Spacetime Diagrams (1D in space)
|
|
|
- August Richardson
- 10 years ago
- Views:
Transcription
1 PH300 Modern Phsics P11 Last time: Time dilation and length contraion Toda: pacetime ddition of elocities Lorent transformations The onl reason for time is so that eerthing doesn t happen at once. /1 Da 6: - lbert Einstein Questions? pacetime Thursda: ddition of Velocities Relatiistic Momentum & Energ 1 Lorent Transformations Thursda: Relatiistic momentum and energ HW03 due, beginning of class; HW04 assigned Net week: Intro to quantum Eam I (in class) pacetime Diagrams (1D in space) pacetime Diagrams (1D in space) In PHY I: In PH300: c t Δt Δ = Δ / Δt t t pacetime Diagrams (1D in space) Recall: Luc plas with a fire cracker in the train. Rick watches the scene from the track. In PH300: c t obje moing with 0<<c. Worldline of the obje obje moing with 0>>-c L R c t obje at rest at =1 c t obje moing with = -c. =0 at time t= Luc Rick 1
2 Eample: Luc in the train Eample: Rick on the tracks Light reaches both walls at the same time. L R Light traels to both walls L R Rick concludes: Light reaches left side first. In Luc s frame: Walls are at rest Luc concludes: Light reaches both sides at the same time In Rick s frame: Walls are in motion Frame as iewed from =0.5c Frame is moing to the right at = 0.5c. The origins of and coincide at t=t =0. Which shows the world line of the origin of as iewed in? C D These angles are equal This is the time ais of the frame This is the space ais of the frame Frame as iewed from In : (=3,=3) In : ( =1.8, =) pacetime Interal oth frames are adequate for describing eents but will gie different spacetime coordinates for these eents, in general.
3 Distance in Galilean Relatiit Remember Luc? The distance between the blue and the red ball is: Luc h If the two balls are not moing relatie to each other, we find that the distance between them is inariant under Galileo transformations. Eent 1 firecracker eplodes Eent light reaches deteor Distance between eents is h Remember Rick? Eent 1 firecracker eplodes Eent light reaches deteor Distance between eents is cδt ut distance between -coordinates is Δ and: (cδt ) = (Δ ) + h We can write cδt Δ h nd Luc got since pacetime interal a we hae two eents: ( 1, 1, 1,t 1 ) and (,,,t ). Define the spacetime interal (sort of the "distance") between two eents as: With: Δ = 1 Δ = 1 Δ = 1 Δt = t t 1 pacetime interal The spacetime interal has the same alue in all reference frames! I.e. Δs is inariant under Lorent transformations. pacetime interal pacetime Here is an eent in spacetime. ( Δs' ) = ( cδt ') ( Δ' ) ( Δ' ) ( Δ' ) ( Δs' ) = ( Δs) The spacetime interal has the same alue in all reference frames! I.e. Δs is inariant under Lorent transformations. n light signal that passes through this eent has the dashed world lines. These identif the light cone of this eent. 3
4 pacetime pacetime Here is an eent in spacetime. Here is an eent in spacetime. The blue area is the future on this eent. The pink is its past. The ellow area is the elsewhere of the eent. No phsical signal can trael from the eent to its elsewhere! pacetime pacetime Now we hae two eents and as shown on the left. The space-time interal (Δs) of these two eents is: ) Positie ) Negatie C) Zero D C (Δs) >0: Time-like eents ( è D) (Δs) <0: pace-like eents ( è ) (Δs) =0: Light-like eents ( è C) If (Δs) is negatie in one frame of reference it is also negatie in an other inertial frame! ((Δs) is inariant under Lorent transformation). à Causalit is fulfilled in R. (Δs) is inariant under Lorent transformations. Eample: Waefront of a flash t=0 t>0 Waefront = urface of a sphere with radius : () = 0 pacetime interal for light-like eent: (Δs) = 0 Einstein: 'c' is the same in all inertial sstems. Therefore: (') - ' - ' - ' = 0 in all inertial sstems! (Here we assumed that the origins of and ' oerlapped at t=0) 4
5 Velocit transformation (1D) Velocit transformation (1D) Δ ,, where Δ= 1, Δ = 1 Use Lorent: = γ (-t) n obje moes from eent =( 1,t 1 ) to eent =(,t ). s seen from, its speed is with: Δ = 1 Δt = t t 1 Galilean result New in special relatiit s seen from, its speed is with: Δ = 1 Δt = t t 1 Velocit transformation in 3D Velocit transformation (3D) ' (,,,t) ' ' u (',',',t') ' The elocit u=(u, u, u ) measured in is gien b: u = Δ / Δt, u = Δ / Δt, u = Δ / Δt, where Δ= - 1 To find the corresponding elocit components u, u, u in the frame, which is moing along the -aes in with the elocit, we use again the Lorent transformation: In a more general case we want to transform a elocit u (measured in frame ) to u in frame. Note that u can point in an arbitrar direion, but still points along the -aes. 1 =γ( 1 -t 1 ), and so on t 1 =γ(t 1-1 /c ), and so on lgebra Velocit transformation (3D) (aka. Velocit-ddition formula ) ome applications 5
6 Relatiistic transformations Velocit transformation: Which coordinates are primed? u is what we were looking for! (i.e. elocit measured in ) uppose a spacecraft traels at speed =0.5c relatie to the Earth. It launches a missile at speed 0.5c relatie to the spacecraft in its direion of motion. How fast is the missile moing relatie to Earth? (Hint: Remember which coordinates are the primed ones. nd: Does our answer make sense?) Earth (,,,t) ' ' ' u (',',',t') pacecraft ' a) 0.8 c b) 0.5 c c) c d) 0.5 c e) 0 Transformations If is moing with speed in the positie direion relatie to, and the origin of and ' oerlap at t=0, then the coordinates of the same eent in the two frames are related b: The obje could be light, too! uppose a spacecraft traels at speed =0.5c relatie to the Earth. It shoots a beam of light out in its direion of motion. How fast is the light moing relatie to the Earth? (Get our answer using the formula). Lorent transformation (relatiistic) Velocit transformation (relatiistic) a) 1.5c b) 1.5c c) c d) 0.75c e) 0.5c note of caution: The wa the Lorent and Galileo transformations are presented here assumes the following: n obserer in would like to epress an eent (,,,t) (in his frame ) with the coordinates of the frame ', i.e. he wants to find the corresponding eent (',',',t') in '. The frame ' is moing along the -aes of the frame with the elocit (measured relatie to ) and we assume that the origins of both frames oerlap at the time t=0. ' ' ' (,,,t) (',',',t') ' pplication: Lorent transformation t 0 = 0 t 1 = 1s Two clocks (one at and one at ) are snchronied. third clock flies past at a elocit. The moment it passes all three clocks show the same time t 0 = 0 (iewed b obserers in and. ee left image.) What time does the third clock show (as seen b an obserer at ) at the moment it passes the clock in? The clock at is showing t 1 = 1s at that moment. à Use Lorent transformation! ) γ (t 1 -t 0 ) ) γ (t 1 -t 0 )(1 /c ) C) γ (t 1 -t 0 )(1 + /c ) D) (t 1 -t 0 ) / γ E) γ(t 1 -t 0 )(1 + '/c )? 6
7 Hint: Use the following frames: t 0 = 0 ' t 1 = 1s Two clocks (one at and one at ) are snchronied. third clock flies past at a elocit. The moment it passes all three clocks show the same time t 0 = 0 (iewed b obserers in and. ee left image.) What time does the third clock show (as seen b an obserer at ) at the moment it passes the clock in? The clock at is showing t 1 = 1s at that moment. à Use Lorent transformation! ) γ (t 1 -t 0 ) ) γ (t 1 -t 0 )(1 /c ) C) γ (t 1 -t 0 )(1 + /c ) D) (t 1 -t 0 ) / γ E) γ(t 1 -t 0 )(1 + '/c ) The moing clock shows the proper time interal!! Δt proper = Δt / γ? Hint: Use the following sstems: t 0 = 0 ' t 1 = 1s The clock traels from to with speed. ssume is at position = 0, then is at position = t, t=(t 1 -t 0 ) Use this to substitute in the Lorent transformation: t = γ (t t ) = γ t(1 c c ) = t / γ We get eal the epression of the time dilation!? 7
Chapter 2 Solutions. 4. We find the average velocity from
Chapter 2 Solutions 4. We find the aerage elocity from = (x 2 x 1 )/(t 2 t 1 ) = ( 4.2 cm 3.4 cm)/(6.1 s 3.0 s) = 2.5 cm/s (toward x). 6. (a) We find the elapsed time before the speed change from speed
x 1 ' = x 1 vt 1 x 1 ' = 4.0 m t 1 = 1.0 s x 2 vt 2 ' = 4.0 m t 2 ' = x 2 = 3.0 s x 1 = x 2 x 1 ' + vt 1 ' + vt 2 v (t 1 t 2 ) = x 2 ' x 1 ' = x 2
Physics 2220 Module 16 Homework 01. A firecracker explodes in reference frame S at t 1 1.0 seconds. A second firecracker explodes at the same position at t 2 3.0 seconds. In reference frame S', which moves
Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012
Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to
Vectors, velocity and displacement
Vectors, elocit and displacement Sample Modelling Actiities with Excel and Modellus ITforUS (Information Technolog for Understanding Science) 2007 IT for US - The project is funded with support from the
4 Impulse and Impact. Table of contents:
4 Impulse and Impact At the end of this section you should be able to: a. define momentum and impulse b. state principles of conseration of linear momentum c. sole problems inoling change and conseration
Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal
Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second
PY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles.
Permanent Magnets Magnetic ields and orces on Moing Charges 1 We encounter magnetic fields frequently in daily life from those due to a permanent magnet. Each permanent magnet has a north pole and a south
Addition and Subtraction of Vectors
ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b
COMPONENTS OF VECTORS
COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two
SECTION 2.2. Distance and Midpoint Formulas; Circles
SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation
Lecture 7 Force and Motion. Practice with Free-body Diagrams and Newton s Laws
Lecture 7 Force and Motion Practice with Free-body Diagrams and Newton s Laws oday we ll just work through as many examples as we can utilizing Newton s Laws and free-body diagrams. Example 1: An eleator
Welcome back to Physics 211. Physics 211 Spring 2014 Lecture 04-1 1. ask a physicist
Welcome back to Physics 211 Today s agenda: Rotations What s on the exam? Relative motion Physics 211 Spring 2014 Lecture 04-1 1 ask a physicist Why are neutrinos faster than light (photons)? I thought
Answer, Key Homework 3 David McIntyre 1
Answer, Key Homewor 3 Daid McIntyre 1 This print-out should hae 26 questions, chec that it is complete Multiple-choice questions may continue on the next column or page: find all choices before maing your
sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj
Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models
Give a formula for the velocity as a function of the displacement given that when s = 1 metre, v = 2 m s 1. (7)
. The acceleration of a bod is gien in terms of the displacement s metres as s a =. s (a) Gie a formula for the elocit as a function of the displacement gien that when s = metre, = m s. (7) (b) Hence find
Affine Transformations
A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates
Physical Science Chapter 2. Forces
Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components
Kinematic Physics for Simulation and Game Programming
Kinematic Phsics for Simulation and Game Programming Mike Baile [email protected] phsics-kinematic.ppt mjb October, 05 SI Phsics Units (International Sstem of Units) Quantit Units Linear position
D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its
Vectors. Vector Multiplication
Vectors Directed Line Segments and Geometric Vectors A line segment to which a direction has been assigned is called a directed line segment. The figure below shows a directed line segment form P to Q.
SECTION 7-4 Algebraic Vectors
7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors
Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
Advanced Topics in Physics: Special Relativity Course Syllabus
Advanced Topics in Physics: Special Relativity Course Syllabus Day Period What How 1. Introduction 2. Course Information 3. Math Pre-Assessment Day 1. Morning 1. Physics Pre-Assessment 2. Coordinate Systems
Chapter 11 Relative Velocity
Chapter 11 Relatie Velocity 11 Relatie Velocity Vector add like ector, not like nuber. Except in that ery pecial cae in which the ector you are adding lie along one and the ae line, you can t jut add the
Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form
SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving
Classical Physics I. PHY131 Lecture 7 Friction Forces and Newton s Laws. Lecture 7 1
Classical Phsics I PHY131 Lecture 7 Friction Forces and Newton s Laws Lecture 7 1 Newton s Laws: 1 & 2: F Net = ma Recap LHS: All the forces acting ON the object of mass m RHS: the resulting acceleration,
Key Stage 2 Mathematics Programme of Study
Deeloping numerical reasoning Identify processes and connections Represent and communicate Reiew transfer mathematical to a ariety of contexts and eeryday situations identify the appropriate steps and
Basic Linear Algebra
Basic Linear Algebra by: Dan Sunday, softsurfer.com Table of Contents Coordinate Systems 1 Points and Vectors Basic Definitions Vector Addition Scalar Multiplication 3 Affine Addition 3 Vector Length 4
Section 11.4: Equations of Lines and Planes
Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R
Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.
Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical
10. Collisions. Before During After
10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)
In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)
Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and
Chapter 29: Magnetic Fields
Chapter 29: Magnetic Fields Magnetism has been known as early as 800C when people realized that certain stones could be used to attract bits of iron. Experiments using magnets hae shown the following:
Center of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
2.1 Three Dimensional Curves and Surfaces
. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The
Fluid Dynamics. AP Physics B
Fluid Dynamics AP Physics B Fluid Flow Up till now, we hae pretty much focused on fluids at rest. Now let's look at fluids in motion It is important that you understand that an IDEAL FLUID: Is non iscous
Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63
Ch 8 Potential energ and Conservation of Energ Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Potential energ Kinetic energ energ due to motion Potential energ
Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2
4 (4-) Chapter 4 Polynomials and Eponents P( r) 0 ( r) dollars. Which law of eponents can be used to simplify the last epression? Simplify it. P( r) 7. CD rollover. Ronnie invested P dollars in a -year
Vector Algebra. Addition: (A + B) + C = A + (B + C) (associative) Subtraction: A B = A + (-B)
Vector Algebra When dealing with scalars, the usual math operations (+, -, ) are sufficient to obtain any information needed. When dealing with ectors, the magnitudes can be operated on as scalars, but
Some Special Relativity Formulas
Some Special Relativity Formulas 1 Introduction The purpose of this handout is simple: to give you power in using special relativity! Even though you may not, at this stage, understand exactly where all
Key Stage 3 Mathematics Programme of Study
Deeloping numerical reasoning Identify processes and connections Represent and communicate Reiew transfer mathematical across the curriculum in a ariety of contexts and eeryday situations select, trial
LINES AND PLANES IN R 3
LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.
EQUILIBRIUM STRESS SYSTEMS
EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the cross-sectional area on which the force is acting. Consider the rectangular
Section V.2: Magnitudes, Directions, and Components of Vectors
Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions
Deformation of the Bodies by the Result of Length Contraction: A new Approach to the Lorentz Contraction
1 Deformation of the Bodies by the Result of Length Contraction: A new Approach to the Lorentz Contraction Bayram Akarsu, Ph.D Erciyes University Kayseri/ Turkiye 2 Abstract It has been more than a century
Physics Section 3.2 Free Fall
Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics
Triple Integrals in Cylindrical or Spherical Coordinates
Triple Integrals in Clindrical or Spherical Coordinates. Find the volume of the solid ball 2 + 2 + 2. Solution. Let be the ball. We know b #a of the worksheet Triple Integrals that the volume of is given
Uniform Rectilinear Motion
Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics
2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in
Experiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
Connecting Transformational Geometry and Transformations of Functions
Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.
Slope-Intercept Form and Point-Slope Form
Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.
STUDY ON THE PATH TRACKING AND POSITIONING METHOD OF WHEELED MOBILE ROBOT
International Journal of Computer Science & Engineering Surey (IJCSES) Vol.6 No.3 June 05 STUDY ON THE PATH TRACKING AND POSITIONING METHOD OF WHEELED MOBILE ROBOT Cheng Jing and Cheng Wushan College of
{ } Sec 3.1 Systems of Linear Equations in Two Variables
Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination
Chapter 5: Applying Newton s Laws
Chapter 5: Appling Newton s Laws Newton s 1 st Law he 1 st law defines what the natural states of motion: rest and constant velocit. Natural states of motion are and those states are when a = 0. In essence,
L-9 Conservation of Energy, Friction and Circular Motion. Kinetic energy. conservation of energy. Potential energy. Up and down the track
L-9 Conseration of Energy, Friction and Circular Motion Kinetic energy, potential energy and conseration of energy What is friction and what determines how big it is? Friction is what keeps our cars moing
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
REVIEW OF CONIC SECTIONS
REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result
Einstein s Theory of Special Relativity Made Relatively Simple!
Einstein s Theory of Special Relativity Made Relatively Simple! by Christopher P. Benton, PhD Young Einstein Albert Einstein was born in 1879 and died in 1955. He didn't start talking until he was three,
Solution: The equations that govern the motion are:
Problem 13.1 In Eample 13., suppose that the vehicle is dropped from a height h = 6m. What is the downward velocit 1 s after it is released? What is its downward velocit just before it reaches the ground?
Higher. Polynomials and Quadratics 64
hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining
Proving the Law of Conservation of Energy
Table of Contents List of Tables & Figures: Table 1: Data/6 Figure 1: Example Diagram/4 Figure 2: Setup Diagram/8 1. Abstract/2 2. Introduction & Discussion/3 3. Procedure/5 4. Results/6 5. Summary/6 Proving
Chapter 15 Collision Theory
Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional
Orbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS
a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the
I think that starting
. Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries
Review of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
Projectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
THE PARABOLA 13.2. section
698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.
Lecture 4: Newton s Laws
Lecture 4: Newton s Laws! Laws of motion! Reference frames! Law of Gravity! Momentum and its conservation Sidney Harris This week: continue reading Chapter 3 of text 2/6/15 1 Newton s Laws & Galilean Relativity!
Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan
Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while
A Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
Beam Deflections: Second-Order Method
10 eam Deflections: Second-Order Method 10 1 Lecture 10: EM DEFLECTIONS: SECOND-ORDER METHOD TLE OF CONTENTS Page 10.1 Introduction..................... 10 3 10.2 What is a eam?................... 10 3
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 24, 2012 9:15 a.m. to 12:15 p.m.
INTEGRATED ALGEBRA The Universit of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Tuesda, Januar 4, 01 9:15 a.m. to 1:15 p.m., onl Student Name: School Name: Print our name and
Euler-Savary s Formula for the Planar Curves in Two Dimensional Lightlike Cone
International J.Math. Combin. Vol.1 (010), 115-11 Euler-Saary s Formula for the Planar Cures in Two Dimensional Lightlike Cone Handan BALGETİR ÖZTEKİN and Mahmut ERGÜT (Department of Mathematics, Fırat
SAT Math Hard Practice Quiz. 5. How many integers between 10 and 500 begin and end in 3?
SAT Math Hard Practice Quiz Numbers and Operations 5. How many integers between 10 and 500 begin and end in 3? 1. A bag contains tomatoes that are either green or red. The ratio of green tomatoes to red
1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered
Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,
Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY
Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate
A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.
CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:
SAT Subject Physics Facts & Formulas
This document is a concise but comprehensie guide to the facts and formulas typically used in the material coered by the SAT Subject physics test. The test is designed to determine how well you hae mastered
Ion Propulsion Engine Simulation
Ion Propulsion Ion Propulsion Engine Simulation STUDENT ACTIVITY AND REPORT SHEET This activity must be completed at a computer with Internet access. Part 1: Procedure 1. Go to http://dawn.jpl.nasa.gov/mission/ion_engine_interactive/index.html
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction
Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS
Fundamental Journal of Modern Physics Vol. 7, Issue, 014, Pages 53-6 Published online at http://www.frdint.com/ SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS J. H. FIELD Departement
Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving
Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science
Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Colorado College has two all college requirements (QR and SI) which can be satisfied in full, or part, b taking
SECTION 2-2 Straight Lines
- Straight Lines 11 94. Engineering. The cross section of a rivet has a top that is an arc of a circle (see the figure). If the ends of the arc are 1 millimeters apart and the top is 4 millimeters above
The Bullet-Block Mystery
LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The Bullet-Block Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the
Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008
Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling
2D Geometrical Transformations. Foley & Van Dam, Chapter 5
2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations
