Fundamentals of Visualizing Biological Data
|
|
|
- Benjamin Matthews
- 10 years ago
- Views:
Transcription
1 Fundamentals of Visualizing Biological Data Marc Streit Marc Streit, Johannes Kepler University Linz
2 Marc Streit, Johannes Kepler University Linz Presentation 2
3 Interactive Marc Streit, Johannes Kepler University Linz Exploration 3
4 Marc Streit, Johannes Kepler University Linz Task: Communication of known facts about data Presentation 4
5 Henry Gray, 1918 Anatomy of the Human Body Drawing of a female body Leonardo da Vinci, ~
6 hrp://gdac.broadinsutute.org/ Heterogeneous Heatmap TCGA Paper, Nature 2012 Marc Streit, Johannes Kepler University Linz 6
7 Interactive Task: Generate new hypotheses Exploration 7 Marc Streit, Johannes Kepler University Linz
8 Detect the expected discover the unexpected John Snow ( ) Wikimedia Commons Marc Streit, Johannes Kepler University Linz 8
9 WHY IS EXPLORATORY DATA ANALYSIS HARD? 9
10 Big Data? Marc Streit, Johannes Kepler University Linz 10
11 Big Data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it. Dan Ariely Marc Streit, Johannes Kepler University Linz 11
12 4 Vs of Big Data as defined by Gartner Group Marc Streit, Johannes Kepler University Linz 12
13 Data Volume Data Veracity EB TB GB Uncertain Certain MB Homogeneous Static Data Velocity Real Time Heterogeneous Data Variety Marc Streit, Johannes Kepler University Linz 13
14 14 [Michal 2000]
15 Giant Hairball Marc Streit, Johannes Kepler University Linz [van Ham et al. 2009] 15
16 hrp://gdac.broadinsutute.org/ #data_points > #pixels Marc Streit, Johannes Kepler University Linz 16
17 Get more pixels?! [Samsung large format displays] Marc Streit, Johannes Kepler University Linz 17
18 What else can we do? Get even more pixels? well, not really. BeCer: Don t show all informagon Pragmatic Natural display limitations: size, weight, cost Technological Resolution of eye better than of display Human Not able to perceive all information at once Marc Streit, Johannes Kepler University Linz 18
19 Ways to deal with too much informauon Temporal ParGGoning NavigaUon: Pan, Rotate Geometric/SemanUc Zooming SpaGal ParGGoning MulUple Coordinated Views Marc Streit, Johannes Kepler University Linz 19
20 Temporal ParUUoning: Panning Marc Streit, Johannes Kepler University Linz 20
21 Example: Human Protein Atlas Project Marc Streit, Johannes Kepler University Linz 21
22 Temporal ParUUoning: RotaGon Marc Streit, Johannes Kepler University Linz 22
23 Temporal ParUUoning: Zooming Geometric Zooming Marc Streit, Johannes Kepler University Linz Semantic Zooming 23
24 AbstracUon 30k nodes 750 nodes 18 nodes Marc Streit, Johannes Kepler University Linz 90 nodes cytoscape.org 24
25 Example: ConUnuous AbstracUon [Zwan et al. 2011, BioVis best abstract award] Marc Streit, Johannes Kepler University Linz 25
26 SpaUal ParUUoning: MulGple Coordinated Views (MCV) [Colins and Carpendale 2007] Marc Streit, Johannes Kepler University Linz 26
27 MCV Type 1: Different vis. techniques showing the same data Marc Streit, Johannes Kepler University Linz 27
28 MCV Type 2: Same vis. technique showing different data Marc Streit, Johannes Kepler University Linz Cerebral [Barsky et al. 2008] 28
29 MCV Type 3: Overview + Detail Marc Streit, Johannes [Lex et Kepler al. 2010] University Linz 29
30 Example: Human Protein Atlas Project Marc Streit, Johannes Kepler University Linz 30
31 SelecUon / Filtering Marc Streit, Johannes Kepler University Linz 31
32 Example: MizBee [Meyer et al. 2009] Marc Streit, Johannes Kepler University Linz 32
33 Example: Caleydo Stratomex Marc Streit, Johannes Kepler University Linz 33
34 irishfairytrails.com Spot the difference! Marc Streit, Johannes Kepler University Linz 34
35 stratomex.caleydo.org Spot the difference! Marc Streit, Johannes Kepler University Linz 35
36 Single Complex VisualizaUon MulUple Simple VisualizaUons Marc Streit, Johannes Kepler University Linz 36
37 Summary: Key Concepts NavigaUon AbstracUon SemanUc/Geometric Zooming MulUple Coordinated views Marc Streit, Johannes Kepler University Linz 37
38 Highly Interdisciplinary! Biology, BioinformaUcs + [Keim et al. 2010] Why is Biological Data VisualizaUon hard? Marc Streit, Johannes Kepler University Linz 38
39 ? Marc Streit Institute of Computer Graphics Johannes Kepler University Linz, Austria
Interactive Visual Data Analysis in the Times of Big Data
Interactive Visual Data Analysis in the Times of Big Data Cagatay Turkay * gicentre, City University London Who? Lecturer (Asst. Prof.) in Applied Data Science Started December 2013 @ the gicentre (gicentre.net)
An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values
Information Visualization & Visual Analytics Jack van Wijk Technische Universiteit Eindhoven An example y 30 items, 30 x 3 values I-science for Astronomy, October 13-17, 2008 Lorentz center, Leiden x An
Modern (Computational) Approaches to Big Data Analytics. CSC 576 Computer Science, University of Rochester Instructor: Ji Liu
Modern (Computational) Approaches to Big Data Analytics CSC 576 Computer Science, University of Rochester Instructor: Ji Liu Big Data in Academy SIGKDD 2014 (program page, found 14 big data, 50+ large
Data Visualization Principles: Interaction, Filtering, Aggregation
Data Visualization Principles: Interaction, Filtering, Aggregation CSC444 Acknowledgments for today s lecture: What if there s too much data? Sometimes you can t present all the data in a single plot (Your
Big Data. Donald Kossmann & Nesime Tatbul Systems Group ETH Zurich
Big Data Donald Kossmann & Nesime Tatbul Systems Group ETH Zurich Goal of Today What is Big Data? introduce all major buzz words What is not Big Data? get a feeling for opportunities & limitations Answering
Big Data a threat or a chance?
Big Data a threat or a chance? Helwig Hauser University of Bergen, Dept. of Informatics Big Data What is Big Data? well, lots of data, right? we come back to this in a moment. certainly, a buzz-word but
Mobile Monetization Scenario Design & Big Data. Arther Wu Senior Director of Monetization and Business Operation
Mobile Monetization Scenario Design & Big Data Arther Wu Senior Director of Monetization and Business Operation Agenda Quick update of Cheetah Mobile Ad Scenario Design Big Data / Relation with Advertising
Image Data, RDA and Practical Policies
Image Data, RDA and Practical Policies Rainer Stotzka and many others KIT University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association www.kit.edu Data Life Cycle Lab
Information Visualization WS 2013/14 11 Visual Analytics
1 11.1 Definitions and Motivation Lot of research and papers in this emerging field: Visual Analytics: Scope and Challenges of Keim et al. Illuminating the path of Thomas and Cook 2 11.1 Definitions and
COMP 150-04 Visualization. Lecture 11 Interacting with Visualizations
COMP 150-04 Visualization Lecture 11 Interacting with Visualizations Assignment 5: Maps Due Wednesday, March 17th Design a thematic map visualization Option 1: Choropleth Map Implementation in Processing
Veracity in Big Data Reliability of Routes
Veracity in Big Data Reliability of Routes Dr. Tobias Emrich Post-Doctoral Scholar Integrated Media Systems Center (IMSC) Viterbi School of Engineering University of Southern California Los Angeles, CA
Visualization Techniques in Data Mining
Tecniche di Apprendimento Automatico per Applicazioni di Data Mining Visualization Techniques in Data Mining Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo di Milano
Course: Visual Analytics of largescale biological data. Kay Nieselt Center for Bioinformatics Tübingen University of Tübingen
Course: Visual Analytics of largescale biological data Kay Nieselt Center for Bioinformatics Tübingen University of Tübingen FUNDAMENTALS OF BIOLOGICAL DATA VISUALISATION 2 Presentation of known facts
Finding Anomalies in Time- Series using Visual Correla/on for Interac/ve Root Cause Analysis
VizSec 2013 October 14, 2013 Atlanta GA, USA Finding Anomalies in Time- Series using Visual Correla/on for Interac/ve Root Cause Analysis Florian Stoffel, Fabian Fischer, Daniel A. Keim Data Analysis and
http://www.guido.be/intranet/enqueteoverview/tabid/152/ctl/eresults...
1 van 70 20/03/2014 11:55 EnqueteDescription 2 van 70 20/03/2014 11:55 3 van 70 20/03/2014 11:55 4 van 70 20/03/2014 11:55 5 van 70 20/03/2014 11:55 6 van 70 20/03/2014 11:55 7 van 70 20/03/2014 11:55
BIG DATA POSSIBILITIES AND CHALLENGES
BIG DATA POSSIBILITIES AND CHALLENGES PROFESSOR AND CENTER DIRECTOR WHY BIG DATA? In God we trust - all others must bring data W. Edwards Deming (US engineer and statistician, 1900-1993) WHAT IS BIG DATA?
Complexity and Scalability in Semantic Graph Analysis Semantic Days 2013
Complexity and Scalability in Semantic Graph Analysis Semantic Days 2013 James Maltby, Ph.D 1 Outline of Presentation Semantic Graph Analytics Database Architectures In-memory Semantic Database Formulation
Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone
Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it Dan Ariely MYSQL AND HBASE ECOSYSTEM
Immersed 3D Visualization of the University of Chicago Campus. Scott Stocking, GISP Facilities Services Department
Immersed 3D Visualization of the University of Chicago Campus Scott Stocking, GISP Facilities Services Department Discussion Outline - Objectives of the Project - Data Utilized - Methods Used to build
1. Understanding Big Data
Big Data and its Real Impact on Your Security & Privacy Framework: A Pragmatic Overview Erik Luysterborg Partner, Deloitte EMEA Data Protection & Privacy leader Prague, SCCE, March 22 nd 2016 1. 2016 Deloitte
Big Data Analytics. Lucas Rego Drumond
Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Big Data Analytics Big Data Analytics 1 / 36 Outline
Remote & Collaborative Visualization. Texas Advanced Compu1ng Center
Remote & Collaborative Visualization Texas Advanced Compu1ng Center So6ware Requirements SSH client VNC client Recommended: TigerVNC http://sourceforge.net/projects/tigervnc/files/ Web browser with Java
Big Data and maritime surveillance
CRC Centre for research on Risks and Crisis December 10 2014 Big Data and maritime surveillance Aldo NAPOLI [email protected] Airborne Maritime Surveillance - Le Castellet 1 Outline MINES
Visualization of Software
Visualization of Software Jack van Wijk Plenary Meeting SPIder Den Bosch, March 30, 2010 Overview Software Vis Examples Hierarchies Networks Evolution Visual Analytics Application data Visualization images
Modern Data Warehouse
1 Modern Data Warehouse Are you ready for Big Data? Does your DWH / BI roadmap contain all the necessary components? IDG: Big data technologies describe a new generation of technologies and architectures,
Getting the Most Out of SIEM. Presentation Title. Data in Big Data. Presented By: Dr. Char Sample, CERT
Getting the Most Out of SIEM Presentation Title Data in Big Data Presented By: Dr. Char Sample, CERT Acknowledgements Dr. Ben Shniederman, UMD Big Data Big Insights George Jones, John Stogoski, CERT Alternatives
What is Visualization? Information Visualization An Overview. Information Visualization. Definitions
What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some
Innovative Information Visualization of Electronic Health Record Data: a Systematic Review
Innovative Information Visualization of Electronic Health Record Data: a Systematic Review Vivian West, David Borland, W. Ed Hammond February 5, 2015 Outline Background Objective Methods & Criteria Analysis
Information Visualization Visual Analytics / Visual Data Mining / Knowledge Discovery Biological Data Visualization
Curriculum Vitae Personal Data Name Title Contact Website Born Nationality Dipl.-Ing. Dr.techn. Marc Streit Assistant Professor Science Park III, A-4040 Linz +43 732 2468 6635 [email protected] http:\marc-streit.com
Reverse Literate Programming
Reverse Literate Programming Markus Knasmüller Johannes Kepler University Linz Altenbergerstraße 39 Linz, 4040, Austria Tel. +43 732 2468 7133 Fax +43 732 2468 7138 Internet [email protected]
Computational Science and Informatics (Data Science) Programs at GMU
Computational Science and Informatics (Data Science) Programs at GMU Kirk Borne George Mason University School of Physics, Astronomy, & Computational Sciences http://spacs.gmu.edu/ Outline Graduate Program
Visualizing the Top 400 Universities
Int'l Conf. e-learning, e-bus., EIS, and e-gov. EEE'15 81 Visualizing the Top 400 Universities Salwa Aljehane 1, Reem Alshahrani 1, and Maha Thafar 1 [email protected], [email protected], [email protected]
Big Data in Healthcare: Myth, Hype, and Hope
Big Data in Healthcare: Myth, Hype, and Hope Woojin Kim, MD Insert Organization Logo Here or Remove Disclosure Co-founder/Shareholder Montage Healthcare Solutions, Inc Consultant Infiniti Medical, LLC
Big Data in Pictures: Data Visualization
Big Data in Pictures: Data Visualization Huamin Qu Hong Kong University of Science and Technology What is data visualization? Data visualization is the creation and study of the visual representation of
Lesson 15 - Fill Cells Plugin
15.1 Lesson 15 - Fill Cells Plugin This lesson presents the functionalities of the Fill Cells plugin. Fill Cells plugin allows the calculation of attribute values of tables associated with cell type layers.
Descriptive Statistics and Exploratory Data Analysis
Descriptive Statistics and Exploratory Data Analysis Dean s s Faculty and Resident Development Series UT College of Medicine Chattanooga Probasco Auditorium at Erlanger January 14, 2008 Marc Loizeaux,
THE REAL-TIME OPERATIONAL VALUE OF BIG DATA MATT DAVIES SPLUNK @MATTDAVIES_UK
THE REAL-TIME OPERATIONAL VALUE OF BIG DATA MATT DAVIES SPLUNK @MATTDAVIES_UK THANK YOU FOR HAVING ME 2 WHY I LOVE SWEDEN #1 IT WAS HOME I LIVED IN STOCKHOLM FOR 3 MONTHS WHY I LOVE SWEDEN #2 FROZEN HAIR
Tactile and Advanced Computer Graphics Module 5. Graphic Design Fundamentals
Tactile and Advanced Computer Graphics Module 5 Graphic Design Fundamentals Tactile and Advanced Computer Graphics Module 5 Graphic Design Fundamentals Summary Goal(s): Transcribers-in-training will understand
521493S Computer Graphics. Exercise 2 & course schedule change
521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,
Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics
Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics Dr. Liangxiu Han Future Networks and Distributed Systems Group (FUNDS) School of Computing, Mathematics and Digital Technology,
Big Data Analytics. Prof. Dr. Lars Schmidt-Thieme
Big Data Analytics Prof. Dr. Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany 33. Sitzung des Arbeitskreises Informationstechnologie,
Understanding Compression Technologies for HD and Megapixel Surveillance
When the security industry began the transition from using VHS tapes to hard disks for video surveillance storage, the question of how to compress and store video became a top consideration for video surveillance
JustClust User Manual
JustClust User Manual Contents 1. Installing JustClust 2. Running JustClust 3. Basic Usage of JustClust 3.1. Creating a Network 3.2. Clustering a Network 3.3. Applying a Layout 3.4. Saving and Loading
Qlik s Associative Model
White Paper Qlik s Associative Model See the Whole Story that Lives Within Your Data August, 2015 qlik.com Table of Contents Introduction 3 Qlik s associative model 3 Query-based visualization tools only
Mejora la Eficiencia Operativa en Centros de Datos
Mejora la Eficiencia Operativa en Centros de Datos Marco Antonio Damián Data Center Specialist Panduit Data Center Operational Efficiency Operational Efficiency is done through: Cabinets and racks Cable
Information Visualization and Visual Analytics
Information Visualization and Visual Analytics Pekka Wartiainen University of Jyväskylä [email protected] 23.4.2014 Outline Objectives Introduction Visual Analytics Information Visualization Our
Gephi Tutorial Visualization
Gephi Tutorial Welcome to this Gephi tutorial. It will guide you to the basic and advanced visualization settings in Gephi. The selection and interaction with tools will also be introduced. Follow the
Recognization of Satellite Images of Large Scale Data Based On Map- Reduce Framework
Recognization of Satellite Images of Large Scale Data Based On Map- Reduce Framework Vidya Dhondiba Jadhav, Harshada Jayant Nazirkar, Sneha Manik Idekar Dept. of Information Technology, JSPM s BSIOTR (W),
I-Max Touch Range. PAN / CEPH / 3D digital panoramic unit. Evolutive 3 in 1 panoramic unit
I-Max Touch Range PAN / CEPH / 3D digital panoramic unit Evolutive 3 in 1 panoramic unit 3D A new dimension for a complete diagnosis I-Max Touch 3D Evolutive, simple, fast The panoramic unit realizes complete
Comparative Analysis of Free IT Monitoring Platforms. Review of SolarWinds, CA Technologies, and Nagios IT monitoring platforms
Comparative Analysis of Free IT Monitoring Platforms Review of SolarWinds, CA Technologies, and Nagios IT monitoring platforms The new CA Nimsoft Monitor Snap solution offers users broad access to monitor
"The performance driven Enterprise" Emerging trends in Enterprise BI Platforms
1 Month, Day, Year Venue City "The performance driven Enterprise" Emerging trends in Enterprise BI Platforms Kostiantyn Stupak Oracle BI representative in Ukraine 2 The Race to Gain Insight 2014? 50% 2009
an introduction to VISUALIZING DATA by joel laumans
an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA iii AN INTRODUCTION TO VISUALIZING DATA by Joel Laumans Table of Contents 1 Introduction 1 Definition Purpose 2 Data
TECHNICAL SPECS DIGITAL BUS SHELTERS
TECHNICAL SPECS DIGITAL BUS SHELTERS 75 Locations, 24 / 7 Digital bus shelters offer two types of display, depending on whether or not the viewer is standing inside the interacrive zone (3 to 6 feet from
Multi-Dimensional Data Visualization. Slides courtesy of Chris North
Multi-Dimensional Data Visualization Slides courtesy of Chris North What is the Cleveland s ranking for quantitative data among the visual variables: Angle, area, length, position, color Where are we?!
Large-Data Software Defined Visualization on CPUs
Large-Data Software Defined Visualization on CPUs Greg P. Johnson, Bruce Cherniak 2015 Rice Oil & Gas HPC Workshop Trend: Increasing Data Size Measuring / modeling increasingly complex phenomena Rendering
Introduction to Computer Graphics
Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 [email protected] www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics
Visual Analytics. Daniel A. Keim, Florian Mansmann, Andreas Stoffel, Hartmut Ziegler University of Konstanz, Germany http://infovis.uni-konstanz.
Visual Analytics Daniel A. Keim, Florian Mansmann, Andreas Stoffel, Hartmut Ziegler University of Konstanz, Germany http://infovis.uni-konstanz.de SYNONYMS Visual Analysis; Visual Data Analysis; Visual
Interactive Data Mining and Visualization
Interactive Data Mining and Visualization Zhitao Qiu Abstract: Interactive analysis introduces dynamic changes in Visualization. On another hand, advanced visualization can provide different perspectives
Visualization. For Novices. ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu
Visualization For Novices ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu Data Visualization Data visualization deals with communicating information about
Geographic Visualization of ASDI Flight Plan Data
Geographic Visualization of ASDI Flight Plan Data David Hill GEOG 5561 The field of geographic visualization (or geovisualization ) has steadily developed and distinguished itself from standard scientific
Big-data Analytics: Challenges and Opportunities
Big-data Analytics: Challenges and Opportunities Chih-Jen Lin Department of Computer Science National Taiwan University Talk at 台 灣 資 料 科 學 愛 好 者 年 會, August 30, 2014 Chih-Jen Lin (National Taiwan Univ.)
Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect
Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate
Step 2: Paint Your Model
KeyShot creates images. Simple, beautiful, and fast. KeyShot is the first interactive raytracing and global illumination program of its kind that behaves more like a digital camera than a rendering application.
ADVANCED VISUALIZATION
Cyberinfrastructure Technology Integration (CITI) Advanced Visualization Division ADVANCED VISUALIZATION Tech-Talk by Vetria L. Byrd Visualization Scientist November 05, 2013 THIS TECH TALK Will Provide
Analytics Data Discovery QlikView
Analytics Data Discovery QlikView 3 rd -5 th September 2014 KS Gopinath Narayan, IAAS CIA, CFE, PMP Pr. Director (IT Audit) Office of the CAG of India [email protected] Presentation Outline About Data
Contrast ratio what does it really mean? Introduction...1 High contrast vs. low contrast...2 Dynamic contrast ratio...4 Conclusion...
Contrast ratio what does it really mean? Introduction...1 High contrast vs. low contrast...2 Dynamic contrast ratio...4 Conclusion...5 Introduction Contrast, along with brightness, size, and "resolution"
High Performance Spatial Queries and Analytics for Spatial Big Data. Fusheng Wang. Department of Biomedical Informatics Emory University
High Performance Spatial Queries and Analytics for Spatial Big Data Fusheng Wang Department of Biomedical Informatics Emory University Introduction Spatial Big Data Geo-crowdsourcing:OpenStreetMap Remote
GGobi : Interactive and dynamic
GGobi : Interactive and dynamic data visualization system Bioinformatics and Biostatistics Lab., Seoul National Univ. Seoul, Korea Eun-Kyung Lee 1 Outline interactive and dynamic graphics Exploratory data
Open & Big Data for Life Imaging Technical aspects : existing solutions, main difficulties. Pierre Mouillard MD
Open & Big Data for Life Imaging Technical aspects : existing solutions, main difficulties Pierre Mouillard MD What is Big Data? lots of data more than you can process using common database software and
Object Oriented program execution Visualization of Dynamic Program
Object Oriented program execution Visualization of Dynamic Program Kees Huizing Ruurd Kuiper Pieter Deelen Huub van de Wetering Frank van Ham Technische Universiteit Eindhoven Netherlands IPA Herfst 2008
How To Create A Data Visualization
CSCI 552 Data Visualization Shiaofen Fang What Is Visualization? We observe and draw conclusions A picture says more than a thousand words/numbers Seeing is believing, seeing is understanding Beware of
IC05 Introduction on Networks &Visualization Nov. 2009. <[email protected]>
IC05 Introduction on Networks &Visualization Nov. 2009 Overview 1. Networks Introduction Networks across disciplines Properties Models 2. Visualization InfoVis Data exploration
Use of OGC Sensor Web Enablement Standards in the Meteorology Domain. in partnership with
Use of OGC Sensor Web Enablement Standards in the Meteorology Domain in partnership with Outline Introduction to OGC Sensor Web Enablement Standards Web services Metadata encodings SWE as front end of
A Short Introduction on Data Visualization. Guoning Chen
A Short Introduction on Data Visualization Guoning Chen Data is generated everywhere and everyday Age of Big Data Data in ever increasing sizes need an effective way to understand them History of Visualization
Software Entwicklungen für das LSDF Datenmanagement
Software Entwicklungen für das LSDF Datenmanagement Rainer Stotzka, V. Hartmann, T. Jejkal,, P. Neuberger, S. Ochsenreither, F. Rindone, T. Schmidt, H. Pasic J. van Wezel, A. Garcia, R. Kupsch, S. Bourov,
Demystifying Big Data Government Agencies & The Big Data Phenomenon
Demystifying Big Data Government Agencies & The Big Data Phenomenon Today s Discussion If you only remember four things 1 Intensifying business challenges coupled with an explosion in data have pushed
Why Most Big Data Projects Fail
Learning from Common Mistakes to Transform Big Data into Insights What is Big Data?...2 Three Reasons Why Big Data Projects Fail...3 How Can Big Data Be Used?...5 The Lavastorm Approach to Big Data...5
