Optimization of a Reusable Rocket-Powered, VTVL Launch System: A Case Study of the Falcon 9-R
|
|
|
- Theodore Carpenter
- 9 years ago
- Views:
Transcription
1 Optimization of a Reusable Rocket-Powered, VTVL Launch System: A Case Study of the Falcon 9-R 04 August 2014 John E. Bradford, Ph.D. President, Principal Engineer [email protected] Brad St. Germain, Ph.D. Director, Advanced Concepts Group [email protected] Kevin Feld Sr. Aerospace Engineer [email protected]
2 Case Study SpaceWorks was interested in examining the performance of the SpaceX Falcon 9-R system that is currently under development as a test case for the VTVL simulation System closure simulation created in PHX ModelCenter allowed us to quickly reverse engineer the baseline Falcon 9 system and anchor the models to various pieces of public information Gross mass and propellant loads Engine performance specifications Vehicle dimensions and fairing geometry Mission launch profile (times, altitudes, velocities) Statements made by SpaceX employees Anticipate that as additional details on the F-9R performance are released, the model can be further validated and/or calibrated Using the reference closure model, we were then able to assess the impact of reusability on the system and explore various sensitivities 2
3 Reference Concept Non-proprietary Falcon 9 v1.1 system Public data sources and engineering models calibrated for: Geometry Propellant loads Propulsion Aerodynamics Trajectory Fairing Assumed flight constraints common for expendable launch systems Parameter Gross Liftoff Weight Upperstage Gross Weight Total Height Diameter Value 1,115,200 lbm 246,150 lbm 224 feet 12 feet Liftoff T/W 1.2 Reported Payload to LEO 28,990 lbm Image Credit: SpaceX 3
4 VTVL Assessment Examined downrange booster recovery as well as RTLS option Fixed vehicle size and mass, per the reference concept Booster stage mass model includes landing system/legs Recovery/Landing Requirements: Vertical orientation (gamma -90 deg) at touchdown touchdown < 20.0 fps Single-engine operation for terminal maneuver 3 engines operable for any initial boostback burn Max. heat rate constraint of 15 BTU/ft2-s (assumed) Optimization: Maximum upperstage payload mass that can be delivered to LEO for either the expendable booster case, booster with RTLS recovery, or booster with downrange landing 4
5 VTVL Concept Simulation Model Created a multi-disciplinary simulation using Phoenix Integration s ModelCenter engineering environment 5
6 Results : FlightSight Images Downrange Landing Booster Parameter Flight Time Final Downrange Distance Max Downrange Distance Value 390 sec 156 nmi 156 nmi Mach Staging 7.1 Staging Peak Altitude 201,500 feet 271,500 feet RTLS Maneuver Booster Parameter Flight Time Final Downrange Distance Max Downrange Distance Value 480 sec ~0 nmi 57 nmi Mach Staging 6.0 Staging Peak Altitude 187,000 feet 423,500 feet 6
7 Results : Trajectory Details Altitude vs. Time Mach Number vs. Time 7
8 Results : Trajectory Details(2) Downrange vs. Time Thrust vs. Time 8
9 Results: Performance Summary Booster Parameter Expendable Downrange RTLS Landing Propellant Used 0 lbm 44,350 lbm 84,680 lbm Recovery Propellant (% Booster Total Prop) 0.0 % 5.5 % 10.5 % Staging Mach Number Videal Post-Staging 0 fps 5,400 fps 8,900 fps 9
10 Trade Study Examined impact of removing max. heat rate constraint for recovery trajectories RTLS trajectory was not impacted (inactive constraint), but the downrange case was impacted significantly 10
11 Conclusions 11
12 Summary SpaceWorks has developed a system closure and optimization model for VTVL concepts Simulation capability was tested using performance data for the SpaceX Falcon 9 v1.1 PHX ModelCenter implementation enabled rapid trade studies and system sensitivity analyses For case study, the performance impacts of two different first stage propulsive recovery options (downrange landing and RTLS) were evaluated and compared to non-recoverable options Downrange propulsive landing results in a ~20% drop in payload performance compared to expendable booster mission; RTLS results in a ~40% drop in payload compared to expendable (no recovery) approach Regarding the cost savings due to reusability, gains must outweigh performance reductions Expendable upperstage, estimated at ~$20M, establishes floor for $/lbm-payload Must also include booster propellant and refurbishment costs (at a minimum) Cost savings may not be as significant as some claim, but appears to still be a net gain Progress is being made, but we need to continue push for full reusability on these systems 12
13 SPACEWORKS ENTERPRISES, INC. (SEI) Crown Pointe Parkway, Suite 950 Atlanta, GA USA
Space Shuttle Mission SPACE SHUTTLE SYSTEM. Operation. Luca d Agostino, Dipartimento di Ingegneria Aerospaziale, Università di Pisa, 2010/11.
Space Shuttle Mission SPACE SHUTTLE SYSTEM Operation SPACE SHUTTLE SYSTEM Operation The flight plan and operation of the Space Shuttle differs markedly from that of the now-familiar launch procedures and
SpaceLoft XL Sub-Orbital Launch Vehicle
SpaceLoft XL Sub-Orbital Launch Vehicle The SpaceLoft XL is UP Aerospace s workhorse space launch vehicle -- ideal for significant-size payloads and multiple, simultaneous-customer operations. SpaceLoft
2015 Small Satellite Market Observations. Copyright 2015, SpaceWorks Enterprises, Inc. (SEI)
2015 Small Satellite Market Observations 2015 Small Satellite Market Observations Point of Contact: Dr. John Bradford President / COO [email protected] 1+770.379.8007 Published by: SpaceWorks Enterprises,
SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET
SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET WWW.NAKKA-ROCKETRY.NET February 007 Rev.1 March 007 1 Introduction As part of the design process for a hobby rocket, it is very
Modular Approach to Launch Vehicle Design Based on a Common Core Element
AIAA SPACE 21 Conference & Exposition 3 August - 2 September 21, Anaheim, California AIAA 21-864 Modular Approach to Launch Vehicle Design Based on a Common Core Element Dennis M. Creech 1 Jacobs Engineering
SpaceX Overview Tom Markusic Director, McGregor Rocket Development Facility 27 July, 2010. SpaceX
SpaceX Overview Tom Markusic Director, McGregor Rocket Development Facility 27 July, 2010 SpaceX Vehicles Falcon 1 Falcon 9 Dragon Spacecraft 2 SpaceX Overview Founded in mid-2002 with the singular goal
APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example
APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example Prepared by DARcorporation 1. Program Layout & Organization APP Consists of 8 Modules, 5 Input Modules and 2 Calculation Modules.
IV. Rocket Propulsion Systems. A. Overview
IV. Rocket Propulsion Systems A. Overview by J. M. Seitzman for AE 4451 Jet and Rocket Propulsion Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating
Overview of the Orbiting Carbon Observatory (OCO) Mishap Investigation Results For Public Release
Overview of the Orbiting Carbon Observatory (OCO) Mishap Investigation Results For Public Release SUMMARY The Orbiting Carbon Observatory was a National Aeronautics and Space Administration satellite mission
A MONTE CARLO DISPERSION ANALYSIS OF A ROCKET FLIGHT SIMULATION SOFTWARE
A MONTE CARLO DISPERSION ANALYSIS OF A ROCKET FLIGHT SIMULATION SOFTWARE F. SAGHAFI, M. KHALILIDELSHAD Department of Aerospace Engineering Sharif University of Technology E-mail: [email protected] Tel/Fax:
TEAM AMERICA ROCKETRY CHALLENGE 2016 RULES
COPYRIGHT 20. ALL RIGHTS RESERVED FED. SUPPLY CLASS NONE TEAM AMERICA ROCKETRY CHALLENGE 2016 RULES DATE. www.aia-nas.org ISSUE DATE: SEPTEMBER 2002 DATE: MAY 9, 20 THIRD ANGLE PROJECTION CUSTODIAN NATIONAL
Experimental investigation of golf driver club head drag reduction through the use of aerodynamic features on the driver crown
Available online at www.sciencedirect.com Procedia Engineering 00 (2013) 000 000 www.elsevier.com/locate/procedia The 2014 conference of the International Sports Engineering Association Experimental investigation
g GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed GE Aircraft Engines
GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed 1 Background The Aircraft Engine Design Project- Engine Cycles A new aircraft application
Space Flight Project Work Breakdown Structure
APPENDIX G. (WBS) Space Flight Project Work Breakdown Structure G.1 Introduction G.1.1 The Project Work Breakdown Structure (WBS) is a key element of project management. The purpose of a WBS is to divide
A VALUE PROPOSITION FOR LUNAR ARCHITECTURES UTILIZING ON-ORBIT PROPELLANT REFUELING
A VALUE PROPOSITION FOR LUNAR ARCHITECTURES UTILIZING ON-ORBIT PROPELLANT REFUELING By James Jay Young In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the School of
Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon
International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.27-31 Computational Aerodynamic Analysis on Store Separation from Aircraft
TITAN EXPLORER ENTRY, DESCENT AND LANDING TRAJECTORY DESIGN
AAS 06-077 TITAN EXPLORER ENTRY, DESCENT AND LANDING TRAJECTORY DESIGN Jody L. Fisher and Robert E. Lindberg National Institute of Aerospace and Mary Kae Lockwood Johns Hopkins Applied Physics Laboratory
Revision history. Version Date Action. 1.0 Oct 1, 2015 Initial release. Moonspike - Feasibility Study - October 2015 - Page 1 of 35
Revision history Version Date Action 1.0 Oct 1, 2015 Initial release Moonspike - Feasibility Study - October 2015 - Page 1 of 35 1 Table of Contents 1 Table of Contents... 2 2 Acronyms & Terms... 3 3 Document
Experimental Spaceplane (XS-1)
Experimental Spaceplane (XS-1) Aiming to Reduce the Time to Space and Cost to Space by Orders of Magnitude Mr. Jess Sponable, TTO Program Manager Program Overview 29 April 2016 Distribution Statement A:
Bi-Directional DGPS for Range Safety Applications
Bi-Directional DGPS for Range Safety Applications Ranjeet Shetty 234-A, Avionics Engineering Center, Russ College of Engineering and Technology, Ohio University Advisor: Dr. Chris Bartone Outline Background
Micro and Mini UAV Airworthiness, European and NATO Activities
Recent Development in Unmanned Aircraft Systems Micro and Mini UAV Airworthiness, European and NATO Activities iti Fulvia Quagliotti Politecnico di Torino Department of Aerospace Engineering Torino, Italy
Leveraging Performance-Based Cost Modeling For Earth Observation Missions
Leveraging Performance-Based Cost Modeling For Earth Observation Missions REINVENTING SPACE Anthony Shao University of Southern California Dept. Astronautical Engineering [email protected], 310-219-2700 http://www.smad.com/reinventingspace.html
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
Genetic Algorithm Optimization of a Cost Competitive Rocket Booster George Story NASA MSFC Huntsville, Al www.nasa.gov Overview attributes are typically touted as to why hybrids should be pursued. Handling,
Projectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
Fundamentals of CFD and Data Center Cooling Amir Radmehr, Ph.D. Innovative Research, Inc. [email protected]
Minneapolis Symposium September 30 th, 2015 Fundamentals of CFD and Data Center Cooling Amir Radmehr, Ph.D. Innovative Research, Inc. [email protected] Learning Objectives 1. Gain familiarity with Computational
ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET PREPARATION
ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET Total Time: 30 min PREPARATION PRE-LESSON INSTRUCTIONS Resources needed for the delivery
HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM
8 th European Symposium on Aerothermodynamics for space vehicles HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM M. Di Clemente, R. Votta, G. Ranuzzi, F. Ferrigno March 4, 2015 Outline
Offshore Wind Farm Layout Design A Systems Engineering Approach. B. J. Gribben, N. Williams, D. Ranford Frazer-Nash Consultancy
Offshore Wind Farm Layout Design A Systems Engineering Approach B. J. Gribben, N. Williams, D. Ranford Frazer-Nash Consultancy 0 Paper presented at Ocean Power Fluid Machinery, October 2010 Offshore Wind
Does currently available technology have the capacity to facilitate a manned mission to Mars?
Furze Platt Senior School Does currently available technology have the capacity to facilitate a manned mission to Mars? Daniel Messias Date: 8/03/2015 Candidate Number: 7158 Centre Number: 51519 Contents
Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm
More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x
Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014
Aerospace Engineering 3521: Flight Dynamics Prof. Eric Feron Homework 6 due October 20, 2014 1 Problem 1: Lateral-directional stability of Navion With the help of Chapter 2 of Nelson s textbook, we established
Delimitation and Commercial Use of Outer Space. Sang-Myon Rhee Seoul National University March 28, 2011
Delimitation and Commercial Use of Outer Space Sang-Myon Rhee Seoul National University March 28, 2011 Where to Delimit? Problems & Issues Problems in Traditional Delimitation Air Space Outer Space Necessity
Uniformly Accelerated Motion
Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations
Leveraging Performance-Based Cost Modeling
Leveraging Performance-Based Cost Modeling REINVENTING SPACE Elizabeth A. Koltz, USC Anthony Shao, USC/Microcosm James R. Wertz, USC/Microcosm Contact: Elizabeth Koltz [email protected] Phone: 310-219-2700
Technologies for Re-entry Vehicles. SHEFEX and REX FreeFlyer, DLR s Re-Entry Program. Hendrik Weihs. Folie 1. Vortrag > Autor > Dokumentname > Datum
Technologies for Re-entry Vehicles SHEFEX and REX FreeFlyer, DLR s Re-Entry Program Hendrik Weihs Folie 1 DLR`s Re-Entry Program, Why? Re-entry or return technology respectively, is a strategic key competence
Automation of Aircraft Pre-Design with Chameleon
Automation of Aircraft Pre-Design with Chameleon Arne Bachmann Simulation- and Software Technology German Aerospace Center (DLR) ADVCOMP 2009, Oct 13 th, Sliema/Malta Slide 1 Overview Who we are Introduction
SpaceX Hyperloop Pod Competition
SpaceX Hyperloop Pod Competition Rules and Requirements August 20, 2015 CONTENTS 1 Introduction... 2 2 General Rules... 3 3 Preliminary Design Briefing... 4 4 Final Design Package... 5 5 Design Weekend...
ELECTROMECHANICAL ACTUATION FOR LAUNCH VECHICLES
ELECTROMECHANICAL ACTUATION FOR LAUNCH VECHICLES Presented By: Mark A. Davis Moog Inc. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Salt Lake City, Utah July 10, 2001 Introduction This paper describes
Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion
S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates
Tutorials and Examples of Software Integration Techniques for Aircraft Design using ModelCenter MAD 99-06-02
Tutorials and Examples of Software Integration Techniques for Aircraft Design using ModelCenter By Mark Bigley, Candy Nelson, Peter Ryan and W.H. Mason MAD 99-06-02 June 1999 Supported by Virginia s Center
Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar
Performance 11. Level Flight Performance and Level flight Envelope We are interested in determining the maximum and minimum speeds that an aircraft can fly in level flight. If we do this for all altitudes,
IAC-15-D2.1 NASA S SPACE LAUNCH SYSTEM PROGRAM UPDATE. Todd May NASA Marshall Space Flight Center, USA, [email protected]
IAC-15-D2.1 NASA S SPACE LAUNCH SYSTEM PROGRAM UPDATE Todd May NASA Marshall Space Flight Center, USA, [email protected] Garry Lyles NASA Space Launch System, USA, [email protected] Hardware and software
2014 Nano / Microsatellite Market Assessment. Copyright 2014, SpaceWorks Enterprises, Inc. (SEI)
2014 Nano / Microsatellite Market Assessment 2014 Nano / Microsatellite Market Assessment Developed by: Ms. Elizabeth Buchen Director, Engineering Economics Group [email protected] 1+770.379.8006
APOPHIS 2029 A UNIQUE MISSION OPPORTUNITY
APOPHIS 2029 A UNIQUE MISSION OPPORTUNITY Jean-Yves Prado CNES Toulouse - France Presentation Outline APOPHIS reminder The April 2029 flyby Mission objectives Sequence of events Launch Orbit transfer Relative
Shuttle Variations And Derivatives That Never Happened - An Historical Review
Shuttle Variations And Derivatives That Never Happened - An Historical Review Carl F. Ehrlich, Jr. * Consultant, Calabasas, CA 91302 James A. Martin The Boeing Company, Huntington Beach, CA 92647 While
INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011
MASTER OF SCIENCE IN AEROSPACE ENGINEERING PROPULSION AND COMBUSTION INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 LECTURE NOTES AVAILABLE ON https://www.ingegneriaindustriale.unisalento.it/scheda_docente/-/people/antonio.ficarella/materiale
Iodine RF Ion Thruster Development Busek Co. Inc. Vlad Hruby PhD, President
Iodine RF Ion Thruster Development Busek Co. Inc. Vlad Hruby PhD, President Mike Tsay PhD busek.com 2015 Busek Co. Inc. All Rights Reserved. Iodine RF Ion Thruster Development Status Briefing NASA NRA
Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids
Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,
Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication
Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication Michael D. Hogue, NASA Kennedy Space Center Robert P. Mueller, NASA Kennedy Space Center Laurent Sibille,
Falcon 9 Launch Vehicle Payload User s Guide
Falcon 9 Launch Vehicle Payload User s Guide R e v 1 Approved for Public Release. Cleared for Open Publication by Office of Security Review. 09-S-0347 Space Exploration Technologies Corporation Table of
Figure 1: The Beamed-Energy Propulsion Concept
An Overview of the NASA Ames Millimeter-Wave Thermal Launch System David D. Murakami, Kevin L. Parkin NASA Ames Research Center, Moffett Field, CA, 94035 The Millimeter-Wave Thermal Launch System (MTLS)
This is the fourth of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment.
This is the fourth of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment. Dimensions: Wing Span: 112 ft 7 in Length: 129 ft 6 in Height: 41
ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD
ME 239: Rocket Propulsion Over- and Under-expanded Nozzles and Nozzle Configurations J. M. Meyers, PhD 1 Over- and Underexpanded Nozzles Underexpanded Nozzle Discharges fluid at an exit pressure greater
Lecture L17 - Orbit Transfers and Interplanetary Trajectories
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to
Small Satellite LEO Maneuvers with Low-Power Electric Propulsion
Small Satellite LEO Maneuvers with Low-Power Electric Propulsion Scott T. King 1 and Mitchell L. R. Walker 2 Georgia Institute of Technology, Atlanta, Georgia, 3332 Craig A. Kluever 3 University of Missouri-Columbia,
Towards cooperative high-fidelity aircraft MDO: comparison of Breguet and ODE evaluation of the cruise mission segment
www.dlr.de Chart 1 STAB Symposium 2014 Munich, November 4, 2014 Towards cooperative high-fidelity aircraft MDO: comparison of Breguet and ODE evaluation of the cruise mission segment Časlav Ilić, Tanja
A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic
AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty
Section 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
Lecture L14 - Variable Mass Systems: The Rocket Equation
J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L14 - Variable Mass Systems: The Rocket Equation In this lecture, we consider the problem in which the mass of the body changes during
CHAPTER 7 CLIMB PERFORMANCE
CHAPTER 7 CLIMB PERFORMANCE 7 CHAPTER 7 CLIMB PERFORMANCE PAGE 7.1 INTRODUCTION 7.1 7.2 PURPOSE OF TEST 7.1 7.3 THEORY 7.2 7.3.1 SAWTOOTH CLIMBS 7.2 7.3.2 STEADY STATE APPROACH TO CLIMB PERFORMANCE 7.4
Magnetospheric Multiscale (MMS) Mission EDUCATOR S INSTRUCTIONAL GUIDE
Magnetospheric Multiscale (MMS) Mission EDUCATOR S INSTRUCTIONAL GUIDE Educational Products Educators & Students Grades 5-8 Table of Contents Program Overview... 1 About this Guide:... 1 Modalities for
AEROSPACE 2050 The Future of Aviation & Space
AEROSPACE 2050 The Future of Aviation & Space 18th Hamburg Prof Graham Roe Fellow of the RAeS The Aerospace Global Aerospace 2050 Industry CONTENTS Introduction Military Commercial Space Questions Aerospace
Rockets: Taking Off! Racing Balloon
Rockets: Taking Off! For every action there is an equal and opposite reaction. Rockets and Balloons What happens when you blow up a balloon then let it go? Does the balloon move through the air? Did you
The µtorque Momentum-Exchange Tether Experiment
The µtorque Momentum-Exchange Tether Experiment Robert P. Hoyt Tethers Unlimited, Inc., 19011 36 h Ave. W., Suite F, Lynnwood, WA 98036-5752 (425) 744-0400 [email protected] Abstract. Long, high-strength
NASTAR CENTER SPACE TRAINING PROGRAMS
NASTAR CENTER SPACE TRAINING PROGRAMS Public o Intro to Space Passengers o Basic Suborbital Space Training o Advanced Space Training o Space Payload Specialist Training o Space Suits and Systems Training
Penn State University Physics 211 ORBITAL MECHANICS 1
ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there
VEHICLE CONTROL TECHNOLOGIES
VEHICLE CONTROL TECHNOLOGIES PTB TECHNOLOGIES AND PRODUCTS HarborScan AUV UDS MISSION Long known for its hydrodynamic maneuvering simulations and undersea control systems, VCT is now delivering turnkey
AP CALCULUS AB 2006 SCORING GUIDELINES. Question 4
AP CALCULUS AB 2006 SCORING GUIDELINES Question 4 t (seconds) vt () (feet per second) 0 10 20 30 40 50 60 70 80 5 14 22 29 35 40 44 47 49 Rocket A has positive velocity vt () after being launched upward
Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow
1 of 9 Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow A method utilizing Computational Fluid Dynamics (CFD) codes for determination of acceptable risk level
CAT VIII WORKING DRAFT
Category VIII Military Aircraft and Associated Equipment A. End Items, Systems, Accessories, Attachments, Equipment, Parts and Components 1. Fighter, bomber, attack, or specialized fixed or rotary wing
System Engineering: A Traditional Discipline in a Non-traditional Organization
System Engineering: A Traditional Discipline in a Non-traditional Organization Corporate Overview Founded with the singular goal of providing highly reliable space transportation Tech-style Organization
Web review - Ch 3 motion in two dimensions practice test
Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity
BAFFLES AS A MEANS OF STATION PROTECTION FROM HIGH AIR VELOCITIES - COMPARISON OF ANALYTICAL AND FIELD MEASUREMENTS RESULTS
- 289 - BAFFLES AS A MEANS OF STATION PROTECTION FROM HIGH AIR VELOCITIES - COMPARISON OF ANALYTICAL AND FIELD MEASUREMENTS RESULTS Maevski Igor, PhD, PE Jacobs Engineering, USA ABSTRACT Draught relief
Laguduva Kubendran, PhD, MBA Program Executive, NASA HQ GSFC Emerging Commercial Suborbital Capabilities Workshop September 7, 2011. www.nasa.
Laguduva Kubendran, PhD, MBA Program Executive, NASA HQ GSFC Emerging Commercial Suborbital Capabilities Workshop September 7, 2011 www.nasa.gov Office of the Chief Technologist Program Map Space Tech
Multi Engine Oral Exam Questions
Multi Engine Oral Exam Questions 1. What are the requirements for a multi-engine rating? 2. What is the max rated horse power at sea level? At 12,000 msl? 3. What is the rated engine speed? 4. What is
General Characteristics
This is the third of a series of Atlantic Sun Airways CAT C pilot procedures and checklists for our fleet. Use them with good judgment. Note, the start procedures may vary from FS9 Panel to Panel. However
History of the Titan Centaur Launch Vehicle
History of the Titan Centaur Launch Vehicle The Centaur program began in 1958 with its first successful flight on 27 November 1963. The unique Centaur design is the first liquid oxygen and liquid hydrogen
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
NASA ISS Research Academy and Pre-Application Meeting. Erin Beck Mission Integrator [email protected] August 4, 2010
NASA ISS Research Academy and Pre-Application Meeting Erin Beck Mission Integrator [email protected] SpaceX Overview Founded in mid-2002 with the singular goal of providing highly reliable, low cost
IEEE 2012 Annual Meeting Cincinnati, Ohio
IEEE 2012 Annual Meeting Cincinnati, Ohio Integrated Vehicle Energy Technology (INVENT) Overview Changing the Culture through Model Based Engineering 4 May 2012 Integrity Service Excellence STEVEN M. IDEN
Multi-Engine Training And The PTS
Multi-Engine Training And The PTS GHAFI John Sollinger/Larry Hendrickson October 28, 2000 Overview FAR differences between original and add-on Multi-Engine PTS Training methods Common training scenarios
TWO TELECOMMUNICATIONS SATELLITES READY FOR LAUNCH
TWO TELECOMMUNICATIONS SATELLITES READY FOR LAUNCH Arianespace will orbit two telecommunications satellites on its sixth Ariane 5 launch of the year: Eutelsat 21B for the European operator Eutelsat, and
Cessna Skyhawk II / 100. Performance Assessment
Cessna Skyhawk II / 100 Performance Assessment Prepared by John McIver B.Eng.(Aero) Temporal Images 23rd January 2003 http://www.temporal.com.au Cessna Skyhawk II/100 (172) Performance Assessment 1. Introduction
Exploring Venus Atmosphere with a Semi-buoyant Air Vehicle
Exploring Venus Atmosphere with a Semi-buoyant Air Vehicle Lifting Entry/Atmospheric Flight (LEAF) Systems IPPW11 June 16, 2014 G. Lee, R. Polidan, D. Sokol, K. Griffin (Northrop Grumman Aerospace Systems)
Connecting Air-Ground Operators through the Upper Aerial Layer
Connecting Air-Ground Operators through the Upper Aerial Layer Jerry Knoblach, Chairman & CEO (480) 403-0032 www.spacedata.net 0 Wide Area Comm Platforms Near Space much closer than satellites 400 X Lower
This is the third of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment.
This is the third of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment. Dimensions: Span 107 ft 10 in Length 147 ft 10 in Height 29ft 7 in
Using Computational Fluid Dynamics (CFD) for improving cooling system efficiency for Data centers
Data Centre Best Practises Workshop Using Computational Fluid Dynamics (CFD) for improving cooling system efficiency for Data centers Shishir Gupta 17 th March 2009 You are Here Introduction to CFD Data
Maximum Range Explained range Figure 1 Figure 1: Trajectory Plot for Angled-Launched Projectiles Table 1
Maximum Range Explained A projectile is an airborne object that is under the sole influence of gravity. As it rises and falls, air resistance has a negligible effect. The distance traveled horizontally
SATELLITE LAUNCHES FOR ASIA AND INDIA
SATELLITE LAUNCHES FOR ASIA AND INDIA Arianespace will orbit two communications satellites on its third launch of the year: ST-2 for the operator ST-2 Satellite Ventures Pte Ltd., a joint venture of Singapore
Prop Rotor Acoustics for Conceptual Design. Final Report NASA Grant NAG 2-918. Valana L. Wells Arizona State University
Prop Rotor Acoustics for Conceptual Design Final Report NASA Grant NAG 2-918 Valana L. Wells Arizona State University April 1996 Abstract The report describes a methodology for the simple prediction of
Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.
Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
