitoring and engineering
Dynamic Network Resources Allocation in Grids through a Grid Network Resource Broker
INGRID 2007 Instrumenting the GRID Second International Workshop on Distributed Cooperative Laboratories Session 2: Networking for the GRID Dynamic Network Resources Allocation in Grids through a Grid
SDN IN WAN NETWORK PROGRAMMABILITY THROUGH CENTRALIZED PATH COMPUTATION. 1 st September 2014
SDN IN WAN NETWORK PROGRAMMABILITY THROUGH CENTRALIZED PATH COMPUTATION st September 04 Aaron Tong Senior Manager High IQ Networking Centre of Excellence JUNIPER S AUTOMATION HORIZON SDN IS A JOURNEY NOT
Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network
Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network 1 Gliederung Einführung Vergleich und Problemstellung Algorithmen Evaluation 2 Aspects Backbone Last mile access stationary commodity equipment
EQ-BGP: an efficient inter-domain QoS routing protocol
EQ-BGP: an efficient inter-domain QoS routing protocol Andrzej Beben Institute of Telecommunications Warsaw University of Technology Nowowiejska 15/19, 00-665 Warsaw, Poland [email protected] Abstract
Hedera: Dynamic Flow Scheduling for Data Center Networks
Hedera: Dynamic Flow Scheduling for Data Center Networks Mohammad Al-Fares Sivasankar Radhakrishnan Barath Raghavan * Nelson Huang Amin Vahdat UC San Diego * Williams College - USENIX NSDI 2010 - Motivation!"#$%&'($)*
Quality of Service Routing in Ad-Hoc Networks Using OLSR
Quality of Service Routing in Ad-Hoc Networks Using OLSR Ying Ge Communications Research Centre [email protected] Thomas Kunz Carleton University [email protected] Louise Lamont Communications Research
SHIN, WANG AND GU: A FIRST STEP TOWARDS NETWORK SECURITY VIRTUALIZATION: FROM CONCEPT TO PROTOTYPE 1
SHIN, WANG AND GU: A FIRST STEP TOWARDS NETWORK SECURITY VIRTUALIZATION: FROM CONCEPT TO PROTOTYPE 1 A First Step Towards Network Security Virtualization: From Concept To Prototype Seungwon Shin, Haopei
Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis
Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Felipe Augusto Nunes de Oliveira - GRR20112021 João Victor Tozatti Risso - GRR20120726 Abstract. The increasing
2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above
CCNA1 V3.0 Mod 10 (Ch 8) 1. How many bits are in an IP C. 64 2. What is the maximum value of each octet in an IP A. 28 55 C. 256 3. The network number plays what part in an IP A. It specifies the network
Path Selection Methods for Localized Quality of Service Routing
Path Selection Methods for Localized Quality of Service Routing Xin Yuan and Arif Saifee Department of Computer Science, Florida State University, Tallahassee, FL Abstract Localized Quality of Service
A Scalable Monitoring Approach Based on Aggregation and Refinement
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL 20, NO 4, MAY 2002 677 A Scalable Monitoring Approach Based on Aggregation and Refinement Yow-Jian Lin, Member, IEEE and Mun Choon Chan, Member, IEEE
Kevin Webb, Alex Snoeren, Ken Yocum UC San Diego Computer Science March 29, 2011 Hot-ICE 2011
Topology witching for Data Center Networks Kevin Webb, Alex noeren, Ken Yocum UC an Diego Computer cience March 29, 2011 Hot-ICE 2011 Data Center Networks Hosting myriad of applications: Big data: MapReduce
Proactive Surge Protection: A Defense Mechanism for Bandwidth-Based Attacks
Proactive Surge Protection: A Defense Mechanism for Bandwidth-Based Attacks Jerry Chou, Bill Lin University of California, San Diego Subhabrata Sen, Oliver Spatscheck AT&T Labs-Research USENIX Security
Satisfiability Checking
Satisfiability Checking SAT-Solving Prof. Dr. Erika Ábrahám Theory of Hybrid Systems Informatik 2 WS 10/11 Prof. Dr. Erika Ábrahám - Satisfiability Checking 1 / 40 A basic SAT algorithm Assume the CNF
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
IEEE/ACM TRANSACTIONS ON NETWORKING 1 A Greedy Link Scheduler for Wireless Networks With Gaussian Multiple-Access and Broadcast Channels Arun Sridharan, Student Member, IEEE, C Emre Koksal, Member, IEEE,
Search Heuristics for Load Balancing in IP-networks
Search Heuristics for Load Balancing in IP-networks Mattias Söderqvist Swedish Institute of Computer Science [email protected] 3rd March 25 SICS Technical Report T25:4 ISSN 11-3154 ISRN:SICS-T--25/4-SE Abstract
Distributed Network Monitoring with Bounded Link Utilization in IP Networks
Distributed Network Monitoring with Bounded Link Utilization in IP Networks Li Li Center for Networking Research Lucent Bell Labs Marina Thottan Center for Networking Research Lucent Bell Labs Bin Yao
Dynamic Controller Deployment in SDN
Dynamic Controller Deployment in SDN Marc Huang, Sherrill Lin, Dominic Yan Department of Computer Science, University of Toronto Table of Contents Introduction... 1 Background and Motivation... 1 Problem
Hypothesis Testing for Network Security
Hypothesis Testing for Network Security Philip Godfrey, Matthew Caesar, David Nicol, William H. Sanders, Dong Jin INFORMATION TRUST INSTITUTE University of Illinois at Urbana-Champaign We need a science
Using Adversary Structures to Analyze Network Models,
MTAT.07.007 Graduate seminar in cryptography Using Adversary Structures to Analyze Network Models University of Tartu [email protected] 1 Outline of the talk Problems in distributed systems Adversary Structure
TRUFFLE Broadband Bonding Network Appliance. A Frequently Asked Question on. Link Bonding vs. Load Balancing
TRUFFLE Broadband Bonding Network Appliance A Frequently Asked Question on Link Bonding vs. Load Balancing 5703 Oberlin Dr Suite 208 San Diego, CA 92121 P:888.842.1231 F: 858.452.1035 [email protected]
Wireless LAN Services for Hot-Spot
Wireless LAN Services for Hot-Spot Woo-Yong Choi Electronics and Telecommunications Research Institute [email protected] ETRI Contents Overview Wireless LAN Services Current IEEE 802.11 MAC Protocol
Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers
Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Ho Trong Viet, Yves Deville, Olivier Bonaventure, Pierre François ICTEAM, Université catholique de Louvain (UCL), Belgium.
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Probe Station Placement for Robust Monitoring of Networks
Probe Station Placement for Robust Monitoring of Networks Maitreya Natu Dept. of Computer and Information Science University of Delaware Newark, DE, USA, 97 Email: [email protected] Adarshpal S. Sethi
BEHAVIORAL SECURITY THREAT DETECTION STRATEGIES FOR DATA CENTER SWITCHES AND ROUTERS
BEHAVIORAL SECURITY THREAT DETECTION STRATEGIES FOR DATA CENTER SWITCHES AND ROUTERS Ram (Ramki) Krishnan, Brocade Communications Dilip Krishnaswamy, IBM Research Dave Mcdysan, Verizon AGENDA Introduction
Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph
Assignment #3 Routing and Network Analysis CIS3210 Computer Networks University of Guelph Part I Written (50%): 1. Given the network graph diagram above where the nodes represent routers and the weights
Individual security and network design
Individual security and network design Diego Cerdeiro Marcin Dziubiński Sanjeev Goyal FIT 2015 Motivation Networks often face external threats in form of strategic or random attacks The attacks can be
NFV chaining, placement and orchestration
NFV chaining, placement and orchestration MATHIEU BOUET (THALES COMMUNICATIONS & SECURITY) www.thalesgroup.com Agenda NFV introduction vdpi placement problem Centrality-based heuristic Performance evaluation
An Improved ACO Algorithm for Multicast Routing
An Improved ACO Algorithm for Multicast Routing Ziqiang Wang and Dexian Zhang School of Information Science and Engineering, Henan University of Technology, Zheng Zhou 450052,China [email protected]
International Journal of Advanced Research in Computer Science and Software Engineering
Volume 2, Issue 9, September 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Experimental
Open Source Network: Software-Defined Networking (SDN) and OpenFlow
Open Source Network: Software-Defined Networking (SDN) and OpenFlow Insop Song, Ericsson LinuxCon North America, Aug. 2012, San Diego CA Objectives Overview of OpenFlow Overview of Software Defined Networking
CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS
133 CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS The proposed scheduling algorithms along with the heuristic intensive weightage factors, parameters and ß and their impact on the performance of the algorithms
THE last two decades have witnessed an exponential
IEEE JSAC - SAMPLING 2006 1 Practical Beacon Placement for Link Monitoring Using Network Tomography Ritesh Kumar and Jasleen Kaur Abstract Recent interest in using tomography for network monitoring has
Cracking Network Monitoring in DCNs with SDN
Cracking Network Monitoring in DCNs with SDN Zhiming Hu Jun Luo Nanyang Technological University Singapore by Jean-Philippe Gauthier Paper presenta*on Fall 2015 Cheriton School of Computer Science Faculty
Towards Accurate Online Traffic Matrix Estimation in Software-Defined Networks
Towards Accurate Online Traffic Matrix Estimation in Software-Defined Networks ABSTRACT Yanlei Gong [email protected] Sheng Wang [email protected] Xiong Wang [email protected] Shizhong Xu [email protected]
Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol
Lecture 2 : The DSDV Protocol Lecture 2.1 : The Distributed Bellman-Ford Algorithm Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol The Routing Problem S S D D The routing problem
OpenFlow and Onix. OpenFlow: Enabling Innovation in Campus Networks. The Problem. We also want. How to run experiments in campus networks?
OpenFlow and Onix Bowei Xu [email protected] [1] McKeown et al., "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM CCR, 38(2):69-74, Apr. 2008. [2] Koponen et al., "Onix: a Distributed Control
Load Balancing Mechanisms in Data Center Networks
Load Balancing Mechanisms in Data Center Networks Santosh Mahapatra Xin Yuan Department of Computer Science, Florida State University, Tallahassee, FL 33 {mahapatr,xyuan}@cs.fsu.edu Abstract We consider
Télécom SudParis. Djamal Zeghlache Professor. Département Réseaux et Services Multimédia Mobiles
Télécom SudParis Djamal Zeghlache Professor Département Réseaux et Services Multimédia Mobiles Resource Management Group (in wireless, fixed and computer networks) Département RS2M Méthodes, modèles et
Multi-Commodity Flow Traffic Engineering with Hybrid MPLS/OSPF Routing
Multi-Commodity Flow Traffic Engineering with Hybrid MPLS/ Routing Mingui Zhang Tsinghua University Beijing, China [email protected] Bin Liu Tsinghua University Beijing, China [email protected]
PortLand:! A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric
PortLand:! A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya,
Xiaoqiao Meng, Vasileios Pappas, Li Zhang IBM T.J. Watson Research Center Presented by: Payman Khani
Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement Xiaoqiao Meng, Vasileios Pappas, Li Zhang IBM T.J. Watson Research Center Presented by: Payman Khani Overview:
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems
Outline. EE 122: Interdomain Routing Protocol (BGP) BGP Routing. Internet is more complicated... Ion Stoica TAs: Junda Liu, DK Moon, David Zats
Outline EE 22: Interdomain Routing Protocol (BGP) Ion Stoica TAs: Junda Liu, DK Moon, David Zats http://inst.eecs.berkeley.edu/~ee22/fa9 (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues
SOFTWARE DEFINED NETWORKS REALITY CHECK. DENOG5, Darmstadt, 14/11/2013 Carsten Michel
SOFTWARE DEFINED NETWORKS REALITY CHECK DENOG5, Darmstadt, 14/11/2013 Carsten Michel Software Defined Networks (SDN)! Why Software Defined Networking? There s a hype in the industry!! Dispelling some myths
CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING
Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING R.Kohila
Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen
Mobile Security Wireless Mesh Network Security Sascha Alexander Jopen Overview Introduction Wireless Ad-hoc Networks Wireless Mesh Networks Security in Wireless Networks Attacks on Wireless Mesh Networks
Binary vs Analogue Path Monitoring in IP Networks
Binary vs Analogue Path Monitoring in IP Networks Hung X. Nguyen and Patrick Thiran School of Computer and Communication Sciences, EPFL CH-1015 Lausanne, Switzerland {hung.nguyen, patrick.thiran}@epfl.ch
New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints
New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints Santosh Kulkarni 1, Reema Sharma 2,Ishani Mishra 3 1 Department of ECE, KSSEM Bangalore,MIEEE, MIETE & ISTE 2 Department
Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach
Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach Fangming Liu 1,2 In collaboration with Jian Guo 1,2, Haowen Tang 1,2, Yingnan Lian 1,2, Hai Jin 2 and John C.S.
A Resilient Path Management for BGP/MPLS VPN
A Resilient Path Management for BGP/MPLS VPN APNOMS2003 1 Introduction APNOMS2003 2 APNOMS2003 3 BGP/MPLS VPN Configuration MPLS/MP-iBGP VPN 1 VPN 1 VPN 2 VPN 2 BGP/MPLS VPN Overview BGP/MPLS Virtual Private
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
