Worked solutions to student book questions Chapter 7 Covalent molecules, networks and layers

Size: px
Start display at page:

Download "Worked solutions to student book questions Chapter 7 Covalent molecules, networks and layers"

Transcription

1 E1. a Give the electronic configuration for an atom of beryllium. b How many electrons are in the outer shell of an atom of beryllium in the molecule BeH 2? AE1. a 1s 2 2s 2 b 4 E2. The noble gases helium and neon do not form any compounds. The noble gas xenon, however, does form a covalent molecular compound with fluorine. Suggest a reason for this difference. AE2. The two valence electrons of helium fill helium s outer shell (shell number 1 can contain a maximum of 2 electrons). Similarly, the outer shell of neon, shell number 2, is filled with neon s 8 valence electrons. So, helium and neon have filled outer shells and do not form compounds by sharing electrons with other non metals. Xenon also has 8 electrons in its outer shell. However, the outer shell of xenon is shell number 5, which can hold a maximum of 50 electrons. So, under appropriate circumstances, xenon can form covalent compounds in which xenon shares electrons with another non-metal, such as fluorine. Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 1

2 Q1. Draw electron dot and valence structures for each of the following molecules: fluorine (F 2 ), hydrogen fluoride (HF), water (H 2 O), tetrachloromethane (CCl 4 ), phosphine (PH 3 ), butane (C 4 H 10 ), carbon dioxide (CO 2 ). A1. fluorine (F 2 ) hydrogen fluoride (HF) tetrachloromethane (CC1 4 ) water (H 2 O) butane (C 4 H 10 ) phosphine (PH 3 ) carbon dioxide (CO 2 ) Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 2

3 Q2. What is the maximum number of covalent bonds an atom of each of the following elements can form? a F b O c N d C e H f Ne A2. a 1 b 2 c 3 d 4 e 1 f 0 Q3. A knowledge of electronic configurations would lead you to predict that H 2 O is the empirical formula for water. Why? A3. Oxygen has six outer-shell electrons and needs two more electrons to complete its outer shell. It gains access to two more electrons by forming two covalent bonds with two different hydrogen atoms. Each of the hydrogen atoms gains an electron and also completes its outer shell. Q4. When oxygen forms covalent molecular compounds with other non-metals, the valence structures that represent the molecules of these compounds all show each oxygen atom with two lone non-bonding electron pairs. Why are there always two lone pairs? A4. To complete its outer shell, the oxygen uses two of its outer-shell electrons to form two single bonds or a double bond with suitable non-metal atoms. The remaining four electrons in the outer shell are not required for bonding, as the outer shell is now complete, and they arrange themselves as two lone pairs around the oxygen atom. Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 3

4 Q5. Suggest the most likely formula of the compound formed between the following pairs of elements: a C, Cl b N, Br c Si, O d H, F e P, F A5. a CCl 4 b NBr 3 c SiO 2 d HF e PF 3 Q6. How many lone pairs would you expect atoms of the following elements to have when they form covalent bonds with other non-metal atoms? a H b F c C d N A6. a 0 b 3 c 0 d 1 Q7. Draw the valence structure for each of the following molecules: a H 2 S b HI c CCl 4 d PH 3 e CS 2 A7. a b Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 4

5 c d e Q8. Describe the shape of each of the molecules given in Question 7. A8. a V-shaped b linear c tetrahedral d pyramidal e linear Q9. Covalent bonds can form between the following pairs of elements in a variety of compounds. Use the electronegativity values given in Table 7.4 (page 123) to identify the atom in each pair that would have the larger share of bonding electrons: a S and O b C and H c C and N d N and H e F and O f P and F A9. a O b C c N d N e F f F Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 5

6 Q10. The greater the differences in electronegativity between two atoms, the more polar is the bond formed between them. a Which of the examples in Question 9 would be the most polar bond? b Which of the examples in Question 9 would be the least polar bond? A10. a P F b C H Q11. Figure 7.30 (page 126) represents models for a number of molecules. Examine the models and identify the polar molecules. A11. CH 3 OH; CH 3 F Q12. Which of the molecules in Question 11 would be capable of forming hydrogen bonds? A12. CH 3 OH. Hydrogen bonding is often called FON bonding because fluorine, oxygen and nitrogen are almost always the other elements involved. Q13. Consider each of the following substances. In which ones are the molecules held to one another by: i dipole dipole attraction? ii hydrogen bonds? a NH 3 b CHCl 3 c CH 3 Cl d F 2 O e HBr f H 2 S g HF h H 2 O i H 2 A13. i a to h ii a, g, h Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 6

7 Q14. In ice, each water molecule is surrounded, at equal distances, by four other water molecules. In each case, there is an attraction between the positive hydrogen atom on one water molecule and a lone pair associated with the oxygen atom of another water molecule. Draw a diagram to show the arrangement of four water molecules around another water molecule. A14. Because of hydrogen bonding, ice is less dense than liquid water, and so ice floats on water. (For most liquids, the solid is denser than the liquid.) This is good news for fish, but not good news for travellers on the Titanic! A15. Cloudy ammonia is often used as a cleaning solution in bathrooms. This solution contains ammonia dissolved in water. Draw a diagram to represent hydrogen bonding between a water molecule and an ammonia molecule. A15. E3. The molecular formula of ethane and propane are C 2 H 6 and C 3 H 8, respectively. For each, give the: a empirical formula b structural formula c semistructural formula Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 7

8 AE3. a CH 3 ; C 3 H 8 b c CH 3 CH 3 ; CH 3 CH 2 CH 3 Q16. Explain the following properties of: i diamond, and ii graphite in terms of their respective structures: a high melting temperature b hardness or softness c ability or inability to conduct electricity A16. a i A lot of energy is required to disrupt the strong covalent bonding in three dimensions in diamond. ii A large amount of energy is required to disrupt the strong covalent bonding in two dimensions in graphite. Therefore, diamond and graphite both have high melting temperatures. b i Diamond is hard because it has strong covalent bonds throughout the lattice, with all atoms being held in fixed positions. ii Graphite is soft because there are weak dispersion forces between the layers in graphite, so layers can be made to slide over each other easily. c i Diamond is a non-conductor of electricity because all of its electrons are localised in covalent bonds and are not free to move. ii Graphite is able to conduct electricity because it has delocalised electrons between its layers of carbon atoms. Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 8

9 Q17. Explain the following uses in terms of the structures of graphite and diamond: a Graphite is used as a lubricant. b Diamond is often used as an edge on saws and a tip on drills. A17. a Graphite is used as a lubricant because it is greasy. The dispersion forces between the layers in graphite enable the layers to slide over each other easily. b The strong covalent bonding throughout the lattice means that the carbon atoms are fixed in place. This makes the diamond very hard and suitable as a material for cutting other less hard materials. Chapter review Q18. Draw electron dot formulas for each of the following molecules and identify the number of bonding and non-bonding electrons in each molecule: a HBr b H 2 O 2 c CF 4 d C 2 H 6 e PF 3 f Cl 2 O g CH 4 h H 2 S A18. a 2 bonding electrons, 6 non-bonding electrons b 6 bonding electrons, 8 non-bonding electrons c 8 bonding electrons, 24 non-bonding electrons d 14 bonding electrons, 0 non-bonding electrons Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 9

10 e 6 bonding electrons, 20 non-bonding electrons f 4 bonding electrons, 16 non-bonding electrons g 8 bonding electrons h 4 bonding electrons, 4 non-bonding electrons Q19. Identify the number of bonding and non-bonding electrons in the following molecules: a N 2 b CHCl 3 c O 2 A19. a 3 bonding pairs, 2 non-bonding pairs b 4 bonding pairs, 9 non-bonding pairs c 2 bonding pairs, 4 non-bonding pairs Q20. Draw valence structures for the following molecules. Underneath each structure indicate whether the molecules are: i symmetrical or non-symmetrical ii polar or non-polar a CO 2 b PH 3 c N 2 A20. Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 10

11 Q21. Are the following molecules polar or non-polar? Draw valence structures or make models to help you to decide. a CS 2 b Cl 2 O c SiH 4 d CH 3 Cl e CH 3 CH 3 f CCl 4 A21. d e f Q22. Use Table 7.4 (page 123 of the student book) to determine which of the following molecules contains the most polar bond: a CO 2 b H 2 O c H 2 d H 2 S e NH 3 A22. The O H bond in water is the most polar bond. Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 11

12 Q23. For each of the structures shown below, state whether: i the molecule is polar or non-polar ii the strongest intermolecular forces of attraction between molecules of each type would be dispersion forces, hydrogen bonding or dipole dipole attraction. A23. SO 3 i non-polar; ii dispersion forces SiCl 4 i non-polar; ii dispersion forces CF 4 i non-polar; ii dispersion forces NF 3 i polar; ii dipole dipole attraction CH 3 NH 2 i polar; ii hydrogen bonding Q24 Consider solid samples of the following compounds. In which cases will the only forces between molecules in the samples be dispersion forces? (You should first ascertain whether molecules of these compounds are polar or non-polar. You can do this by drawing an accurate structural formula for each one.) a tetrachloromethane CCl 4 (s) b sulfur dioxide SO 2 (s) c carbon dioxide CO 2 (s) d hydrogen sulfide H 2 S(s) A24. Compounds CCl 4 and CO 2 are both non-polar, and so intermolecular forces operating between these molecules will be dispersion forces. Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 12

13 Q25. The melting temperatures of four of the halogens are given in the table below. (Refer to the periodic table on page 408 to establish where the halogens occur in the table.) Describe and explain the trend in melting temperatures of these elements. Halogen Melting temperature ( C) Fluorine (F 2 ) 220 Chlorine (Cl 2 ) 101 Bromine (Br 2 ) 7 Iodine (I 2 ) 114 A25. Melting temperatures increase down the table because the molecules increase in mass and size and there are more electrons in the molecules; therefore, the strength of the dispersion forces increases. Q26. Suppose that you had samples of the two compounds OF 2 and CF 4. Between molecules of which sample would the intermolecular forces of attraction be greater? Explain your answer. A26. CF 4 has a slightly higher boiling temperature ( 128 C) than OF 2 ( 145 C), indicating that the forces between molecules in CF 4 are stronger. OF 2 is slightly polar; CF 4 is non-polar. OF 2 molecules are held together by forces of dipole dipole attraction and dispersion forces. Although CF 4 molecules are attracted by dispersion forces only, the much larger size of CF 4 molecules makes the dispersion forces stronger than the sum of the dipole dipole forces and the dispersion forces between OF 2 molecules. Q27. The mass of a hydrogen fluoride molecule is similar to the mass of a neon atom. The boiling temperatures of these substances are very different, however. That of hydrogen fluoride is 19.5 C and that of neon is 246 C. Explain the difference in this property of the two substances. A27. Neon exists as single atoms, with the only forces of attraction being dispersion forces. As Ne atoms have very few electrons, the dispersion forces are extremely weak. Neon therefore has a very low boiling temperature. Hydrogen fluoride molecules, however, are very polar and so are held together by electrostatic attraction between permanent dipoles. Because hydrogen is bonded to the very electronegative fluorine, the forces between molecules are known as hydrogen bonds. These are relatively strong intermolecular bonds and HF, therefore, has a much higher boiling temperature than Ne. (The dispersion forces operating between HF molecules are extremely weak.) Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 13

14 Q28. At room temperature, CCl 4 is a liquid whereas CH 4 is a gas. a Which substance has the stronger intermolecular attractions? b Explain the difference in the strengths of the intermolecular attractions. A28. a CCl 4 b CH 4 and CCl 4 are both non-polar and so are held together in a lattice only by dispersion forces. CCl 4 is the larger of these two molecules and has more electrons, so the dispersion forces between CCl 4 molecules will be greater than those between CH 4 molecules. As there are stronger dispersion forces between molecules of CCl 4 than for CH 4, it takes more energy to vaporise CCl 4. Q29. What are the forces of attraction between the following molecules? a H 2 b HCl c NH 3 d CH 4 e H 2 O f C 2 H 6 A29. a dispersion forces b dispersion forces, dipole dipole attractions c dispersion forces, hydrogen bonding d dispersion forces e dispersion forces, hydrogen bonding f dispersion forces Q30. Silicon carbide is a substance that is almost as hard as diamond and is used as a commercial abrasive. It is made by heating silica and carbon to a very high temperature. Silicon carbide consists of a tetrahedral covalent network lattice, containing alternating silicon and carbon atoms. Draw a section of this lattice. A30. Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 14

15 Q31. Look at the data for the melting temperatures of nitrogen, phosphorus, silicon and sulfur in the table below. Which do you think exist as covalent molecular substances and which are covalent network lattices? Element Melting temperature ( C) Nitrogen 210 Phosphorus 44 Silicon 1410 Sulfur 119 A31. covalent molecular: nitrogen, phosphorus and sulfur; covalent network lattice: silicon Q32. The atoms in molecules of nitrogen, oxygen and fluorine are held together by covalent bonds. How are the bonds in these molecules: a similar? b different? A32. a The bonds are similar in that they all involve the sharing of electron pairs between two atoms; that is, they are covalent bonds. b They differ in the number of electron pairs shared: one pair (fluorine), two pairs (oxygen) and three pairs (nitrogen). Q33. The elements carbon and silicon have much in common. There are four electrons in the outer shell in each of the atoms. Both form a dioxide. But, although carbon dioxide is a gas at room temperature, silicon dioxide has the very high melting temperature of 1700 C. Explain this significant difference in terms of their structure. A33. The atoms in CO 2 and SiO 2 are held together by covalent bonds. In the case of CO 2, this bonding is between atoms to form discrete molecules. The relatively low boiling temperature of CO 2 is a reflection of the weak dispersion forces between these CO 2 molecules. In SiO 2, however, the bonding is between silicon and oxygen atoms in a covalent network lattice. There are strong covalent bonds holding every atom to others in the lattice and, hence, a large amount of energy is needed to disrupt this lattice. SiO 2 has much higher melting and boiling temperatures than CO 2. Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 15

16 Q34. Experimental evidence shows that the double bond between the two oxygen atoms in O 2 is much stronger than a single bond between two oxygen atoms in a compound such as hydrogen peroxide (H 2 O 2 ). a Draw electron dot diagrams and structural formulas for O 2 and H 2 O 2. b Explain why the oxygen double bond is stronger than the oxygen single bond. c Why does oxygen not form a triple bond or three single covalent bonds? A34. a b In a single bond there are two electrons that are shared between the atoms, whereas in a double bond there are four electrons. The net attraction is stronger and more energy is needed to break the double bond than the single bond. c Oxygen has six outer-shell electrons and completes its outer shell by forming two single covalent bonds or a double bond with another non-metal. There is no need for the oxygen to form a triple bond or three single covalent bonds as this exceeds its requirement of two electrons to complete its outer shell. Q35. Consider the following list of molecules: N 2, Cl 2, O 2, NH 3, HCl, CH 4, H 2 O, CO 2, CCl 4, CHCl 3. a Draw a valence structure for each of the following from the list, showing bonding and non-bonding electron pairs: i A molecule that contains one triple bond. ii A molecule that contains one double bond. iii A molecule that contains two double bonds. b From the list, which substances contain: i polar molecules? ii symmetrical molecules? iii molecules with hydrogen bonding between them? A35. a i N 2 N N ii O 2 iii CO 2 Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 16

17 b i NH 3, HCl, H 2 O, CHCl 3 ii N 2, Cl 2, O 2, CH 4, CO 2, CCl 4 iii NH 3, H 2 O Q36. Water is a polar molecule. Explain how this fact shows that water is not a linear molecule. A36. If water was a linear molecule, the polarity of the two O H bonds would cancel each other out and make the molecule non-polar. As water is polar, it cannot be a linear molecule. Q37. Draw your own bonding concept map using the terms listed as a guide: covalent bond, lattice, molecule, intermolecular bond, non-metal atom, electron, melting temperature, electron, charge, shell, stable configuration, nucleus A37. An example of a concept map using these terms is shown. Copyright Pearson Australia 2010 (a division of Pearson Australia Group Pty Ltd) 17

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79 Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1 Text: Petrucci, Harwood, Herring 8 th Edition Suggest text problems Review questions: 1, 5!11, 13!17, 19!23 Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57,

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

pre -TEST Big Idea 2 Chapters 8, 9, 10

pre -TEST Big Idea 2 Chapters 8, 9, 10 Name: AP Chemistry Period: Date: R.F. Mandes, PhD, NBCT Complete each table with the appropriate information. Compound IMF Compound IMF 1 NiCl 3 7 ClCH 2 (CH 2 ) 3 CH 3 2 Fe 8 H 2 CF 2 3 Ar 9 H 2 NCH 2

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

Bonding in Elements and Compounds. Covalent

Bonding in Elements and Compounds. Covalent Bonding in Elements and Compounds Structure of solids, liquids and gases Types of bonding between atoms and molecules Ionic Covalent Metallic Many compounds between metals & nonmetals (salts), e.g. Na,

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

Section 3.3: Polar Bonds and Polar Molecules

Section 3.3: Polar Bonds and Polar Molecules Section 3.3: Polar Bonds and Polar Molecules Mini Investigation: Evidence for Polar Molecules, page 103 A. The polar liquids will all exhibit some type of bending toward charged materials. The nonpolar

More information

5. Structure, Geometry, and Polarity of Molecules

5. Structure, Geometry, and Polarity of Molecules 5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces onour Chemistry Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular orces 10.1: Molecular Geometry Molecular Structure: - the three-dimensional

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged. LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

Exercises Topic 2: Molecules

Exercises Topic 2: Molecules hemistry for Biomedical Engineering. Exercises Topic 2 Authors: ors: Juan Baselga & María González Exercises Topic 2: Molecules 1. Using hybridization concepts and VSEPR model describe the molecular geometry

More information

The Periodic Table: Periodic trends

The Periodic Table: Periodic trends Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist

More information

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

More information

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

TRENDS IN THE PERIODIC TABLE

TRENDS IN THE PERIODIC TABLE Noble gases Period alogens Alkaline earth metals Alkali metals TRENDS IN TE PERIDI TABLE Usual charge +1 + +3-3 - -1 Number of Valence e - s 1 3 4 5 6 7 Electron dot diagram X X X X X X X X X 8 Group 1

More information

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O SME TUGH CLLEGE PRBLEMS! LEWIS DT STRUCTURES 1. An acceptable Lewis dot structure for 2 is (A) (B) (C) 2. Which molecule contains one unshared pair of valence electrons? (A) H 2 (B) H 3 (C) CH 4 acl 3.

More information

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o 2. VALENT BNDING, TET RULE, PLARITY, AND BASI TYPES F FRMULAS LEARNING BJETIVES To introduce the basic principles of covalent bonding, different types of molecular representations, bond polarity and its

More information

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

More information

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8 HOMEWORK CHEM 107 Chapter 3 Compounds Putting Particles Together 3.1 Multiple-Choice 1) How many electrons are in the highest energy level of sulfur? A) 2 B) 4 C) 6 D) 8 2) An atom of phosphorous has how

More information

Name: Block: Date: Test Review: Chapter 8 Ionic Bonding

Name: Block: Date: Test Review: Chapter 8 Ionic Bonding Name: Block: Date: Test Review: Chapter 8 Ionic Bonding Part 1: Fill-in-the-blank. Choose the word from the word bank below. Each word may be used only 1 time. electron dot structure metallic electronegativity

More information

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s Section 8.5 Objectives Describe how electronegativity is used to determine bond type. Compare and contrast polar and nonpolar covalent bonds and polar and nonpolar molecules. Generalize about the characteristics

More information

Start: 26e Used: 6e Step 4. Place the remaining valence electrons as lone pairs on the surrounding and central atoms.

Start: 26e Used: 6e Step 4. Place the remaining valence electrons as lone pairs on the surrounding and central atoms. Section 4.1: Types of Chemical Bonds Tutorial 1 Practice, page 200 1. (a) Lewis structure for NBr 3 : Step 1. The central atom for nitrogen tribromide is bromine. 1 N atom: 1(5e ) = 5e 3 Br atoms: 3(7e

More information

Chemistry Diagnostic Questions

Chemistry Diagnostic Questions Chemistry Diagnostic Questions Answer these 40 multiple choice questions and then check your answers, located at the end of this document. If you correctly answered less than 25 questions, you need to

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding

Unit 3: Quantum Theory, Periodicity and Chemical Bonding Selected Honour Chemistry Assignment Answers pg. 9 Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 7: The Electronic Structure of Atoms (pg. 240 to 241) 48. The shape of an s-orbital is

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

Self Assessment_Ochem I

Self Assessment_Ochem I UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

ACE PRACTICE TEST Chapter 8, Quiz 3

ACE PRACTICE TEST Chapter 8, Quiz 3 ACE PRACTICE TEST Chapter 8, Quiz 3 1. Using bond energies, calculate the heat in kj for the following reaction: CH 4 + 4 F 2 CF 4 + 4 HF. Use the following bond energies: CH = 414 kj/mol, F 2 = 155 kj/mol,

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY Purpose: 1. To distinguish between different types of chemical bonds. 2. To predict the polarity of some common molecules from a knowledge of bond

More information

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,

More information

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

More information

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015) (Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

More information

H 2O gas: molecules are very far apart

H 2O gas: molecules are very far apart Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

More information

Covalent Bonding & Molecular Compounds Multiple Choice Review PSI Chemistry

Covalent Bonding & Molecular Compounds Multiple Choice Review PSI Chemistry Covalent Bonding & Molecular Compounds Multiple Choice Review PSI Chemistry Name 1) Which pair of elements is most apt to form a molecular compound with each other? A) aluminum, oxygen B) magnesium, iodine

More information

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where

More information

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity AS Chemistry Revision Notes Unit Atomic Structure, Bonding And Periodicity Atomic Structure. All atoms have a mass number, A (the number of nucleons), and a proton number, Z (the number of protons). 2.

More information

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chapter 4: Structure and Properties of Ionic and Covalent Compounds Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence

More information

WRITING CHEMICAL FORMULA

WRITING CHEMICAL FORMULA WRITING CHEMICAL FORMULA For ionic compounds, the chemical formula must be worked out. You will no longer have the list of ions in the exam (like at GCSE). Instead you must learn some and work out others.

More information

ch9 and 10 practice test

ch9 and 10 practice test 1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

More information

Trends of the Periodic Table Basics

Trends of the Periodic Table Basics Trends of the Periodic Table Basics Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

The melting temperature of carbon

The melting temperature of carbon hemical misconceptions 71 The melting temperature of carbon Target level Topics Rationale This exercise is suitable for either 14 16 year olds who have studied bonding and structure and can calculate relative

More information

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+ Chapter 9 Tro 1. Bromine tends to form simple ions which have the electronic configuration of a noble gas. What is the electronic configuration of the noble gas which the bromide ion mimics? A) 1s 2 2s

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 11, Liquids, and Solids States of Matter The fundamental difference between states of

More information

Ionic and Covalent Bonds

Ionic and Covalent Bonds Ionic and Covalent Bonds Ionic Bonds Transfer of Electrons When metals bond with nonmetals, electrons are from the metal to the nonmetal The becomes a cation and the becomes an anion. The between the cation

More information

Candidate Style Answer

Candidate Style Answer Candidate Style Answer Chemistry A Unit F321 Atoms, Bonds and Groups High banded response This Support Material booklet is designed to accompany the OCR GCE Chemistry A Specimen Paper F321 for teaching

More information

Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature 1 KINETIC TERY F MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature TE STATES F MATTER 1. Gas a) ideal gas - molecules move freely - molecules have

More information

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot notation is a way of describing the outer shell (also called the valence shell) of an

More information

LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY

LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY by DR. STEPHEN THOMPSON MR. JOE STALEY The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department

More information

Exam 4 Practice Problems false false

Exam 4 Practice Problems false false Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

More information

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

More information

Chemistry Assessment Unit AS 1

Chemistry Assessment Unit AS 1 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2011 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry [AC111]

More information

Alkanes. Chapter 1.1

Alkanes. Chapter 1.1 Alkanes Chapter 1.1 Organic Chemistry The study of carbon-containing compounds and their properties What s so special about carbon? Carbon has 4 bonding electrons. Thus, it can form 4 strong covalent bonds

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements 1. Elements in the modern version of the periodic table are arranged in order of increasing. (a). oxidation number (b). atomic mass (c). average atomic mass

More information

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively. Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

Reading Preview. Key Terms covalent bond molecule double bond triple bond molecular compound polar bond nonpolar bond

Reading Preview. Key Terms covalent bond molecule double bond triple bond molecular compound polar bond nonpolar bond Section 4 4 bjectives After this lesson, students will be able to L.1.4.1 State what holds covalently bonded s together. L.1.4.2 Identify the properties of molecular compounds. L.1.4.3 Explain how unequal

More information

CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing.

CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing. CEM 1301 SECOND TEST REVIEW Lewis Structures Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing. Rules OCTET RULE an atom would like to have 8

More information

Chemistry Workbook 2: Problems For Exam 2

Chemistry Workbook 2: Problems For Exam 2 Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.

More information

Molecular Models & Lewis Dot Structures

Molecular Models & Lewis Dot Structures Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

We will not be doing these type of calculations however, if interested then can read on your own

We will not be doing these type of calculations however, if interested then can read on your own Chemical Bond Lattice Energies and Types of Ions Na (s) + 1/2Cl 2 (g) NaCl (s) ΔH= -411 kj/mol Energetically favored: lower energy Like a car rolling down a hill We will not be doing these type of calculations

More information

Name: Class: Date: 2) Which one of the following exhibits dipole-dipole attraction between molecules? A) XeF 4 B) AsH 3 C) CO 2 D) BCl 3 E) Cl 2

Name: Class: Date: 2) Which one of the following exhibits dipole-dipole attraction between molecules? A) XeF 4 B) AsH 3 C) CO 2 D) BCl 3 E) Cl 2 Name: Class: Date: IM Bonding 1) In liquids, the attractive intermolecular forces are. A) very weak compared with kinetic energies of the molecules B) strong enough to hold molecules relatively close together

More information

AP CHEMISTRY 2009 SCORING GUIDELINES

AP CHEMISTRY 2009 SCORING GUIDELINES AP CHEMISTRY 2009 SCORING GUIDELINES Question 6 (8 points) Answer the following questions related to sulfur and one of its compounds. (a) Consider the two chemical species S and S 2. (i) Write the electron

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

More information

Contaminant Behavior in the Environment: Basic Principles 41. To predict if a molecule is polar, we need to answer two questions:

Contaminant Behavior in the Environment: Basic Principles 41. To predict if a molecule is polar, we need to answer two questions: ontaminant Behavior in the Environment: Basic Principles 41 opyright 2008. R Press All rights reserved. May not be reproduced in any form without permission from the publisher, except Depending on its

More information

Structure, Polarity & Physical Properties

Structure, Polarity & Physical Properties tructure, Polarity & Physical Properties upplemental packet handouts 92-96 I. Lewis structure, stability, and bond energies A. ydrogen, oxygen, and nitrogen are present in the atmosphere as diatomic molecular

More information

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ)

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) Name: Score: This is a multiple choice exam. Choose the BEST answer from the choices which are given and write the letter for your choice in the space

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule

More information

Molecular Models in Biology

Molecular Models in Biology Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent,

More information