Ay 20 - Fall Lecture 16. Our Galaxy, The Milky Way
|
|
|
- Nora Jackson
- 9 years ago
- Views:
Transcription
1 Ay 20 - Fall Lecture 16 Our Galaxy, The Milky Way
2 Our Galaxy - The Milky Way Overall structure and major components The concept of stellar populations Stellar kinematics Galactic rotation and the evidence for a dark halo Galactic center COBE/DIRBE IR image of our Galaxy
3 Shapley used RR Lyrae to determine distances to globular clusters, and from there the approximate position of the Sun within the Galaxy. Our Sun lies within the galactic disk, ~ 8 kpc from the center of the Galaxy
4 Shapley s Globular Cluster Distribution kpc 10 20
5 A Modern View of the Galaxy Actually, there is the thin disk, and the thick disk Actually, there is the stellar halo, the gaseous corona, and the dark halo
6 Another Schematic View There are ~ stars in the Galaxy An exponential disk ~ 50 kpc in diameter and ~ kpc thick; contains young to intermediate age stars and ISM Nested spheroids of bulge and halo, containing old stars, hot gas, and dark matter The Sun orbits around the center with V ~ 220 km/s, and a period of ~ yr
7 Other Spiral Galaxies Indicate How The Milky Way Might Look NGC 628 Face-On Sc NGC 891 Edge-On Sb
8 Major Components of the Galaxy The disk: thin, roughly circular disk of stars with coherent rotation about the Galactic center. Ldisk L sun M disk M sun Disk extends to at least 15 kpc from the Galactic center. Density of stars in the disk falls off exponentially, both radially and vertically: n(r) e R h R disk scale length h R ~ 3 kpc Most of the stars (95%) lie in a thin disk, with a vertical scale height ~ 300 pc. Rest form a thick disk with a vertical scale height ~ 1 kpc. Thin disk stars are younger. Also a gas disk, thinner than either of the stellar disks.
9 Major Components of the Galaxy The bulge: central, mostly old spheroidal stellar component: L bu lge L sun M bu lge M sun The halo, contains: (i) Galactic center is about 8 kpc from the Sun, the bulge is a few kpc in radius Field stars - total mass in visible stars ~10 9 M sun. All are old, metal-poor, have random motions. Very low density. (ii) Globular clusters. A few % of the total halo stellar content. (iii) Gas with T ~ K. Total mass unknown. (iii) Dark matter. Physical nature unknown. About 90% of the total mass.
10 Principal Components of the Galaxy
11 The Concept of Stellar Populations Originally discovered by Baade, who came up with 2 populations: Pop. I: young stars in the (thin) disk, open clusters Pop. II: old stars in the bulge, halo, and globular clusters Today, we distinguish between the old, metal-rich stars in the bulge, and old, metal-poor stars in the halo Not clear whether the Pop. I is homogeneous: young thin disk, vs. intermediate-age thick disk A good modern definition of stellar populations: Stellar sub-systems within the Galaxy, distinguished by density distributions, kinematics, chemical abundances, and presumably formation histories. Could be co-spatial.
12 Due to the dust obscuration, the best ways to probe the Galactic structure are in infrared, and H I 21 cm line, which also provides the kinematics.
13 An IR View of the Galaxy: (2MASS JHK composite, clipped a bit in longitude) Note the boxy bulge; probably a signature of the central bar LMC SMC
14 OB associations, H II regions, and molecular clouds in the galactic disk outline the spiral arms
15 Kinematics of the Galaxy: The Rotating, Cylindrical Coordinate System Π dr/dt Θ R dθ/dt Z dz/dt
16 The Local Standard of Rest Defined as the point which co-rotates with the Galaxy at the solar Galactocentric radius Orbital speed of the LSR: Θ LSR = Θ 0 = 220 km/s Define the peculiar velocity relative to the LSR as: u = Π - Π LSR = Π v = Θ - Θ LSR = Θ - Θ 0 w = Z - Z LSR = Z The Sun s peculiar motion relative to the LSR: u = - 9 km/s v = +12 km/s w = +7 km/s
17 Stellar Kinematics Near the Sun
18 Stellar Kinematics Near the Sun Velocity dispersion of stars increases with their mean age: the evidence for a stochastic acceleration due to GMC and spiral arm encounters in a differentially rotating Galaxy The shape of the velocity ellipsoid also changes: older stars rotate more slowly; the thick disk rotates with a speed of about a half of that of the thin disk; and the halo does not seem to have a detectable rotation
19 Differential Rotation Inner orbit pulls ahead Outer orbit lags behind
20 The Appearance of Differential Rotation
21 Quantifying the Differential Rotation
22 Thus, by measuring radial velocities, if we knew the distances, we could map out the differential rotation pattern The trick, of course, is knowing the distances Photometric distances to OB stars and young clusters are used.
23 Combining Distances and Velocities Since the spiral density waves concentrate the H I, and also may trigger star formation, we can associate young stars, OB associations and clusters with ISM peaks Since these stars must be young, they could not have moved very far relative to the gas Fortunately, they are also very bright and can be seen far away Of course, the extinction must be also understood very well
24 Gas Responds to the Spiral Density Wave Pattern, and the Rotating Bar
25 And the Result Is: A Flat Rotation Curve!
26 Schematic Spiral Galaxy Rotation Curve: Very common, our Galaxy is not special in this regard Rotation Speed (km/sec) Solid-Body Rotation Differential Rotation Radius from the Center (kpc) 25
27 Interpreting the Rotation Curve Motions of the stars and gas in the disk of a spiral galaxy are approximately circular (v R and v z << v φ ). Define the circular velocity at radius r in the galaxy as V(r). Acceleration of the star moving in a circular orbit must be provided by a net inward gravitational force: V 2 (r) r = F r (r) To calculate F r (r), must in principle sum up gravitational force from bulge, disk and halo. If the mass enclosed within radius r is M(r), gravitational force is: F r = GM(r) r 2
28 Simple model predicts the rotation curve of the Milky Way ought to look like: v GM galaxy R = 210 M galaxy M sun 1 2 R 8 kpc 1 2 km s -1 This number is about right - Sun s rotation velocity is around 200 km s -1. Scaling of velocity with R -1/2 is not right - actual rotation velocity is roughly constant with radius. Implies: gravity of visible stars and gas largely explains the rotation velocity of the Sun about the Galactic center. Flat rotation curve requires extra matter at larger radii, over and above visible components. Dark matter (From P. Armitage)
29 Observed vs. Predicted Keplerian (from the visible mass only) Rotation Speed (km/sec) Radius from the Center (kpc) Keplerian Prediction 50
30 Mass Distribution in a Uniform Sphere: If the density ρ is constant, then: M(r) = 4 3 πr3 ρ V(r) = 4πGρ r 3 Rotation curve rises linearly with radius, period of the orbit 2πr / V(r) is a constant independent of radius. Roughly appropriate for central regions of spiral galaxies. (From P. Armitage)
31 Power law density profile: If the density falls off as a power law: ρ(r) = ρ 0 r r 0 α with α < 3 a constant, then: V(r) = 4πGρ 0r 0 α 3 α r1 α 2 For many galaxies, circular speed curves are approximately flat (V(r) = constant). Suggests that mass density in these galaxies may be proportional to r -2. (From P. Armitage)
32 Simple model for a galaxy with a core: Spherical density distribution: 4πGρ(r) = V H 2 r 2 + a H 2 Density tends to constant at small r Density tends to r -2 at large r Corresponding circular velocity curve is: V(r) = V H 1 a H r arctan r a H (From P. Armitage)
33 Resulting rotation curves: Not a bad representation of the observed rotation curves (From P. Armitage)
34 Now Let s Go To The Galactic Center Go to
35 Dynamical Evidence for a Supermassive Black Hole at the Galactic Center (Genzel et al., Ghez et al.) Note: R S (M = M ) = cm = arcsec
In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.
In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The
Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation
Faber-Jackson relation: Faber-Jackson Relation In 1976, Faber & Jackson found that: Roughly, L! " 4 More luminous galaxies have deeper potentials Can show that this follows from the Virial Theorem Why
Populations and Components of the Milky Way
Chapter 2 Populations and Components of the Milky Way Our perspective from within the Milky Way gives us an opportunity to study a disk galaxy in detail. At the same time, it s not always easy to relate
The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC
The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is
Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0
Elliptical galaxies: Ellipticals Old view (ellipticals are boring, simple systems)! Ellipticals contain no gas & dust! Ellipticals are composed of old stars! Ellipticals formed in a monolithic collapse,
Class #14/15 14/16 October 2008
Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM
A Universe of Galaxies
A Universe of Galaxies Today s Lecture: Other Galaxies (Chapter 16, pages 366-397) Types of Galaxies Habitats of Galaxies Dark Matter Other Galaxies Originally called spiral nebulae because of their shape.
Origins of the Cosmos Summer 2016. Pre-course assessment
Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of
165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars
Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching
Lecture 6: distribution of stars in. elliptical galaxies
Lecture 6: distribution of stars in topics: elliptical galaxies examples of elliptical galaxies different classes of ellipticals equation for distribution of light actual distributions and more complex
DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION
1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: [email protected] Abstract: There are many longstanding
Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14
Astro 102 Test 5 Review Spring 2016 See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Sec 14.5 Expanding Universe Know: Doppler shift, redshift, Hubble s Law, cosmic distance ladder, standard candles,
Galaxy Classification and Evolution
name Galaxy Classification and Evolution Galaxy Morphologies In order to study galaxies and their evolution in the universe, it is necessary to categorize them by some method. A classification scheme generally
Chapter 15.3 Galaxy Evolution
Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You
Elliptical Galaxies. Galaxies and Their Properties, Part II: Fine Structure in E-Galaxies: A Signature of Recent Merging
Elliptical Galaxies Ay 21 - Lecture 12 Galaxies and Their Properties, Part II: Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals
UNIT V. Earth and Space. Earth and the Solar System
UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system
How Do Galeries Form?
8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-1 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-2 Galaxy Formation Leading questions for today How do
1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"
Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was
Modeling Galaxy Formation
Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages
Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE
Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question
National Aeronautics and Space Administration. Teacher s. Science Background. GalaxY Q&As
National Aeronautics and Space Administration Science Background Teacher s GalaxY Q&As 1. What is a galaxy? A galaxy is an enormous collection of a few million to several trillion stars, gas, and dust
Observing the Universe
Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass
DYNAMICS OF GALAXIES
DYNAMICS OF GALAXIES 2. and stellar orbits Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Winter 2008/9 and stellar orbits Contents Range of timescales Two-body
Science Standard 4 Earth in Space Grade Level Expectations
Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal
Lecture 19: Planet Formation I. Clues from the Solar System
Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies
Top 10 Discoveries by ESO Telescopes
Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical
The Size & Shape of the Galaxy
name The Size & Shape of the Galaxy The whole lab consists of plotting two graphs. What s the catch? Aha visualizing and understanding what you have plotted of course! Form the Earth Science Picture of
Class 2 Solar System Characteristics Formation Exosolar Planets
Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System
Introduction and Origin of the Earth
Page 1 of 5 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Introduction and Origin of the Earth This page last updated on 30-Jul-2015 Geology, What is it? Geology is the study of
Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt
Instructions: Answers are typed in blue. Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt Crab Nebula What is embedded in the center of the nebula? Neutron star Who first
7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.
1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space
Star Clusters and Stellar Dynamics
Ay 20 Fall 2004 Star Clusters and Stellar Dynamics (This file has a bunch of pictures deleted, in order to save space) Stellar Dynamics Gravity is generally the only important force in astrophysical systems
Study Guide: Solar System
Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.
Star Clusters. Star Clusters E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS
Star Clusters Even a small telescope shows obvious local concentrations of stars scattered around the sky. These star clusters are not chance juxtapositions of unrelated stars. They are, instead, physically
Problem #1 [Sound Waves and Jeans Length]
Roger Griffith Astro 161 hw. # 8 Proffesor Chung-Pei Ma Problem #1 [Sound Waves and Jeans Length] At typical sea-level conditions, the density of air is 1.23 1 3 gcm 3 and the speed of sound is 3.4 1 4
Intermediate-Mass Black Holes (IMBHs) in Globular Clusters? HST Proper Motion Constraints. Roeland van der Marel
Intermediate-Mass Black Holes (IMBHs) in Globular Clusters? HST Proper Motion Constraints Roeland van der Marel Why Study IMBHs in Globular Clusters (GCs)? IMBHs: IMBHs can probe a new BH mass range, between
Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2
Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.
GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter
IT S UNIVERSAL GRAVITY CONCEPTS Gravity is the universal force of attraction between all matter Weight is a measure of the gravitational force pulling objects toward Earth Objects seem weightless when
Introduction to the Solar System
Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction
circular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
Week 1-2: Overview of the Universe & the View from the Earth
Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf ([email protected]) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made
Structure formation in modified gravity models
Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general
Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies
Elliptical Galaxies Houjun Mo April 19, 2004 Basic properties of elliptical galaxies Formation of elliptical galaxies Photometric Properties Isophotes of elliptical galaxies are usually fitted by ellipses:
Defining Characteristics (write a short description, provide enough detail so that anyone could use your scheme)
GEMS COLLABORATON engage The diagram above shows a mosaic of 40 galaxies. These images were taken with Hubble Space Telescope and show the variety of shapes that galaxies can assume. When astronomer Edwin
8.1 Radio Emission from Solar System objects
8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio
Carol and Charles see their pencils fall exactly straight down.
Section 24-1 1. Carol is in a railroad car on a train moving west along a straight stretch of track at a constant speed of 120 km/h, and Charles is in a railroad car on a train at rest on a siding along
1 A Solar System Is Born
CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system
Chapter 1 Our Place in the Universe
Chapter 1 Our Place in the Universe Syllabus 4 tests: June 18, June 30, July 10, July 21 Comprehensive Final - check schedule Website link on blackboard 1.1 Our Modern View of the Universe Our goals for
CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS
INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before
First Discoveries. Asteroids
First Discoveries The Sloan Digital Sky Survey began operating on June 8, 1998. Since that time, SDSS scientists have been hard at work analyzing data and drawing conclusions. This page describes seven
Newton s Law of Gravity
Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has
The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy
Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, 2003 ed. A. McWilliam and M. Rauch (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium4/proceedings.html)
The Milky Way Galaxy is Heading for a Major Cosmic Collision
The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing
Science@ESA vodcast series. Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia
Science@ESA vodcast series Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia Available to download from http://sci.esa.int/gaia/vodcast Hello, I m Rebecca Barnes and welcome to the Science@ESA
Name Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars
Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,
What is the Sloan Digital Sky Survey?
What is the Sloan Digital Sky Survey? Simply put, the Sloan Digital Sky Survey is the most ambitious astronomical survey ever undertaken. The survey will map one-quarter of the entire sky in detail, determining
Beginning of the Universe Classwork 6 th Grade PSI Science
Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose
Using Photometric Data to Derive an HR Diagram for a Star Cluster
Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and
Testing dark matter halos using rotation curves and lensing
Testing dark matter halos using rotation curves and lensing Darío Núñez Instituto de Ciencias Nucleares, UNAM Instituto Avanzado de Cosmología A. González, J. Cervantes, T. Matos Observational evidences
Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered
The University of Texas at Austin. Gravity and Orbits
UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the
Newton s Law of Universal Gravitation
Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size.
Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution This file has many figures missing, in order to keep it a reasonable size. Main Sequence and the Range of Stellar Masses MS is defined as the locus
Chapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
Planets beyond the solar system
Planets beyond the solar system Review of our solar system Why search How to search Eclipses Motion of parent star Doppler Effect Extrasolar planet discoveries A star is 5 parsecs away, what is its parallax?
NGUYEN LUONG QUANG. Président du jury: J. Le Bourlot Rapporteurs: H. Beuther, T. Moore Examinateurs: I. Bonnell, F. Boulanger, F. Combes, F.
NGUYEN LUONG QUANG Supervisors: Frédérique Motte (CEA Saclay) Marc Sauvage (CEA Saclay) Président du jury: J. Le Bourlot Rapporteurs: H. Beuther, T. Moore Examinateurs: I. Bonnell, F. Boulanger, F. Combes,
World of Particles Big Bang Thomas Gajdosik. Big Bang (model)
Big Bang (model) What can be seen / measured? basically only light (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)
The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10
Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?
The Expanding Universe
Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the
Magellanic Cloud planetary nebulae as probes of stellar evolution and populations. Letizia Stanghellini
Magellanic Cloud planetary nebulae as probes of stellar evolution and populations Letizia Stanghellini Planetary nebulae beyond the Milky Way - May 19-21, 2004 1 Magellanic Cloud PNe The known distances,
The orbit of Halley s Comet
The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What
This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00
Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June
Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room
Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room What is the difference between dark ENERGY and dark MATTER? Is Earth unique,
How To Understand General Relativity
Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional
Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula
Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain
Qué pasa si n = 1 y n = 4?
Galaxias Elípticas Qué pasa si n = 1 y n = 4? Isophotal Shapes For normal elliptical galaxies the axis ratio lies in the range 0.3
Cosmic Journey: Teacher Packet
Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the
Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = "kt 2.
Lesson 3: Isothermal Hydrostatic Spheres B68: a self-gravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation
L3: The formation of the Solar System
credit: NASA L3: The formation of the Solar System UCL Certificate of astronomy Dr. Ingo Waldmann A stable home The presence of life forms elsewhere in the Universe requires a stable environment where
IV. Molecular Clouds. 1. Molecular Cloud Spectra
IV. Molecular Clouds Dark structures in the ISM emit molecular lines. Dense gas cools, Metals combine to form molecules, Molecular clouds form. 1. Molecular Cloud Spectra 1 Molecular Lines emerge in absorption:
Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
