Induction Proofs. ) ( for all n greater than or equal to n. is a fixed integer. A proof by Mathematical Induction contains two steps:

Size: px
Start display at page:

Download "Induction Proofs. ) ( for all n greater than or equal to n. is a fixed integer. A proof by Mathematical Induction contains two steps:"

Transcription

1 CMPS Algorthms ad Abstract Data Types Iducto Proofs Let P ( be a propostoal fucto, e P s a fucto whose doma s (some subset of) the set of tegers ad whose codoma s the set {True, False} Iformally, ths meas P ( s a setece, statemet, or asserto whose truth or falsty depeds o the teger Mathematcal Iducto s a proof techque whch ca be used to prove statemets of the form : P( ) ( for all greater tha or equal to, P( s true ), where s a fxed teger A proof by Mathematcal Iducto cotas two steps: ( : ( P( I Base Step: Prove drectly that the proposto P ) s true IIa Iducto Step: Prove )) To do ths pck a arbtrary, ad assume for ths that P ( s true The show as a cosequece that P ( ) s true The statemet P ( s ofte called the ducto hypothess, sce t s what s assumed the ducto step Whe I ad II are complete we coclude that P ( s true for all Iducto s sometmes explaed terms of a domo aalogy Cosder a fte set of domos whch are led up ad ready to fall Each domo s labeled by a postve teger, startg wth (It s ofte the case that, whch we assume here for the sake of defteess) Let P ( be the asserto: the th domo falls Frst prove P (), e the frst domo falls, the prove : ( P( )) whch says f ay partcular domo falls, the the ext domo must also fall Whe ths s doe we may coclude : P(, all domos fall There are a umber of varatos o the ducto step The frst s just a reparametrzato of IIa IIb Iducto Step: Prove > : ( P( ) )) Let >, assume P ( ) s true, the prove P ( s true Forms IIa ad IIb are sad to be based o the frst prcple of mathematcal ducto The valdty of ths prcple s proved the appedx of ths hadout Aother mportat varato s called the secod prcple of mathematcal ducto, or strog ducto IIc Iducto Step: Prove : (( k : P( ) )) Let, assume for all k the rage k that P ( s true The prove as a cosequece that P ( ) s true I ths case the term ducto hypothess refers to the stroger assumpto: k : P( The strog ducto form s ofte reparametrzed as IIb:

2 IId Iducto Step: Prove > : (( k < : P( ) )) Let >, assume for all k the rage k <, that P ( s true, the prove as a cosequece that P ( s true I ths case the ducto hypothess s k < : P( I terms of the Domo aalogy, the strog ducto form IId says we must show: (I) the frst domo th th falls, ad (II) for ay, f all domos up to but ot cludg the domo fall, the the domo falls From (I) ad (II) we may coclude that all domos fall Strog Iducto s most ofte parameterzed as IId, ad form IIc s ucommo We preset here a umber of examples of IIa, IIb, ad IId Example Prove that for all : ( )( ) Let P ( be the boxed equato above We beg the ducto at I ( ) ( ) Base step Clearly, showg that P () s true IIa Iducto Step Let ad assume P ( s true That s, for ths partcular value of, the boxed equato holds The ( ) ( )( ) ( ) (by the ducto hypothess) ( )( ) ( ) ( ) [ ( ) ] [ ( ) ] (by some algebra) showg that P ( ) s true We coclude that P ( s true for all /// Whe wrtg a ducto proof, always state the ducto hypothess explctly Also make ote of the pot the proof where the ducto hypothess s used Example Let x R ad x Show that for all : x x x Here we wll use form IIb Aga let P ( be the boxed equato We beg the ducto at I Base step x x x x, showg that P () s true

3 IIb Iducto Step Let > ad assume that P ( ) s true, e assume for ths partcular that: x x x The x x x x x x (by the ducto hypothess) x x (by some algebra) showg that P ( s true Steps I ad II prove that P ( holds for all /// Exercse Prove the followg formulas usg both forms II a ad II b (a) Show that for all : (b) Show that for all : 3 ( ) 4 ( )( )(3 3 ) 3 Ofte the proposto to be proved s ot a formula, but some other type of asserto, lke a equalty, as the followg example Example 3 Defe the fucto T ( for Z by the recurrece f T ( T( / ) f Prove that for all, T ( lg(, ad therefore T ( O(lg Let P ( be the boxed equalty above I Base Step The equalty T ( ) lg() reduces to smply, whch s obvously true, so P () holds IId Iducto Step (Strog Iducto Let > ad assume for all k the rage k< that P ( s true, e T ( lg( I partcular whe / T / lg / Therefore k, we have ( ) T( / ) lg / lg( / ) (sce x T ( (by the defto of T ( ) (by the ducto hypothess) x for ay x) lg( ) lg() lg(, showg that P ( s true Therefore T ( lg( for all, as clamed /// 3

4 Exercse Defe S ( for Z by the recurrece f S ( S( / ) f Prove that for all : S( lg(, ad hece S( Ω(lg There are may other varatos o the ducto techque Occasoally double ducto s called for, whch volves a modfcato of both the base ad ducto steps Base Step: Prove P ) ad P ( ) ( Iducto Step: Prove ( ) : ( P( ) P( ) ) Whe these steps are complete, we coclude : P( I terms of our domo aalogy, we prove: (I) the frst two domos fall, ad (II) f ay two cosecutve domos fall, the the very ext domo falls, ad from (I) ad (II) we deduce that all domos fall The ext example uses double ducto ad cocers the Fboacc sequece F defed by: F, F, ad F F F, e each term the sequece s the sum of the precedg two Usg ths recurrece formula, the frst few terms of the Fboacc sequece are easly computed: F, F, F, F, F 3, F, etc 3 4 Example 4 Let a, ad b Prove that for all, F [ a b ] Let P ( deote the boxed equato above I Base Step Observe that P () ad P () are true sce [ a b ] F ad [ a b ] F II Iducto Step Let ad assume that both P ( ) ad P ( ) are true, e we assume for ths that F [ a b ] ad [ a b ] The ducto hypothess yelds F [ a ( a ) b ( b ) ] F F F Oe checks that a ad b are roots of the quadratc equato x x, whece a a, ad b b Therefore F [ a a b b ] [ a b ], showg that P ( s true Together (I) ad (II) mply that F [ a b ] for all /// 4

5 Exercse 3 Let F be the Fboacc sequece ad defe a as above Show that F a for all, ad hece F Ω( a ) (Prove ths by double ducto, ot as a cosequece of the last example) A Short Itroducto to Graphs Ofte the propostoal fucto P ( s some asserto cocerg other types of mathematcal structures, such as graphs, or trees A graph G s a par of sets G ( V, E) The elemets of V are called vertces, ad the elemets of E are called edges Each edge jos two dstct vertces, called t s eds, ad o two edges have the same eds Abstractly, a edge s a uordered par of vertces, e a - elemet subset of V Two vertces that are joed by a edge are sad to be adjacet, ad a edge s sad to be cdet wth t s two ed vertces Two edges are sad to be adjacet f they are cdet wth a commo ed vertex Thus the example below: vertex s adjacet to vertex 4, vertex s cdet wth edge, ad edge 4 s adjacet to edge V{,, 3, 4,, } E{, 4, 3, 4,,, 3, 3, 4, } Let x, y V A x-y path G s a sequece of vertces startg wth x ad edg wth y, whch each cosecutve par of vertces are adjacet We requre that all vertces other tha x ad y be dstct, ad that each edge the sequece be traversed at most oce We call x the tal vertex ad y the termal vertex If x y, the the path s called a cycle The legth of a path s the umber of edges traversed by the sequece I the above example we have: A - path of legth :,, 4,, 3, A - path of legth 3:, 4,, Aother - path of legth 3:,, 3, A cycle of legth :,,, 3,, 4, A cycle of legth 3:,,, A graph s sad to be coected f t cotas a x-y path for every x, y V, otherwse t s called dscoected The example above s clearly coected, whle the followg example s dscoected V {,, 3, 4,,, 7, 8, 9} E {,,,,, 37, 38, 78, 49} A subgraph of a graph G s a graph H whch V ( H ) V ( G), ad E( H ) E( G) I the above example ({,, }, {,, }) s a coected subgraph, whle ({, 3,, 7}, {, 37}) s a dscoected

6 subgraph A subgraph H s called a coected compoet of G f t s () coected, ad () maxmal wth respect to property (), e ay other subgraph of G that cotas H s dscoected The above example clearly has three coected compoets: ({,,, }, {,,,, }), ({3, 7, 8}, {37, 38, 78}), ad ({4, 9}, {49}) Obvously a graph s coected f ad oly f t has exactly oe coected compoet A graph G s called acyclc f t cotas o cycles A tree s a graph that s both coected ad acyclc The coected compoets of a acyclc graph are obvously trees For ths reaso a acyclc graph s sometmes called a forest The followg graph s a forest wth three coected compoets Observe that the umber of edges each tree of ths forest s oe less tha the umber of vertces Ths s true for all trees, as we ow show Example For all, f T s a tree o vertces, the T cotas edges Let P( be the boxed statemet above We beg at, ad use the strog ducto form IId I Base step If T has just oe vertex, the t ca have o edges, sce the defto of a graph, each edge must have dstct ed vertces Therefore P () holds IId Iducto Step Let > ad assume for all k the rage k <, that P ( s true, e for ay such k, all trees o k vertces cota k edges Now let T be a tree o vertces, pck ay edge e T, ad remove t The removal of e splts T to two subtrees, each havg fewer tha vertces (Ths follows from some elemetary facts about graphs whch we omt for the sake of brevty) Suppose for the sake of defteess that the two subtrees have k ad k vertces, respectvely Sce o vertces were removed, we must have k k By our ductve hypothess, these two subtrees have k ad k edges, respectvely Upo replacg the edge e, we see that the umber of edges orgally T must have bee k ) ( k ) k k, as requred ( By the secod prcple of mathematcal ducto, all trees o vertces have edges /// Iducto Fallaces The ext three examples llustrate some ptfalls to be avoded whe costructg ducto proofs The result Example A was proved correctly Example Here we gve a vald proof of the same fact that llustrates a argumet whch some authors have called the ducto trap

7 Example A For all, f T s a tree o vertces the T has edges (Ivald) Base Step: If the T has o edges, sce each edge must have dstct ed vertces Iducto Step: Let ad let T be a tree o vertces Assume that T has edges Add a ew vertex ad jo t to T wth a ew edge To be precse, the ew edge has the ew vertex at oe ed, ad the other ed ca be ay exstg vertex T The resultg graph has vertces ad edges, ad s clearly a tree sce coectedess s mataed ad o cycles were created By the prcple of mathematcal ducto, all trees o vertces have edges Frst ote that the base step s detcal to that Example, ad s correct For the ducto step, the argumet attempts to follow IIa, but fals to do so I ths example P ( s of the form A( B( where A ( s the statemet T s a tree o vertces, ad B ( s T has edges The ducto step should therefore be to prove, for all, that P ( ), e ( A ( B( ) ( A( ) B( )) To prove ths, we should assume A( B(, the assume A ( ), the show as a cosequece that B( ) s true I other words we should: Assume all trees o vertces have edges Assume T has vertces Show as a cosequece that T has edges The argumet dd ot follow ths format however Istead t does the followg Assume T has vertces Assume T has edges Costruct a ew tree from T havg vertces ad edges Therefore the argumet was ot a proof by ducto Some studets would evertheless hold that the argumet s stll vald, eve though t s ot a true ducto proof The ext example shows covcgly that t caot be vald Example B For all, f G s a coected graph o vertces, the G has edges (False!) We otce rght away that the above statemet s false, sce the graph below provdes a elemetary couter-example But cosder the followg proof lght of Example A (Ivald) Base Step: If the G has o edges, sce each edge must have dstct ed vertces Iducto Step: Let ad let G be a coected graph o vertces Assume that G has edges Add a ew vertex ad jo t to G wth a ew edge The resultg graph has vertces ad edges, ad s clearly coected By the prcple of mathematcal ducto, all coected graphs o vertces have edges 7

8 Observe that Example B follows the format of Example A exactly Thus f A s vald, so must B be vald But the asserto proved B s false! Therefore B caot be a vald argumet, ad so ether s A Example C All horses are of the same color (Ivald) We prove that for all : f S s a set of horses, the all horses S have the same color The result follows o lettg S be the set of all horses Let P ( be the boxed statemet, ad proceed by ducto o Base Step: Let Obvously f S s a set cosstg of just oe horse, the all horses S must have the same color Thus P () s true Iducto Step: Let > ad assume that ay set of horses, all horses are of the same color Let S be a set of S h h, h, K h The the sets, 3, horses, say { } ad S { h, h3, K, h } S { h } S { h, h3, K, h } S { h} each cota exactly horses, ad so by the ducto hypothess all horses S are of oe color, ad lkewse for S Observe that h S S 3 ad that h 3 ca have oly oe color Therefore the color of the horses S s detcal to that of the horses S (Note > 3, so there s fact a thrd horse, ad he ca have oly oe color) Sce S S S t follows that all horses S are of the same color Thus P ( ) s true, showg that P ( ) for all > The result ow follows by ducto Obvously the proposto beg proved s false, so there s somethg wrog wth the proof, but what? The base step s certaly correct, ad the ducto step, as stated, s also correct The problem s that the ducto step was ot quatfed properly We should have proved : P( ) Istead we proved (correctly) that > : P( ) Ideed t s true that P( ) 3), P( 3) 4), ad P( 4) ), etc, but we ever proved (ad t s false that) P( ) ) I terms of the domo aalogy, t s as f the frst domo falls; ad f ay domo dexed or above were to fall, the the ext domo would fall; but the frst domo s ot suffcet to topple the secod domo, ad hece o domo other tha the frst actually falls Justfcato of the Iducto Prcples Here we prove the valdty of the frst ad secod prcples of mathematcal ducto Both proofs are based o the well orderg property of the postve tegers Z, whch says: Ay o-empty set of postve tegers cotas a least elemet We assume ths property wthout proof Theorem (weak ducto form IIb) For ay propostoal fucto P ( defed o the postve tegers, the followg setece s true: [ P( ) ( > : P( ) )] : P( 8

9 Assume that P () ad > : P( ) are both true Let S { Z P( s false } It s suffcet to show that S, sce the P ( s true for all Assume, to get a cotradcto, that S The, by the well orderg property of Z, S cotas a least elemet, call t m Sce P () s true, we have S Therefore m >, ad m s a postve teger Sce m s the smallest elemet S, we must have m S, whece P ( m ) s true We have assumed for all > that P( ) s true I partcular for m, we have P( m ) m) Sce both P ( m ) ad P( m ) m) are true, we must coclude that P (m) s also true Thus m S, cotradctg the very defto of m as the smallest elemet S Thus our assumpto was false, ad hece S as requred /// Theorem (strog ducto form IId) For ay propostoal fucto P ( defed o the postve tegers, the followg setece s true: [ P( ) ( > : ( k< : P( ) )] : P( Assume P () ad > : ( k< : P( ) are true, ad aga let S { Z P( s false } As before we show S, hece P ( s true for all Assume that S By the well orderg property, S cotas a least elemet m Sce P () s true, we have S Therefore m >, ad m Sce m s the smallest elemet S, we have for ay k the rage k m that k S, whece P ( s true I other words, k< m : P( s true Now we have also assumed for all >, that ( k< : P( ) s true I partcular, whe m, we have ( k< m : P( ) m) Sce both k< m : P( ad ( k< m : P( ) m) are true, we coclude P (m) s also true Thus m S, aga cotradctg the defto of m as the smallest elemet S Our assumpto was therefore false, ad hece S as requred /// Although we proved both theorems depedetly, t s possble to show that each mples the other, e theorems ad are logcally equvalet (exercse) I fact both theorems are equvalet to the well orderg property of the postve tegers (exercse) The terms strog ad weak ducto are therefore some sese msomers, sce ether theorem s really stroger tha the other The term strog ducto refers stead to the stroger assumpto beg made the ducto step: k< : P( as opposed to P ( ) 9

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis 6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

More information

Numerical Methods with MS Excel

Numerical Methods with MS Excel TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

More information

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time. Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E

More information

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are : Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

Sequences and Series

Sequences and Series Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

More information

of the relationship between time and the value of money.

of the relationship between time and the value of money. TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp

More information

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has

More information

Chapter Eight. f : R R

Chapter Eight. f : R R Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,

More information

Average Price Ratios

Average Price Ratios Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or

More information

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0 Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may

More information

CHAPTER 2. Time Value of Money 6-1

CHAPTER 2. Time Value of Money 6-1 CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show

More information

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh

More information

An Effectiveness of Integrated Portfolio in Bancassurance

An Effectiveness of Integrated Portfolio in Bancassurance A Effectveess of Itegrated Portfolo Bacassurace Taea Karya Research Ceter for Facal Egeerg Isttute of Ecoomc Research Kyoto versty Sayouu Kyoto 606-850 Japa arya@eryoto-uacp Itroducto As s well ow the

More information

Bayesian Network Representation

Bayesian Network Representation Readgs: K&F 3., 3.2, 3.3, 3.4. Bayesa Network Represetato Lecture 2 Mar 30, 20 CSE 55, Statstcal Methods, Sprg 20 Istructor: Su-I Lee Uversty of Washgto, Seattle Last tme & today Last tme Probablty theory

More information

On Savings Accounts in Semimartingale Term Structure Models

On Savings Accounts in Semimartingale Term Structure Models O Savgs Accouts Semmartgale Term Structure Models Frak Döberle Mart Schwezer moeyshelf.com Techsche Uverstät Berl Bockehemer Ladstraße 55 Fachberech Mathematk, MA 7 4 D 6325 Frakfurt am Ma Straße des 17.

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50

More information

Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes

Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes Covero of No-Lear Stregth Evelope to Geeralzed Hoek-Brow Evelope Itroducto The power curve crtero commoly ued lmt-equlbrum lope tablty aaly to defe a o-lear tregth evelope (relatohp betwee hear tre, τ,

More information

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R = Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are

More information

1. The Time Value of Money

1. The Time Value of Money Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg

More information

Constrained Cubic Spline Interpolation for Chemical Engineering Applications

Constrained Cubic Spline Interpolation for Chemical Engineering Applications Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel

More information

Online Appendix: Measured Aggregate Gains from International Trade

Online Appendix: Measured Aggregate Gains from International Trade Ole Appedx: Measured Aggregate Gas from Iteratoal Trade Arel Burste UCLA ad NBER Javer Cravo Uversty of Mchga March 3, 2014 I ths ole appedx we derve addtoal results dscussed the paper. I the frst secto,

More information

How To Value An Annuity

How To Value An Annuity Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%

More information

Classic Problems at a Glance using the TVM Solver

Classic Problems at a Glance using the TVM Solver C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

More information

MDM 4U PRACTICE EXAMINATION

MDM 4U PRACTICE EXAMINATION MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

On formula to compute primes and the n th prime

On formula to compute primes and the n th prime Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: ssam.addoura@lu.edu.lb amh Abdul-Nab Lebaese Iteratoal

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom. UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.

More information

STOCHASTIC approximation algorithms have several

STOCHASTIC approximation algorithms have several IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 60, NO 10, OCTOBER 2014 6609 Trackg a Markov-Modulated Statoary Degree Dstrbuto of a Dyamc Radom Graph Mazyar Hamd, Vkram Krshamurthy, Fellow, IEEE, ad George

More information

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable

More information

Performance Attribution. Methodology Overview

Performance Attribution. Methodology Overview erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace

More information

Plastic Number: Construction and Applications

Plastic Number: Construction and Applications Scet f c 0 Advaced Advaced Scetfc 0 December,.. 0 Plastc Number: Costructo ad Applcatos Lua Marohć Polytechc of Zagreb, 0000 Zagreb, Croata lua.marohc@tvz.hr Thaa Strmeč Polytechc of Zagreb, 0000 Zagreb,

More information

We present a new approach to pricing American-style derivatives that is applicable to any Markovian setting

We present a new approach to pricing American-style derivatives that is applicable to any Markovian setting MANAGEMENT SCIENCE Vol. 52, No., Jauary 26, pp. 95 ss 25-99 ess 526-55 6 52 95 forms do.287/msc.5.447 26 INFORMS Prcg Amerca-Style Dervatves wth Europea Call Optos Scott B. Laprse BAE Systems, Advaced

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

Curve Fitting and Solution of Equation

Curve Fitting and Solution of Equation UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed

More information

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl

More information

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira sedgh@eetd.ktu.ac.r,

More information

On Error Detection with Block Codes

On Error Detection with Block Codes BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,

More information

Common p-belief: The General Case

Common p-belief: The General Case GAMES AND ECONOMIC BEHAVIOR 8, 738 997 ARTICLE NO. GA97053 Commo p-belef: The Geeral Case Atsush Kaj* ad Stephe Morrs Departmet of Ecoomcs, Uersty of Pesylaa Receved February, 995 We develop belef operators

More information

Compressive Sensing over Strongly Connected Digraph and Its Application in Traffic Monitoring

Compressive Sensing over Strongly Connected Digraph and Its Application in Traffic Monitoring Compressve Sesg over Strogly Coected Dgraph ad Its Applcato Traffc Motorg Xao Q, Yogca Wag, Yuexua Wag, Lwe Xu Isttute for Iterdscplary Iformato Sceces, Tsghua Uversty, Bejg, Cha {qxao3, kyo.c}@gmal.com,

More information

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,

More information

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree , pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal

More information

DIRAC s BRA AND KET NOTATION. 1 From inner products to bra-kets 1

DIRAC s BRA AND KET NOTATION. 1 From inner products to bra-kets 1 DIRAC s BRA AND KET NOTATION B. Zwebach October 7, 2013 Cotets 1 From er products to bra-kets 1 2 Operators revsted 5 2.1 Projecto Operators..................................... 6 2.2 Adjot of a lear operator.................................

More information

Generalizations of Pauli channels

Generalizations of Pauli channels Acta Math. Hugar. 24(2009, 65 77. Geeralzatos of Paul chaels Dées Petz ad Hromch Oho 2 Alfréd Réy Isttute of Mathematcs, H-364 Budapest, POB 27, Hugary 2 Graduate School of Mathematcs, Kyushu Uversty,

More information

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1 akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of

More information

Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization

Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve

More information

CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID

CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID CH. ME56 STTICS Ceter of Gravt, Cetrod, ad Momet of Ierta CENTE OF GITY ND CENTOID 5. CENTE OF GITY ND CENTE OF MSS FO SYSTEM OF PTICES Ceter of Gravt. The ceter of gravt G s a pot whch locates the resultat

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Polyphase Filters. Section 12.4 Porat 1/39

Polyphase Filters. Section 12.4 Porat 1/39 Polyphase Flters Secto.4 Porat /39 .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful

More information

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. yayli@science.ankara.edu.tr. evrenziplar@yahoo.

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. yayli@science.ankara.edu.tr. evrenziplar@yahoo. ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Mathematics of Finance

Mathematics of Finance CATE Mathematcs of ace.. TODUCTO ths chapter we wll dscuss mathematcal methods ad formulae whch are helpful busess ad persoal face. Oe of the fudametal cocepts the mathematcs of face s the tme value of

More information

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxation Methods for Iterative Solution to Linear Systems of Equations Relaxato Methods for Iteratve Soluto to Lear Systems of Equatos Gerald Recktewald Portlad State Uversty Mechacal Egeerg Departmet gerry@me.pdx.edu Prmary Topcs Basc Cocepts Statoary Methods a.k.a. Relaxato

More information

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute

More information

THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES. MATRİS KODLAR İLE McELIECE ŞİFRELEME SİSTEMİ

THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES. MATRİS KODLAR İLE McELIECE ŞİFRELEME SİSTEMİ SAÜ e Blmler Dergs, 5 Clt, 2 Sayı, THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES Vedat ŞİAP* *Departmet of Mathematcs, aculty of Scece ad Art, Sakarya Uversty, 5487, Serdva, Sakarya-TURKEY vedatsap@gmalcom

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems

Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems Fto: A Faster, Permutable Icremetal Gradet Method for Bg Data Problems Aaro J Defazo Tbéro S Caetao Just Domke NICTA ad Australa Natoal Uversty AARONDEFAZIO@ANUEDUAU TIBERIOCAETANO@NICTACOMAU JUSTINDOMKE@NICTACOMAU

More information

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

On Cheeger-type inequalities for weighted graphs

On Cheeger-type inequalities for weighted graphs O Cheeger-type equaltes for weghted graphs Shmuel Fredlad Uversty of Illos at Chcago Departmet of Mathematcs 851 S. Morga St., Chcago, Illos 60607-7045 USA Rehard Nabbe Fakultät für Mathematk Uverstät

More information

Credibility Premium Calculation in Motor Third-Party Liability Insurance

Credibility Premium Calculation in Motor Third-Party Liability Insurance Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53

More information

Simple Linear Regression

Simple Linear Regression Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Session 4: Descriptive statistics and exporting Stata results

Session 4: Descriptive statistics and exporting Stata results Itrduct t Stata Jrd Muñz (UAB) Sess 4: Descrptve statstcs ad exprtg Stata results I ths sess we are gg t wrk wth descrptve statstcs Stata. Frst, we preset a shrt trduct t the very basc statstcal ctets

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

RUSSIAN ROULETTE AND PARTICLE SPLITTING

RUSSIAN ROULETTE AND PARTICLE SPLITTING RUSSAN ROULETTE AND PARTCLE SPLTTNG M. Ragheb 3/7/203 NTRODUCTON To stuatos are ecoutered partcle trasport smulatos:. a multplyg medum, a partcle such as a eutro a cosmc ray partcle or a photo may geerate

More information

10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof AnaNEvans@virginia.edu http://people.virginia.

10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof AnaNEvans@virginia.edu http://people.virginia. Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof AaNEvas@vrga.edu http://people.vrga.edu/~as5k/

More information

Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software

Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao

More information

START Selected Topics in Assurance

START Selected Topics in Assurance SAR Selected opcs Assurace Related echologes able of Cotets Itroducto Relablty of Seres Systems of Idetcal ad Idepedet Compoets Numercal Examples he Case of Dfferet Compoet Relabltes Relablty of Parallel

More information

Statistical Decision Theory: Concepts, Methods and Applications. (Special topics in Probabilistic Graphical Models)

Statistical Decision Theory: Concepts, Methods and Applications. (Special topics in Probabilistic Graphical Models) Statstcal Decso Theory: Cocepts, Methods ad Applcatos (Specal topcs Probablstc Graphcal Models) FIRST COMPLETE DRAFT November 30, 003 Supervsor: Professor J. Rosethal STA4000Y Aal Mazumder 9506380 Part

More information

FINANCIAL MATHEMATICS 12 MARCH 2014

FINANCIAL MATHEMATICS 12 MARCH 2014 FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Aggregation Functions and Personal Utility Functions in General Insurance

Aggregation Functions and Personal Utility Functions in General Insurance Acta Polytechca Huarca Vol. 7, No. 4, 00 Areato Fuctos ad Persoal Utlty Fuctos Geeral Isurace Jaa Šprková Departmet of Quattatve Methods ad Iformato Systems, Faculty of Ecoomcs, Matej Bel Uversty Tajovského

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

OPTIMAL KNOWLEDGE FLOW ON THE INTERNET

OPTIMAL KNOWLEDGE FLOW ON THE INTERNET İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 5 Sayı:0 Güz 006/ s. - OPTIMAL KNOWLEDGE FLOW ON THE INTERNET Bura ORDİN *, Urfat NURİYEV ** ABSTRACT The flow roblem ad the mmum sag tree roblem are both fudametal

More information

1st International Symposium on Imprecise Probabilities and Their Applications, Ghent, Belgium, 29 June - 2 July 1999

1st International Symposium on Imprecise Probabilities and Their Applications, Ghent, Belgium, 29 June - 2 July 1999 1st Iteratoal Symposum o Imprecse robabltes ad Ther Applcatos, Ghet, Belgum, 29 Jue - 2 July 1999 Sharg Belefs: Betwee Agreeg ad Dsagreeg Atoe Bllot æ, Ala Chateaueuf y, Itzhak Glboa z, Jea-Marc Tallo

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

The Digital Signature Scheme MQQ-SIG

The Digital Signature Scheme MQQ-SIG The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

The simple linear Regression Model

The simple linear Regression Model The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Incorporating demand shifters in the Almost Ideal demand system

Incorporating demand shifters in the Almost Ideal demand system Ecoomcs Letters 70 (2001) 73 78 www.elsever.com/ locate/ ecobase Icorporatg demad shfters the Almost Ideal demad system Jula M. Alsto, James A. Chalfat *, Ncholas E. Pggott a,1 1 a, b a Departmet of Agrcultural

More information

Fast, Secure Encryption for Indexing in a Column-Oriented DBMS

Fast, Secure Encryption for Indexing in a Column-Oriented DBMS Fast, Secure Ecrypto for Idexg a Colum-Oreted DBMS Tgja Ge, Sta Zdok Brow Uversty {tge, sbz}@cs.brow.edu Abstract Networked formato systems requre strog securty guaratees because of the ew threats that

More information

Speeding up k-means Clustering by Bootstrap Averaging

Speeding up k-means Clustering by Bootstrap Averaging Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Chapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity

More information

Numerical Comparisons of Quality Control Charts for Variables

Numerical Comparisons of Quality Control Charts for Variables Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa

More information

4. Trees. 4.1 Basics. Definition: A graph having no cycles is said to be acyclic. A forest is an acyclic graph.

4. Trees. 4.1 Basics. Definition: A graph having no cycles is said to be acyclic. A forest is an acyclic graph. 4. Trees Oe of the importat classes of graphs is the trees. The importace of trees is evidet from their applicatios i various areas, especially theoretical computer sciece ad molecular evolutio. 4.1 Basics

More information

10.5 Future Value and Present Value of a General Annuity Due

10.5 Future Value and Present Value of a General Annuity Due Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the

More information

Load Balancing Control for Parallel Systems

Load Balancing Control for Parallel Systems Proc IEEE Med Symposum o New drectos Cotrol ad Automato, Chaa (Grèce),994, pp66-73 Load Balacg Cotrol for Parallel Systems Jea-Claude Heet LAAS-CNRS, 7 aveue du Coloel Roche, 3077 Toulouse, Frace E-mal

More information

Green Master based on MapReduce Cluster

Green Master based on MapReduce Cluster Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of

More information