Spacetime Diagrams (1D in space)

Size: px
Start display at page:

Download "Spacetime Diagrams (1D in space)"

Transcription

1 PH300 Modern Phsics P11 Last time: Time dilation and length contraion Toda: pacetime ddition of elocities Lorent transformations The onl reason for time is so that eerthing doesn t happen at once. /1 Da 6: - lbert Einstein Questions? pacetime Thursda: ddition of Velocities Relatiistic Momentum & Energ 1 Lorent Transformations Thursda: Relatiistic momentum and energ HW03 due, beginning of class; HW04 assigned Net week: Intro to quantum Eam I (in class) pacetime Diagrams (1D in space) pacetime Diagrams (1D in space) In PHY I: In PH300: c t Δt Δ = Δ / Δt t t pacetime Diagrams (1D in space) Recall: Luc plas with a fire cracker in the train. Rick watches the scene from the track. In PH300: c t obje moing with 0<<c. Worldline of the obje obje moing with 0>>-c L R c t obje at rest at =1 c t obje moing with = -c. =0 at time t= Luc Rick 1

2 Eample: Luc in the train Eample: Rick on the tracks Light reaches both walls at the same time. L R Light traels to both walls L R Rick concludes: Light reaches left side first. In Luc s frame: Walls are at rest Luc concludes: Light reaches both sides at the same time In Rick s frame: Walls are in motion Frame as iewed from =0.5c Frame is moing to the right at = 0.5c. The origins of and coincide at t=t =0. Which shows the world line of the origin of as iewed in? C D These angles are equal This is the time ais of the frame This is the space ais of the frame Frame as iewed from In : (=3,=3) In : ( =1.8, =) pacetime Interal oth frames are adequate for describing eents but will gie different spacetime coordinates for these eents, in general.

3 Distance in Galilean Relatiit Remember Luc? The distance between the blue and the red ball is: Luc h If the two balls are not moing relatie to each other, we find that the distance between them is inariant under Galileo transformations. Eent 1 firecracker eplodes Eent light reaches deteor Distance between eents is h Remember Rick? Eent 1 firecracker eplodes Eent light reaches deteor Distance between eents is cδt ut distance between -coordinates is Δ and: (cδt ) = (Δ ) + h We can write cδt Δ h nd Luc got since pacetime interal a we hae two eents: ( 1, 1, 1,t 1 ) and (,,,t ). Define the spacetime interal (sort of the "distance") between two eents as: With: Δ = 1 Δ = 1 Δ = 1 Δt = t t 1 pacetime interal The spacetime interal has the same alue in all reference frames! I.e. Δs is inariant under Lorent transformations. pacetime interal pacetime Here is an eent in spacetime. ( Δs' ) = ( cδt ') ( Δ' ) ( Δ' ) ( Δ' ) ( Δs' ) = ( Δs) The spacetime interal has the same alue in all reference frames! I.e. Δs is inariant under Lorent transformations. n light signal that passes through this eent has the dashed world lines. These identif the light cone of this eent. 3

4 pacetime pacetime Here is an eent in spacetime. Here is an eent in spacetime. The blue area is the future on this eent. The pink is its past. The ellow area is the elsewhere of the eent. No phsical signal can trael from the eent to its elsewhere! pacetime pacetime Now we hae two eents and as shown on the left. The space-time interal (Δs) of these two eents is: ) Positie ) Negatie C) Zero D C (Δs) >0: Time-like eents ( è D) (Δs) <0: pace-like eents ( è ) (Δs) =0: Light-like eents ( è C) If (Δs) is negatie in one frame of reference it is also negatie in an other inertial frame! ((Δs) is inariant under Lorent transformation). à Causalit is fulfilled in R. (Δs) is inariant under Lorent transformations. Eample: Waefront of a flash t=0 t>0 Waefront = urface of a sphere with radius : () = 0 pacetime interal for light-like eent: (Δs) = 0 Einstein: 'c' is the same in all inertial sstems. Therefore: (') - ' - ' - ' = 0 in all inertial sstems! (Here we assumed that the origins of and ' oerlapped at t=0) 4

5 Velocit transformation (1D) Velocit transformation (1D) Δ ,, where Δ= 1, Δ = 1 Use Lorent: = γ (-t) n obje moes from eent =( 1,t 1 ) to eent =(,t ). s seen from, its speed is with: Δ = 1 Δt = t t 1 Galilean result New in special relatiit s seen from, its speed is with: Δ = 1 Δt = t t 1 Velocit transformation in 3D Velocit transformation (3D) ' (,,,t) ' ' u (',',',t') ' The elocit u=(u, u, u ) measured in is gien b: u = Δ / Δt, u = Δ / Δt, u = Δ / Δt, where Δ= - 1 To find the corresponding elocit components u, u, u in the frame, which is moing along the -aes in with the elocit, we use again the Lorent transformation: In a more general case we want to transform a elocit u (measured in frame ) to u in frame. Note that u can point in an arbitrar direion, but still points along the -aes. 1 =γ( 1 -t 1 ), and so on t 1 =γ(t 1-1 /c ), and so on lgebra Velocit transformation (3D) (aka. Velocit-ddition formula ) ome applications 5

6 Relatiistic transformations Velocit transformation: Which coordinates are primed? u is what we were looking for! (i.e. elocit measured in ) uppose a spacecraft traels at speed =0.5c relatie to the Earth. It launches a missile at speed 0.5c relatie to the spacecraft in its direion of motion. How fast is the missile moing relatie to Earth? (Hint: Remember which coordinates are the primed ones. nd: Does our answer make sense?) Earth (,,,t) ' ' ' u (',',',t') pacecraft ' a) 0.8 c b) 0.5 c c) c d) 0.5 c e) 0 Transformations If is moing with speed in the positie direion relatie to, and the origin of and ' oerlap at t=0, then the coordinates of the same eent in the two frames are related b: The obje could be light, too! uppose a spacecraft traels at speed =0.5c relatie to the Earth. It shoots a beam of light out in its direion of motion. How fast is the light moing relatie to the Earth? (Get our answer using the formula). Lorent transformation (relatiistic) Velocit transformation (relatiistic) a) 1.5c b) 1.5c c) c d) 0.75c e) 0.5c note of caution: The wa the Lorent and Galileo transformations are presented here assumes the following: n obserer in would like to epress an eent (,,,t) (in his frame ) with the coordinates of the frame ', i.e. he wants to find the corresponding eent (',',',t') in '. The frame ' is moing along the -aes of the frame with the elocit (measured relatie to ) and we assume that the origins of both frames oerlap at the time t=0. ' ' ' (,,,t) (',',',t') ' pplication: Lorent transformation t 0 = 0 t 1 = 1s Two clocks (one at and one at ) are snchronied. third clock flies past at a elocit. The moment it passes all three clocks show the same time t 0 = 0 (iewed b obserers in and. ee left image.) What time does the third clock show (as seen b an obserer at ) at the moment it passes the clock in? The clock at is showing t 1 = 1s at that moment. à Use Lorent transformation! ) γ (t 1 -t 0 ) ) γ (t 1 -t 0 )(1 /c ) C) γ (t 1 -t 0 )(1 + /c ) D) (t 1 -t 0 ) / γ E) γ(t 1 -t 0 )(1 + '/c )? 6

7 Hint: Use the following frames: t 0 = 0 ' t 1 = 1s Two clocks (one at and one at ) are snchronied. third clock flies past at a elocit. The moment it passes all three clocks show the same time t 0 = 0 (iewed b obserers in and. ee left image.) What time does the third clock show (as seen b an obserer at ) at the moment it passes the clock in? The clock at is showing t 1 = 1s at that moment. à Use Lorent transformation! ) γ (t 1 -t 0 ) ) γ (t 1 -t 0 )(1 /c ) C) γ (t 1 -t 0 )(1 + /c ) D) (t 1 -t 0 ) / γ E) γ(t 1 -t 0 )(1 + '/c ) The moing clock shows the proper time interal!! Δt proper = Δt / γ? Hint: Use the following sstems: t 0 = 0 ' t 1 = 1s The clock traels from to with speed. ssume is at position = 0, then is at position = t, t=(t 1 -t 0 ) Use this to substitute in the Lorent transformation: t = γ (t t ) = γ t(1 c c ) = t / γ We get eal the epression of the time dilation!? 7

Chapter 2 Solutions. 4. We find the average velocity from

Chapter 2 Solutions. 4. We find the average velocity from Chapter 2 Solutions 4. We find the aerage elocity from = (x 2 x 1 )/(t 2 t 1 ) = ( 4.2 cm 3.4 cm)/(6.1 s 3.0 s) = 2.5 cm/s (toward x). 6. (a) We find the elapsed time before the speed change from speed

More information

x 1 ' = x 1 vt 1 x 1 ' = 4.0 m t 1 = 1.0 s x 2 vt 2 ' = 4.0 m t 2 ' = x 2 = 3.0 s x 1 = x 2 x 1 ' + vt 1 ' + vt 2 v (t 1 t 2 ) = x 2 ' x 1 ' = x 2

x 1 ' = x 1 vt 1 x 1 ' = 4.0 m t 1 = 1.0 s x 2 vt 2 ' = 4.0 m t 2 ' = x 2 = 3.0 s x 1 = x 2 x 1 ' + vt 1 ' + vt 2 v (t 1 t 2 ) = x 2 ' x 1 ' = x 2 Physics 2220 Module 16 Homework 01. A firecracker explodes in reference frame S at t 1 1.0 seconds. A second firecracker explodes at the same position at t 2 3.0 seconds. In reference frame S', which moves

More information

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012 Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to

More information

Vectors, velocity and displacement

Vectors, velocity and displacement Vectors, elocit and displacement Sample Modelling Actiities with Excel and Modellus ITforUS (Information Technolog for Understanding Science) 2007 IT for US - The project is funded with support from the

More information

4 Impulse and Impact. Table of contents:

4 Impulse and Impact. Table of contents: 4 Impulse and Impact At the end of this section you should be able to: a. define momentum and impulse b. state principles of conseration of linear momentum c. sole problems inoling change and conseration

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

PY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles.

PY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles. Permanent Magnets Magnetic ields and orces on Moing Charges 1 We encounter magnetic fields frequently in daily life from those due to a permanent magnet. Each permanent magnet has a north pole and a south

More information

Addition and Subtraction of Vectors

Addition and Subtraction of Vectors ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

Lecture 7 Force and Motion. Practice with Free-body Diagrams and Newton s Laws

Lecture 7 Force and Motion. Practice with Free-body Diagrams and Newton s Laws Lecture 7 Force and Motion Practice with Free-body Diagrams and Newton s Laws oday we ll just work through as many examples as we can utilizing Newton s Laws and free-body diagrams. Example 1: An eleator

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture 04-1 1. ask a physicist

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture 04-1 1. ask a physicist Welcome back to Physics 211 Today s agenda: Rotations What s on the exam? Relative motion Physics 211 Spring 2014 Lecture 04-1 1 ask a physicist Why are neutrinos faster than light (photons)? I thought

More information

Answer, Key Homework 3 David McIntyre 1

Answer, Key Homework 3 David McIntyre 1 Answer, Key Homewor 3 Daid McIntyre 1 This print-out should hae 26 questions, chec that it is complete Multiple-choice questions may continue on the next column or page: find all choices before maing your

More information

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models

More information

Give a formula for the velocity as a function of the displacement given that when s = 1 metre, v = 2 m s 1. (7)

Give a formula for the velocity as a function of the displacement given that when s = 1 metre, v = 2 m s 1. (7) . The acceleration of a bod is gien in terms of the displacement s metres as s a =. s (a) Gie a formula for the elocit as a function of the displacement gien that when s = metre, = m s. (7) (b) Hence find

More information

Affine Transformations

Affine Transformations A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates

More information

Physical Science Chapter 2. Forces

Physical Science Chapter 2. Forces Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

More information

Kinematic Physics for Simulation and Game Programming

Kinematic Physics for Simulation and Game Programming Kinematic Phsics for Simulation and Game Programming Mike Baile [email protected] phsics-kinematic.ppt mjb October, 05 SI Phsics Units (International Sstem of Units) Quantit Units Linear position

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

Vectors. Vector Multiplication

Vectors. Vector Multiplication Vectors Directed Line Segments and Geometric Vectors A line segment to which a direction has been assigned is called a directed line segment. The figure below shows a directed line segment form P to Q.

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Advanced Topics in Physics: Special Relativity Course Syllabus

Advanced Topics in Physics: Special Relativity Course Syllabus Advanced Topics in Physics: Special Relativity Course Syllabus Day Period What How 1. Introduction 2. Course Information 3. Math Pre-Assessment Day 1. Morning 1. Physics Pre-Assessment 2. Coordinate Systems

More information

Chapter 11 Relative Velocity

Chapter 11 Relative Velocity Chapter 11 Relatie Velocity 11 Relatie Velocity Vector add like ector, not like nuber. Except in that ery pecial cae in which the ector you are adding lie along one and the ae line, you can t jut add the

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

Classical Physics I. PHY131 Lecture 7 Friction Forces and Newton s Laws. Lecture 7 1

Classical Physics I. PHY131 Lecture 7 Friction Forces and Newton s Laws. Lecture 7 1 Classical Phsics I PHY131 Lecture 7 Friction Forces and Newton s Laws Lecture 7 1 Newton s Laws: 1 & 2: F Net = ma Recap LHS: All the forces acting ON the object of mass m RHS: the resulting acceleration,

More information

Key Stage 2 Mathematics Programme of Study

Key Stage 2 Mathematics Programme of Study Deeloping numerical reasoning Identify processes and connections Represent and communicate Reiew transfer mathematical to a ariety of contexts and eeryday situations identify the appropriate steps and

More information

Basic Linear Algebra

Basic Linear Algebra Basic Linear Algebra by: Dan Sunday, softsurfer.com Table of Contents Coordinate Systems 1 Points and Vectors Basic Definitions Vector Addition Scalar Multiplication 3 Affine Addition 3 Vector Length 4

More information

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

More information

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image. Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

More information

10. Collisions. Before During After

10. Collisions. Before During After 10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)

More information

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1) Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

More information

Chapter 29: Magnetic Fields

Chapter 29: Magnetic Fields Chapter 29: Magnetic Fields Magnetism has been known as early as 800C when people realized that certain stones could be used to attract bits of iron. Experiments using magnets hae shown the following:

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

Fluid Dynamics. AP Physics B

Fluid Dynamics. AP Physics B Fluid Dynamics AP Physics B Fluid Flow Up till now, we hae pretty much focused on fluids at rest. Now let's look at fluids in motion It is important that you understand that an IDEAL FLUID: Is non iscous

More information

Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63

Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Ch 8 Potential energ and Conservation of Energ Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Potential energ Kinetic energ energ due to motion Potential energ

More information

Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2

Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2 4 (4-) Chapter 4 Polynomials and Eponents P( r) 0 ( r) dollars. Which law of eponents can be used to simplify the last epression? Simplify it. P( r) 7. CD rollover. Ronnie invested P dollars in a -year

More information

Vector Algebra. Addition: (A + B) + C = A + (B + C) (associative) Subtraction: A B = A + (-B)

Vector Algebra. Addition: (A + B) + C = A + (B + C) (associative) Subtraction: A B = A + (-B) Vector Algebra When dealing with scalars, the usual math operations (+, -, ) are sufficient to obtain any information needed. When dealing with ectors, the magnitudes can be operated on as scalars, but

More information

Some Special Relativity Formulas

Some Special Relativity Formulas Some Special Relativity Formulas 1 Introduction The purpose of this handout is simple: to give you power in using special relativity! Even though you may not, at this stage, understand exactly where all

More information

Key Stage 3 Mathematics Programme of Study

Key Stage 3 Mathematics Programme of Study Deeloping numerical reasoning Identify processes and connections Represent and communicate Reiew transfer mathematical across the curriculum in a ariety of contexts and eeryday situations select, trial

More information

LINES AND PLANES IN R 3

LINES AND PLANES IN R 3 LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.

More information

EQUILIBRIUM STRESS SYSTEMS

EQUILIBRIUM STRESS SYSTEMS EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the cross-sectional area on which the force is acting. Consider the rectangular

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

Deformation of the Bodies by the Result of Length Contraction: A new Approach to the Lorentz Contraction

Deformation of the Bodies by the Result of Length Contraction: A new Approach to the Lorentz Contraction 1 Deformation of the Bodies by the Result of Length Contraction: A new Approach to the Lorentz Contraction Bayram Akarsu, Ph.D Erciyes University Kayseri/ Turkiye 2 Abstract It has been more than a century

More information

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

More information

Triple Integrals in Cylindrical or Spherical Coordinates

Triple Integrals in Cylindrical or Spherical Coordinates Triple Integrals in Clindrical or Spherical Coordinates. Find the volume of the solid ball 2 + 2 + 2. Solution. Let be the ball. We know b #a of the worksheet Triple Integrals that the volume of is given

More information

Uniform Rectilinear Motion

Uniform Rectilinear Motion Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics

More information

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to : Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in

More information

Experiment 2 Free Fall and Projectile Motion

Experiment 2 Free Fall and Projectile Motion Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

More information

STUDY ON THE PATH TRACKING AND POSITIONING METHOD OF WHEELED MOBILE ROBOT

STUDY ON THE PATH TRACKING AND POSITIONING METHOD OF WHEELED MOBILE ROBOT International Journal of Computer Science & Engineering Surey (IJCSES) Vol.6 No.3 June 05 STUDY ON THE PATH TRACKING AND POSITIONING METHOD OF WHEELED MOBILE ROBOT Cheng Jing and Cheng Wushan College of

More information

{ } Sec 3.1 Systems of Linear Equations in Two Variables

{ } Sec 3.1 Systems of Linear Equations in Two Variables Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination

More information

Chapter 5: Applying Newton s Laws

Chapter 5: Applying Newton s Laws Chapter 5: Appling Newton s Laws Newton s 1 st Law he 1 st law defines what the natural states of motion: rest and constant velocit. Natural states of motion are and those states are when a = 0. In essence,

More information

L-9 Conservation of Energy, Friction and Circular Motion. Kinetic energy. conservation of energy. Potential energy. Up and down the track

L-9 Conservation of Energy, Friction and Circular Motion. Kinetic energy. conservation of energy. Potential energy. Up and down the track L-9 Conseration of Energy, Friction and Circular Motion Kinetic energy, potential energy and conseration of energy What is friction and what determines how big it is? Friction is what keeps our cars moing

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

REVIEW OF CONIC SECTIONS

REVIEW OF CONIC SECTIONS REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

Einstein s Theory of Special Relativity Made Relatively Simple!

Einstein s Theory of Special Relativity Made Relatively Simple! Einstein s Theory of Special Relativity Made Relatively Simple! by Christopher P. Benton, PhD Young Einstein Albert Einstein was born in 1879 and died in 1955. He didn't start talking until he was three,

More information

Solution: The equations that govern the motion are:

Solution: The equations that govern the motion are: Problem 13.1 In Eample 13., suppose that the vehicle is dropped from a height h = 6m. What is the downward velocit 1 s after it is released? What is its downward velocit just before it reaches the ground?

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

Proving the Law of Conservation of Energy

Proving the Law of Conservation of Energy Table of Contents List of Tables & Figures: Table 1: Data/6 Figure 1: Example Diagram/4 Figure 2: Setup Diagram/8 1. Abstract/2 2. Introduction & Discussion/3 3. Procedure/5 4. Results/6 5. Summary/6 Proving

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

More information

Projectile Motion 1:Horizontally Launched Projectiles

Projectile Motion 1:Horizontally Launched Projectiles A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

THE PARABOLA 13.2. section

THE PARABOLA 13.2. section 698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

More information

Lecture 4: Newton s Laws

Lecture 4: Newton s Laws Lecture 4: Newton s Laws! Laws of motion! Reference frames! Law of Gravity! Momentum and its conservation Sidney Harris This week: continue reading Chapter 3 of text 2/6/15 1 Newton s Laws & Galilean Relativity!

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

Beam Deflections: Second-Order Method

Beam Deflections: Second-Order Method 10 eam Deflections: Second-Order Method 10 1 Lecture 10: EM DEFLECTIONS: SECOND-ORDER METHOD TLE OF CONTENTS Page 10.1 Introduction..................... 10 3 10.2 What is a eam?................... 10 3

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 24, 2012 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 24, 2012 9:15 a.m. to 12:15 p.m. INTEGRATED ALGEBRA The Universit of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Tuesda, Januar 4, 01 9:15 a.m. to 1:15 p.m., onl Student Name: School Name: Print our name and

More information

Euler-Savary s Formula for the Planar Curves in Two Dimensional Lightlike Cone

Euler-Savary s Formula for the Planar Curves in Two Dimensional Lightlike Cone International J.Math. Combin. Vol.1 (010), 115-11 Euler-Saary s Formula for the Planar Cures in Two Dimensional Lightlike Cone Handan BALGETİR ÖZTEKİN and Mahmut ERGÜT (Department of Mathematics, Fırat

More information

SAT Math Hard Practice Quiz. 5. How many integers between 10 and 500 begin and end in 3?

SAT Math Hard Practice Quiz. 5. How many integers between 10 and 500 begin and end in 3? SAT Math Hard Practice Quiz Numbers and Operations 5. How many integers between 10 and 500 begin and end in 3? 1. A bag contains tomatoes that are either green or red. The ratio of green tomatoes to red

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these. CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:

More information

SAT Subject Physics Facts & Formulas

SAT Subject Physics Facts & Formulas This document is a concise but comprehensie guide to the facts and formulas typically used in the material coered by the SAT Subject physics test. The test is designed to determine how well you hae mastered

More information

Ion Propulsion Engine Simulation

Ion Propulsion Engine Simulation Ion Propulsion Ion Propulsion Engine Simulation STUDENT ACTIVITY AND REPORT SHEET This activity must be completed at a computer with Internet access. Part 1: Procedure 1. Go to http://dawn.jpl.nasa.gov/mission/ion_engine_interactive/index.html

More information

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS

SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS Fundamental Journal of Modern Physics Vol. 7, Issue, 014, Pages 53-6 Published online at http://www.frdint.com/ SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS J. H. FIELD Departement

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000) Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

More information

Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science

Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Colorado College has two all college requirements (QR and SI) which can be satisfied in full, or part, b taking

More information

SECTION 2-2 Straight Lines

SECTION 2-2 Straight Lines - Straight Lines 11 94. Engineering. The cross section of a rivet has a top that is an arc of a circle (see the figure). If the ends of the arc are 1 millimeters apart and the top is 4 millimeters above

More information

The Bullet-Block Mystery

The Bullet-Block Mystery LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The Bullet-Block Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the

More information

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008 Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

More information

2D Geometrical Transformations. Foley & Van Dam, Chapter 5

2D Geometrical Transformations. Foley & Van Dam, Chapter 5 2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations

More information