Electron Dot Diagrams. Electron Dot Diagrams. Unbonded Atoms Ionic Bonding Covalent Bonding
|
|
|
- Joel Jenkins
- 9 years ago
- Views:
Transcription
1 Specific Outcomes: i. I can define valence electron, electronegativity, ionic bond and intramolecular force. ii. I can draw electron dot diagrams. iii. I can use the periodic table and electron dot diagrams to support and explain ionic bonding theory. iv. I can explain how an ionic bond results from the simultaneous attraction of oppositely charged ions. v. I can draw electron dot diagrams of atoms and molecules, writing structural formulas for molecular substances and using Lewis structures to predict bonding in simple molecules. vi. I can relate electron pairing to multiple and covalent bonds. Electron Dot Diagrams Electron Dot Diagrams Electrons are arranged in layers (shells) around an atom Not all shells actually contain electrons The outermost shell that contains electrons is called the valence shell The electrons in the outermost occupied shell are called valence electrons All shells below these are also occupied! Remember how the octet rule arranges electrons in each shell: 2e, 8e, 8e... This is because electrons pair up into orbitals for stability 1 st shell has 1 orbital (holds 2 e ), 2 nd or 3 rd shells have 4 orbitals each We will pretend that the 4 th shell has only has 4 orbitals (holding 8 e ) 1
2 Exception: B has 3 orbitals! (not the usual 4) Atoms, shells and electrons are too small to be seen with a microscope We will draw the structure of the valence shell and show how chemical bonds form An electron dot diagram consists of an element symbol, surrounded by dots that represent only the valence electrons Steps: 1) Determine the # of valence e 2) Determine the # of available orbitals 3) Going clockwise, populate all e in orbitals, one at a time (undt s rule) ex. sulphur 6 valence e S ex. hydrogen 1 valence e ex. helium 2 valence e e ex. carbon 4 valence e C Try these: boron, magnesium, nitrogen 2
3 A full orbital (paired electrons) is called a lone pair, and never participates in bonding A halffull orbital contains only one electron, called a bonding electron Only the bonding e (the single ones!) are capable of forming chemical bonds The number of bonding electrons of an atom indicates how many bonds it may form An ionic bond is the electrostatic (+/) attraction between oppositely charged ions Most metals have three or fewer electrons in their valence level (INT: from ionic charge!) They tend to lose these electrons and become positive ions (cations) Most nonmetals have more than four valence electrons They tend to gain electrons and become negative ions (anions) After ions form, electrostatic attraction between positive and negative charge draws the ions together, forming an ionic bond To draw the electron dot diagrams for ionic compounds: 1) The metal has no valence electrons in the diagram (since e are lost) 2) The nonmetal has a full valence level (since e are gained) 3) Both ions have square brackets with the charge on the outside 3
4 ex. NaCl ex. MgO When ionic compounds form, the number of electrons lost by the metal must equal the number of electrons gained by the nonmetal The compound is neutral, resulting in a net charge of zero (positive and negative charges must add to zero) There may multiple copies of the metal and nonmetal to balance out ex. CaF 2 4
5 ex. K 2 S ex. Fe 2 O 3 ex. Mg 3 N 2 Try these: TiS 2, Nb 2 O 3, MoN 2 5
6 A covalent bond is formed when two nonmetal atoms share a pair of electrons Compounds containing covalent bonds are also called molecular compounds Ions are NOT formed, so no charge is present! Instead of transferring electrons, valence electrons are shared to satisfy the octet rule Note: boron has 6 electrons in a full shell! Electron dot diagrams of covalent/molecular compounds are called Lewis structures The electrons that are shared are called a bonding pair (made of 2 bonding electrons) Sharing two pairs of electrons between two atoms gives rise to a double bond (ex. O 2 ) Sharing three pairs of electrons between two atoms results in a triple bond (ex. N 2 ) To draw Lewis structures: 1) Draw separate electron dot diagrams for each of the individual atoms 2) Put the element with the most bonding (unpaired) electrons in the center, with all other atoms around it 3) Connect the bonding (unpaired) electrons, leaving no electron unpaired (at this stage, it will be very messy) To draw Lewis structures: 4) Redraw the Lewis structure, making double and triple bonds as needed 5) Check to make sure the octet rule is satisfied, remembering that hydrogen needs only 2 e 6
7 ex. P 3 P P ex. CO 2 C O O C O O Try these: BrCl, C 4, C 3 O, C 3 4, C 4 F 6 7
Ionic and Covalent Bonds
Ionic and Covalent Bonds Ionic Bonds Transfer of Electrons When metals bond with nonmetals, electrons are from the metal to the nonmetal The becomes a cation and the becomes an anion. The between the cation
Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance
Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot notation is a way of describing the outer shell (also called the valence shell) of an
Theme 3: Bonding and Molecular Structure. (Chapter 8)
Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,
List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.
Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals
Laboratory 11: Molecular Compounds and Lewis Structures
Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular
Chapter 8 Basic Concepts of the Chemical Bonding
Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question
Chapter 4: Structure and Properties of Ionic and Covalent Compounds
Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence
Sample Exercise 8.1 Magnitudes of Lattice Energies
Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three
Section 11.3 Atomic Orbitals Objectives
Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location
Bonding Practice Problems
NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which
CHEMISTRY BONDING REVIEW
Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.
Sample Exercise 8.1 Magnitudes of Lattice Energies
Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas
Bonding & Molecular Shape Ron Robertson
Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving
Worksheet 14 - Lewis structures. 1. Complete the Lewis dot symbols for the oxygen atoms below
Worksheet 14 - Lewis structures Determine the Lewis structure of 2 oxygen gas. 1. omplete the Lewis dot symbols for the oxygen atoms below 2. Determine the number of valence electrons available in the
5. Structure, Geometry, and Polarity of Molecules
5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those
CHAPTER 6 Chemical Bonding
CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain
7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions
7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams
Ionic and Metallic Bonding
Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose
Chapter 5 TEST: The Periodic Table name
Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based
Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num
. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential
19.1 Bonding and Molecules
Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and
Chapter 2: The Chemical Context of Life
Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you
LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY
by DR. STEPHEN THOMPSON MR. JOE STALEY The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy
EXPERIMENT 9 Dot Structures and Geometries of Molecules
EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published
A PREVIEW & SUMMMARY of the 3 main types of bond:
Chemical Bonding Part 1 Covalent Bonding Types of Chemical Bonds Covalent Bonds Single Polar Double NonPolar Triple Ionic Bonds Metallic Bonds Other Bonds InterMolecular orces first A PREVIEW & SUMMMARY
Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.
Chapter 2 The Chemical Context of Life
Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living
Molecular Models in Biology
Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent,
Exam 2 Chemistry 65 Summer 2015. Score:
Name: Exam 2 Chemistry 65 Summer 2015 Score: Instructions: Clearly circle the one best answer 1. Valence electrons are electrons located A) in the outermost energy level of an atom. B) in the nucleus of
A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.
CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the
Chapter 8 Concepts of Chemical Bonding
Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding
Test Bank - Chapter 4 Multiple Choice
Test Bank - Chapter 4 The questions in the test bank cover the concepts from the lessons in Chapter 4. Select questions from any of the categories that match the content you covered with students. The
ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39)
ATOMS A T O M S, I S O T O P E S, A N D I O N S The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) THE ATOM All elements listed on the periodic table are made up of atoms.
Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?
CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose
SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni
SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the
We will not be doing these type of calculations however, if interested then can read on your own
Chemical Bond Lattice Energies and Types of Ions Na (s) + 1/2Cl 2 (g) NaCl (s) ΔH= -411 kj/mol Energetically favored: lower energy Like a car rolling down a hill We will not be doing these type of calculations
EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory
EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,
WRITING CHEMICAL FORMULA
WRITING CHEMICAL FORMULA For ionic compounds, the chemical formula must be worked out. You will no longer have the list of ions in the exam (like at GCSE). Instead you must learn some and work out others.
Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)
BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in
CHAPTER 12: CHEMICAL BONDING
CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist
A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)
Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is
Molecular Models & Lewis Dot Structures
Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.
Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.
Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories
A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES
A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular
(b) Formation of calcium chloride:
Chapter 2: Chemical Compounds and Bonding Section 2.1: Ionic Compounds, pages 22 23 1. An ionic compound combines a metal and a non-metal joined together by an ionic bond. 2. An electrostatic force holds
Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table.
Chapter 5 Periodic Table Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. How did he organize the elements? According to similarities in their chemical and physical
electron configuration
electron configuration Electron Configuration Knowing the arrangement of electrons in atoms will better help you understand chemical reactivity and predict an atom s reaction behavior. We know when n=1
Part I: Principal Energy Levels and Sublevels
Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found
Unit 2 Periodic Behavior and Ionic Bonding
Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements
Type of Chemical Bonds
Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared
2. Atoms with very similar electronegativity values are expected to form
AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result
19.2 Chemical Formulas
In the previous section, you learned how and why atoms form chemical bonds with one another. You also know that atoms combine in certain ratios with other atoms. These ratios determine the chemical formula
ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom )
ANSWER KEY : PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom ) 1. Explore the Build an Atom simulation with your group. As you explore, talk about what
Start: 26e Used: 6e Step 4. Place the remaining valence electrons as lone pairs on the surrounding and central atoms.
Section 4.1: Types of Chemical Bonds Tutorial 1 Practice, page 200 1. (a) Lewis structure for NBr 3 : Step 1. The central atom for nitrogen tribromide is bromine. 1 N atom: 1(5e ) = 5e 3 Br atoms: 3(7e
3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP
Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments
Formal Charges. Step 2. Assign the formal charge to each atom. Formal charge is calculated using this formula: H O H H
Formal harges Discussion: Ions bear a positive or negative charge. If the ion is polyatomic (is constructed of more than on atom), we might ask which atom(s) of the ion carry the charge? Knowledge of charge
H 2O gas: molecules are very far apart
Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat
The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.
CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron
ch9 and 10 practice test
1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp
Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.
Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions
Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set
Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You
TRENDS IN THE PERIODIC TABLE
Noble gases Period alogens Alkaline earth metals Alkali metals TRENDS IN TE PERIDI TABLE Usual charge +1 + +3-3 - -1 Number of Valence e - s 1 3 4 5 6 7 Electron dot diagram X X X X X X X X X 8 Group 1
Lewis Dot Structures of Atoms and Ions
Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron
Exercises Topic 2: Molecules
hemistry for Biomedical Engineering. Exercises Topic 2 Authors: ors: Juan Baselga & María González Exercises Topic 2: Molecules 1. Using hybridization concepts and VSEPR model describe the molecular geometry
CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.
Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence
7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8
HOMEWORK CHEM 107 Chapter 3 Compounds Putting Particles Together 3.1 Multiple-Choice 1) How many electrons are in the highest energy level of sulfur? A) 2 B) 4 C) 6 D) 8 2) An atom of phosphorous has how
( + and - ) ( - and - ) ( + and + ) Atoms are mostly empty space. = the # of protons in the nucleus. = the # of protons in the nucleus
Atoms are mostly empty space Atomic Structure Two regions of every atom: Nucleus - is made of protons and neutrons - is small and dense Electron cloud -is a region where you might find an electron -is
EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY
EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY Purpose: 1. To distinguish between different types of chemical bonds. 2. To predict the polarity of some common molecules from a knowledge of bond
B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal
1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and
Chemical Bonding. Chemical Bonding
ocaine EMIAL BDIG 1 hemical Bonding Problems and questions ow is a molecule or polyatomic ion held together? Why are atoms distributed at strange angles? Why are molecules not flat? an we predict the structure?
Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?
Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core
C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.
129 Lewis Structures G. N. Lewis hypothesized that electron pair bonds between unlike elements in the second (and sometimes the third) row occurred in a way that electrons were shared such that each element
Copyrighted by Gabriel Tang B.Ed., B.Sc.
Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested
Chapter 2 Polar Covalent Bonds: Acids and Bases
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical
Questions on Chapter 8 Basic Concepts of Chemical Bonding
Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,
Self Assessment_Ochem I
UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.
Periodic Table Questions
Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is
CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing.
CEM 1301 SECOND TEST REVIEW Lewis Structures Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing. Rules OCTET RULE an atom would like to have 8
Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds
Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds
SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O
SME TUGH CLLEGE PRBLEMS! LEWIS DT STRUCTURES 1. An acceptable Lewis dot structure for 2 is (A) (B) (C) 2. Which molecule contains one unshared pair of valence electrons? (A) H 2 (B) H 3 (C) CH 4 acl 3.
100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.
2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal
Unit 3 Study Guide: Electron Configuration & The Periodic Table
Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.
Name period AP chemistry Unit 2 worksheet Practice problems
Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct
We emphasize Lewis electron dot structures because of their usefulness in explaining structure of covalent molecules, especially organic molecules.
Chapter 10 Bonding: Lewis electron dot structures and more Bonding is the essence of chemistry! Not just physics! Chemical bonds are the forces that hold atoms together in molecules, in ionic compounds,
The Periodic Table: Periodic trends
Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has
Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts
Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where
3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?
PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06
PROTONS AND ELECTRONS
reflect Imagine that you have a bowl of oranges, bananas, pineapples, berries, pears, and watermelon. How do you identify each piece of fruit? Most likely, you are familiar with the characteristics of
Chapter 13 - LIQUIDS AND SOLIDS
Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,
POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):
POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an
ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!
ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference
6.5 Periodic Variations in Element Properties
324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends
Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding
Bonding Models Section (Chapter, M&T) Chemical Bonding We will look at three models of bonding: Lewis model Valence Bond model M theory Bonding Models (Lewis) Bonding Models (Lewis) Lewis model of bonding
Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.
LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present
All about Chemical Bonding Ionic
Program Support Notes by: Peter Gribben BA BSc (Hons) PGCE Produced by: VEA Pty Ltd Commissioning Editor: Darren Gray Cert IV Training & Assessment Executive Producer: Simon Garner B.Ed, Dip Management
: : Solutions to Additional Bonding Problems
Solutions to Additional Bonding Problems 1 1. For the following examples, the valence electron count is placed in parentheses after the empirical formula and only the resonance structures that satisfy
Chemistry Post-Enrolment Worksheet
Name: Chemistry Post-Enrolment Worksheet The purpose of this worksheet is to get you to recap some of the fundamental concepts that you studied at GCSE and introduce some of the concepts that will be part
Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period.
hem 150 Answer Key roblem et 2 1. omplete the following phrases: Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period.
Chemistry Workbook 2: Problems For Exam 2
Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.
