Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

Size: px
Start display at page:

Download "Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks"

Transcription

1 Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks 1 Jaydip Sen Innovation Lab, Tata Consultancy Services Ltd. India 1. Introduction Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers (Akyildiz et al., 2005). WMNs are multi-hop networks consisting of mesh routers (MRs), which form wireless mesh backbones and mesh clients (MCs). The mesh routers provide a rich radio mesh connectivity which significantly reduces the up-front deployment cost of the network. Mesh routers are typically stationary and do not have power constraints. However, the clients are mobile and energy-constrained. Some mesh routers are designated as gateway routers which are connected to the Internet through a wired backbone. A gateway router provides access to conventional clients and interconnects ad hoc, sensor, cellular, and other networks to the Internet. The gateway routers are also referred to as the Internet gateways (IGWs). A mesh network can provide multi-hop communication paths between wireless clients, thereby serving as a community network, or can provide multi-hop paths between the client and the gateway router, thereby providing broadband Internet access to the clients. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in the current protocols of WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. Absence of a central point of administration makes securing WMNs even more challenging. Security is, therefore, an issue which is of prime importance in WMNs (Sen, 2011). Since in a WMN, traffic from the end users is relayed via multiple wireless mesh routers, preserving privacy of the user data is also a critical requirement (Wu et al., 2006a). Some of the existing security and privacy protection protocols for WMNs are based on the trust and reputation of the network entities (Sen, 2010a; Sen, 2010b). However, many of these schemes are primarily designed for mobile ad hoc networks (MANETs) (Sen, 2006; Sen, 2010c), and hence these protocols do not perform well in large-scale hybrid WMN environments. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are

2 4 Applied Cryptography and Network Security not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. To prevent external attacks in vulnerable networks such as WMNs, strong authentication and access control mechanisms should be in place for practical deployment and use of WMNs. A secure authentication should enable two communicating entities (either a pair of MC and MR or a pair of MCs) to validate the authenticity of each other and generate the shared common session keys which can be used in cryptographic algorithms for enforcing message confidentiality and integrity. As in other wireless networks, a weak authentication scheme can easily be compromised due to several reasons such as distributed network architecture, the broadcast nature of the wireless medium, and dynamic network topology (Akyildiz et al., 2005). Moreover, the behavior of an MC or MR can be easily monitored or traced in a WMN by adversaries due to the use of wireless channel, multi-hop connection through third parties, and converged traffic pattern traversing through the IGW nodes. Under such scenario, it is imperative to hide an active node that connects to an IGW by making it anonymous. Since on the Internet side traditional anonymous routing approaches are not implemented, or may be compromised by strong attackers such protections are extremely critical (X. Wu & Li, 2006). This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs. The rest of this chapter is organized as follows. Section 2 discusses the issues related to access control and authentication in WMNs. Various security vulnerabilities in the authentication and access control mechanisms for WMNs are first presented and then a list of requirements (i.e. properties) of a secure authentication scheme in an open and largescale, hybrid WMN are discussed. Section 3 highlights the importance of the protection user privacy in WMNs. Section 4 presents a state of the art survey on the current authentication and privacy protection schemes for WMNs. Each of the schemes is discussed with respect to its applicability, performance efficiency and shortcomings. Section 5 presents the details of a hierarchical architecture of a WMN and the assumptions made for the design of a secure and anonymous authentication protocol for WMNs. Section 6 describes the proposed key management scheme for secure authentication. Section 7 discusses the proposed privacy protection algorithm which ensures user anonymity. Section 8 presents some performance results of the proposed scheme. Section 9 concludes the chapter while highlighting some future direction of research in the field of secure authentication in WMNs. 2. Access control and authentication in WMNs Authentication and authorization is the first step towards prevention of fraudulent accesses by unauthorized users in a network. Authentication ensures that an MC and the corresponding MR can mutually validate their credentials with each other before the MC is allowed to access the network services. In this section, we first present various attacks in WMNs that can be launched on the authentication services and then enumerate the requirements for authentication under various scenarios.

3 Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks Security vulnerabilities in authentication schemes Several vulnerabilities exist in different protocols for WMNs. These vulnerabilities can be suitably exploited by potential attackers to degrade the network performance (Sen, 2011). The nodes in a WMN depend on the cooperation of other nodes in the network for their successful operations. Consequently, the medium access control (MAC) layer and the network layer protocols for these networks usually assume that the participating nodes are honest and well-behaving with no malicious or dishonest intentions. In practice, however, some nodes in a WMN may behave in a selfish manner or may be compromised by malicious users. The assumed trust (which in reality may not exist) and the lack of accountability due to the absence of a central point of administration make the MAC and the network layer protocols vulnerable to various types of attacks. In this sub-section, we present a comprehensive discussion on various types of attacks on the existing authentication schemes of WMNs. A detailed list various attacks on the different layers of WMN communication protocol stack can be found in (Sen, 2011; Yi et al., 2010). There are several types of attacks that are related to authentication in WMNs. These attacks are: (i) unauthorized access, (ii) replay attack, (iii) spoofing attack, (iv) denial of service attack (DoS), (v) intentional collision of frames, (vi) pre-computation and partial matching attack, and (vi) compromised or forged MRs. These attacks are discussed in detail below. Unauthorized access: in this attack, an unauthorized user gets access to the network services by masquerading a legitimate user. Fig. 1. Illustration of MAC spoofing and replay attacks [Source: (Sen, 2011)] Replay attack: the replay attack is a type of man-in-the-middle attack (Mishra & Arbaugh, 2002) that can be launched by external as well as internal nodes. An external malicious node can eavesdrop on the broadcast communication between two nodes (A and B) in the network as shown in Fig. 1. It can then transmit legitimate messages at a later point of time to gain access to the network resources. Generally, the authentication information is replayed where the attacker deceives a node (node B in Fig. 1) to believe that the attacker is a legitimate node (node A in Fig. 1). On a similar note, an internal malicious node, which is an intermediate hop between two communicating nodes, can keep a copy of all relayed data. It can then retransmit this data at a later point in time to gain unauthorized access to the network resources.

4 6 Applied Cryptography and Network Security Spoof attack: spoofing is the act of forging a legitimate MAC or IP address. IP spoofing is quite common in multi-hop communications in WMNs. In IP spoofing attack, an adversary inserts a false source address (or the address of a legitimate node) from the packets forwarded by it. Using such a spoofed address, the malicious attacker can intercept a termination request and hijack a session. In MAC address spoofing, the attacker modifies the MAC address in transmitted frames from a legitimate node. MAC address spoofing enables the attacker to evade intrusion detection systems (IDSs) that may be in place. DoS attack: in this attack, a malicious attacker sends a flood of packets to an MR thereby making a buffer overflow in the router. Another well-known security flaw can be exploited by an attacker. In this attack, a malicious attacker can send false termination messages on behalf of a legitimate MC thereby preventing a legitimate user from accessing network services. Intentional collision of frames: a collision occurs when two nodes attempt to transmit on the same frequency simultaneously (Wood & Stankovic, 2002). When frames collide, they are discarded and need to be retransmitted. An adversary may strategically cause collisions in specific packets such as acknowledgment (ACK) control messages. A possible result of such collision is the costly exponential back-off. The adversary may simply violate the communication protocol and continuously transmit messages in an attempt to generate collisions. Repeated collisions can also be used by an attacker to cause resource exhaustion. For example, a naïve MAC layer implementation may continuously attempt to retransmit the corrupted packets. Unless these retransmissions are detected early, the energy levels of the nodes would be exhausted quickly. An attacker may cause unfairness by intermittently using the MAC layer attacks. In this case, the adversary causes degradation of real-time applications running on other nodes by intermittently disrupting their frame transmissions. Pre-computation and partial matching attack: unlike the attacks mentioned above, where the MAC protocol vulnerabilities are exploited, these attacks exploit the vulnerabilities in the security mechanisms that are employed to secure the MAC layer of the network. Precomputation and partial matching attacks exploit the cryptographic primitives that are used at the MAC layer to secure the communication. In a pre-computation attack, or time memory trade-off (TMTO) attack, the attacker computes a large amount of information (e.g., key, plaintext, and the corresponding ciphertext) and stores that information before launching the attack. When the actual transmission starts, the attacker uses the pre-computed information to speed up the cryptanalysis process. TMTO attacks are highly effective against a large number of cryptographic solutions. On the other hand, in a partial matching attack, the attacker has access to some (ciphertext, plaintext) pairs, which in turn decreases the encryption key strength, and improves the chances of success of the brute force mechanisms. Partial matching attacks exploit the weak implementations of encryption algorithms. For example, the IEEE i standard for MAC layer security in wireless networks is prone to the session hijacking attack and the man-in-the-middle attack that exploits the vulnerabilities in IEEE802.1X. DoS attacks are possible on the four-way handshake procedure in IEEE802.11i. Compromised or Forged MR: an attacker may be able to compromise one or more MRs in a network by physical tampering or logical break-in. The adversary may also introduce rogue MRs to launch various types of attacks. The fake or compromised MRs may be used to

5 Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks 7 attack the wireless link thereby implementing attacks such as: passive eavesdropping, jamming, replay and false message injection, traffic analysis etc. The attacker may also advertise itself as a genuine MR by forging duplicate beacons procured by eavesdropping on genuine MRs in the network. When an MC receives these beacon messages, it assumes that it is within the radio coverage of a genuine MR, and initiates a registration procedure. The false MR now can extract the secret credentials of the MC and can launch spoof attack on the network. This attack is possible in protocols which require an MC to be authenticated by and MR but not the vice versa (He et al., 2011). 2.2 Requirements for authentication in WMNs On the basis of whether a central authentication server is available, there are two types of implementations of access control enforcements in WMNs: (i) centralized access control and (ii) distributed access control. For both these approaches, the access control policies should be implemented at the border of the mesh network. In the distributed access control, the access points could act as the distributed authentication servers. The authentication could also be performed in three different places: A remote central authentication center Local entities such as IGWs or MRs that play the role of an authentication server Local MRs The main benefit of central authentication server is the ease of management and maintenance. However, this approach suffers from the drawback of having a single point of failure. Due to higher round trip time (RTT) and authentication delay, a centralized authentication scheme in a multi-hop WMN is not desirable. Instead, authentication protocols are implemented in local nodes such as IGW or MRs. For ensuring higher level of availability of the network services, the authentication power is delegated to a group of MRs in order to avoid single point of failure. The objective of an authentication system is to guarantee that only the legitimate users have access to the network services. Any pair of network entities in a WMN (e.g., IGW, MR, and MC) may need to mutually authenticate if required. An MR and MC should be able to mutually authenticate each other to prevent unauthorized network access and other attacks. The MCs and MRs should be able to establish a shared pair-wise session key to encrypt messages. The protocol should have robust key generation, distribution and revocation procedures. Several requirements have been identified in (Buttyan et al., 2010) for authentication mechanisms between MC and MRs in a WMN. These requirements are summarized below: Authentication should be fast enough to support user mobility. In order to maintain the quality of service (QoS) of user applications on mobile MCs, the authentication process should be fast. Also, the re-authentication delays should be within the acceptable limit of handoff delay. MCs and MRs should be able to authenticate themselves mutually. During the authentication process, the MR authenticates the MC, but the MR also should prove its authenticity to the MC. Authentication process should be resistant to DoS attacks. Since a successful attack against the central authentication server will lead to a complete compromise of the security system in the network, the authentication process should be robust.

6 8 Applied Cryptography and Network Security Authentication protocols should be compatible with standards. In a multi-operator environment, it is mandatory that the authentication protocols are standardized so that an MC of one vendor should be able to authenticate with the MR of a different network operator. Authentication protocols should be scalable. Since the mesh networks have large number of MCs, MRs and IGWs, the authentication protocol should be scalable and must not degrade in performance as the network size increases. The mutual authentication protocols for MCs and MRs must use several keys for encrypting the credentials. The connection key management should satisfy the following requirements. The connection keys should not reveal long term keys. The connection keys that the MRs obtain during the authentication of the MCs should not reveal any long-term authentication keys. This requirement must hold because in the multi-operator environment, the MCs may associate to MRs operated by foreign operators. The connection keys should be independent of each other. As the neighboring MRs may not fully trust each other in a multi-operator environment, the authentication and key generation mechanism have to prevent an MR from deriving connection keys that are used at another MR. The connection keys must be fresh in each session. It must be ensured that the connection key derived during the authentication protocol for both participants (MC and MR) is fresh. 3. User privacy requirement in WMNs Privacy provision is an important issue to be considered for WMN deployment. However, privacy is difficult to achieve even if messages are protected, as there are no security solutions or mechanisms which can guarantee that data is not revealed by the authorized parties themselves (Moustafa, 2007). Thus, it is important that complementary solutions are in place. Moreover, communication privacy cannot not be assured with message encryption since the attackers can still observe who is communicating with whom as well as the frequency and duration of the communication sessions. This makes personal information susceptible to disclosure and subsequent misuse even when encryption mechanisms are in place. Furthermore, users in WMNs can be easily monitored or traced with regard to their presence and location, which causes the exposure of their personal life. Unauthorized parties can get access to the location information about the MC s positions by observing their communications and traffic patterns. Consequently, there is a need to ensure location privacy in WMNs as well. To control the usage of personal information and the disclosure of personal data, different types of information hiding mechanisms like anonymity, data masking etc should be implemented in WMN applications. The following approaches can be useful in information hiding, depending on what is needed to be protected: Anonymity: this is concerned with hiding the identity of the sender or receiver of the message or both of them. In fact, hiding the identity of both the sender and the receiver of the message can assure communication privacy. Thus, attackers monitoring the messages being communicated could not know who is communicating with whom, thus no personal information is disclosed.

7 Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks 9 Confidentiality: it is concerned with hiding the transferred messages by using suitable data encryption algorithms. Instead of hiding the identity of the sender and the receiver of a message, the message itself is hidden in this approach. Use of pseudonyms: this is concerned with replacing the identity of the sender and the receiver of the message by pseudonyms which function as identifiers. The pseudonyms can be used as a reference to the communicating parties without infringing on their privacy, which helps to ensure that the users in the WMNs cannot be traced or identified by malicious adversaries. However, it is important to ensure that there exist no indirect ways by which the adversaries can link the pseudonyms with their corresponding real world entities. Privacy has been a major concern of Internet users (Clarke, 1999). It is also been a particularly critical issue in context of WMN-based Internet access, where users traffic is forwarded via multiple MRs. In a community mesh network, this implies that the traffic of a residence can be observed by the MRs residing at its neighbors premises. Therefore, privacy in WMNs has two different dimensions: (i) data confidentiality (or privacy) and traffic confidentiality. These issues are briefly described below: Data confidentiality: it is obvious that data content reveals user privacy on what is being communicated. Data confidentiality aims to protect the data content and prevent eavesdropping by intermediate MRs. Message encryption is a conventional approach for data confidentiality. Traffic confidentiality: traffic information such as with whom, when and how frequently the users are communicating, and the pattern of traffic also reveal critical privacysensitive information. The broadcast nature of wireless communication makes acquiring such information easy. In a WMN, attackers can conduct traffic analysis as MRs by simply listening to the channels to identify the ups and downs of the target s traffic. While data confidentiality can be achieved via message encryption, it is much harder to preserve traffic confidentiality (T. Wu et al., 2006). 4. Secure authentication and privacy protection schemes in WMNs Since security and privacy are two extremely important issues in any communication network, researchers have worked on these two areas extensively. However, as compared to MANETs and wireless sensor networks (WSNs) (Sen, 2009; Sen & Subramanyam, 2007), WMNs have received very little attention in this regard. In this section, we first present a brief discussion on some of the existing propositions for secure authentication and user privacy protection in WMNs. Later on, some of the mechanisms are discussed in detail in the following sub-sections. In (Mishra & Arbaugh, 2002), a standard mechanism has been proposed for client authentication and access control to guarantee a high-level of flexibility and transparency to all users in a wireless network. The users can access the mesh network without requiring any change in their devices and softwares. However, client mobility can pose severe problems to the security architecture, especially when real-time traffic is transmitted. To cope with this problem, proactive key distribution has been proposed in (Kassab et al., 2005; Prasad & Wang, 2005).

8 10 Applied Cryptography and Network Security Providing security in the backbone network for WMNs is another important challenge. Mesh networks typically employ resource constrained mobile clients, which are difficult to protect against removal, tampering, or replication. If the device can be remotely managed, a distant hacking into the device would work perfectly (Ben Salem & Hubaux, 2006). Accordingly, several research works have been done to investigate the use of cryptographic techniques to achieve secure communication in WMNs. In (Cheikhrouhou et al., 2006), a security architecture has been proposed that is suitable for multi-hop WMNs employing PANA (Protocol for carrying Authentication for Network Access) (Parthasarathy, 2006). In the scheme, the wireless clients are authenticated on production of the cryptographic credentials necessary to create an encrypted tunnel with the remote access router to which they are associated. Even though such framework protects the confidentiality of the information exchanged, it cannot prevent adversaries to perform active attacks against the network itself. For instance, a malicious adversary can replicate, modify and forge the topology information exchanged among mesh devices, in order to launch a denial of service attack. Moreover, PANA necessitates the existence of IP addresses in all the mesh nodes, which is poses a serious constraint on deployment of this protocol. Authenticating transmitted data packets is an approach for preventing unauthorized nodes to access the resources of a WMN. A light-weight hop-by-hop access protocol (LHAP) has been proposed for authenticating mobile clients in wireless dynamic environments, preventing resource consumption attacks (Zhu et al., 2006). LHAP implements light-weight hop-by-hop authentication, where intermediate nodes authenticate all the packets they receive before forwarding them. LHAP employs a packet authentication technique based on the use of one-way hash chains. Moreover, LHAP uses TESLA (Perrig et al., 2001) protocol to reduce the number of public key operations for bootstrapping and maintaining trust between nodes. In (Prasad et al., 2004), a lightweight authentication, authorization and accounting (AAA) infrastructure is proposed for providing continuous, on-demand, end-to-end security in heterogeneous networks including WMNs. The notion of a security manager is used through employing an AAA broker. The broker acts as a settlement agent, providing security and a central point of contact for many service providers. The issue of user privacy in WMNs has also attracted the attention of the research community. In (T. Wu et al., 2006), a light-weight privacy preserving solution is presented to achieve well-maintained balance between network performance and traffic privacy preservation. At the center of the solution is of information-theoretic metric called traffic entropy, which quantifies the amount of information required to describe the traffic pattern and to characterize the performance of traffic privacy preservation. The authors have also presented a penalty-based shortest path routing algorithm that maximally preserves traffic privacy by minimizing the mutual information of traffic entropy observed at each individual relaying node while controlling the possible degradation of network within an acceptable region. Extensive simulation study proves the soundness of the solution and its resilience to cases when two malicious observers collude. However, one of the major problems of the solution is that the algorithm is evaluated in a single-radio, single channel WMN. Performance of the algorithm in multiple radios, multiple channels scenario will be a really questionable issue. Moreover, the solution has a scalability problem. In (X. Wu & Li, 2006), a mechanism is proposed

9 Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks 11 with the objective of hiding an active node that connects to a gateway router, where the active mesh node has to be anonymous. A novel communication protocol is designed to protect the node s privacy using both cryptography and redundancy. This protocol uses the concept of onion routing (Reed et al., 1998). A mobile user who requires anonymous communication sends a request to an onion router (OR). The OR acts as a proxy to the mobile user and constructs an onion route consisting of other ORs using the public keys of the routers. The onion is constructed such that the inner most part is the message for the intended destination, and the message is wrapped by being encrypted using the public keys of the ORs in the route. The mechanism protects the routing information from insider and outsider attack. However, it has a high computation and communication overhead. In the following sub-sections, some of the well-known authentication and privacy preservation schemes for WMNs are discussed briefly. For each of the schemes, its salient features and potential shortcomings are highlighted. 4.1 Local authentication based on public key certificates In the localized authentication, a trusted third party (TTP) serves as the trusted certificate authority (CA) that issues certificates. In (Buttyan & Dora, 2009), a localized authentication scheme is proposed in which authentication is performed locally between the MCs and the MRs in a hybrid large-scale WMN operated by a number of operators. Each operator maintains its own CA. Each CA is responsible for issuing certificates to its customers. Each CA maintains its own certificate revocation list (CRL). The CAs also issue cross-certificates among each other for enabling entities (MCs or MRs) subscribing to different operators to perform certificate-based authentications and key exchanges. To minimize authentication delay, the provably secure key transport protocol (Blake-Wilson & Menezes, 1998) proposed by Blake-Wilson-Menezes (BWM) has been used. For authentication in multiple domains in a metropolitan area network, a localized authentication scheme has been proposed in (Lin et al., 2008). In this scheme, an embedded two-factor authentication mechanism is utilized to verify the authenticity of a roaming MC. The authenticity verification does not need any intervention of the home Internet service provider (ISP) of the MC. The two-factor authentication mechanism includes two methods of authentication: password and smart card. To minimize the ping-pong effect, the session key is cached in the current network domain. Whenever the MC requests a handoff into a neighboring MR which has a valid shared session key with the MC, a user-authenticated key agreement protocol with secret key cryptography is performed. Thus an expensive full authentication based on an asymmetric key encryption is avoided. The protocol execution is fast since it involves encryption using only the symmetric key and keyed hash message authentication codes (HMACs). The localized authentication schemes are based on the assumption that the MRs are trusted and fully protected by robust certificates. In practice, MRs are low cost devices and without extra protection, these devices can easily be compromised. In the event an MR gets compromised, the local authentication schemes will fail. To defend against compromised MRs, a scheme based on local voting strategy (Zhu et al., 2008) is adopted which work on the principle of threshold digital signature mechanism (Cao et al., 2006).

10 12 Applied Cryptography and Network Security Fig. 2. Schematic diagram of IEEE i authentication protocol [Source: (Moustafa, 2007)] 4.2 Authentication model based on i protocol In most commercial deployments of wireless local area networks (WLANs), IEEE i (IEEE i, 2004) is the most common approach for assuring authentication at the layer 2. However, the IEEE i authentication does not fully address the problem of WLAN vulnerability (Moustafa, 2007). In IEEE i authentication, as described in Fig. 2, the MC and the authentication server (AS) apply the 802.1X (IEEE 802.1X, 2001) authentication model carrying out some negotiation to agree on pair-wise master key (PMK) by using some upper layer authentication schemes or using a pre-shared secret. This key is generated by both the MC and the AS, assuring the mutual authentication between them. The access point (AP) then receives a PMK copy from the AS, authenticating the MC and authorizing its communication. Afterwards, a four-way handshake starts between the AP and the MC to generate encryption keys from the generated PMK. Encryption keys can assure confidential transfer between the MC and the AP. If the MC roams to a new AP, it will perform another full 802.1X authentication with the AS to derive a new PMK. For performance enhancement, the PMK of the MC is cached by the MC and the AP to be used for later re-association without another full authentication. The features of i exhibit a potential vulnerability because a compromised AP can still authenticate itself to an MC and gain control over the connection. Furthermore, IEEE i authentication does not provide a solution for multihop communication. Consequently new mechanisms are needed for authentication and secure layer 2 links setup in WMNs (Moustafa, 2007). Wireless dual authentication protocol (WDAP) (Zheng et al., 2005) is proposed for WLAN and can be extended to WMNs. WDAP provides authentication for both MCs and APs and overcomes the shortcomings of other authentication protocols. The name dual implies the fact that the AS authenticates both the MC and the AP. As in the four-way handshake in IEEE i, this protocol also generates a session key for maintaining confidentiality of the messages communicated between the MC and the AP after a successful authentication. WDAP provides authentication during the initial connection state. For roaming, it has three sub-protocols: an authentication protocol, a de-authentication protocol, and a roaming authentication protocol.

11 Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks 13 Fig. 3. Schematic diagram of the authentication process in WDAP [Source: (Moustafa, 2007)] Fig. 3 illustrates the WDAP authentication process. In the authentication protocol, the AP receives the authentication request from the MC. It then creates an authentication request for itself and concatenates this request to the received request from the MC. The concatenated request is then sent to the AS. Since both the mobile station and the AP do not trust each other until the AS authenticates both of them, WDAP is a dual authentication protocol. If the authentication is successful, AS generates a session key and sends the key to the AP. The AP then sends this key to the MC encrypting it with the shared key with MC. This key is thus shared between the AP and the MC for their secure communication and secure de-authentication when the session is finished. When an MC finishes a session with an AP, secure de-authentication takes place to prevent the connection from being exploited by an adversary. Use of WDAP in WMN environments ensures mutual authentication of both MCs and MRs. Also, WDAP can be used to ensure authentication between the MRs through authentication requests concatenation. In case of multi-hop communication in WMNs, each pair of nodes can mutually authenticate through the session key generated by the AS. However, a solution is needed in case of open mesh networks scenarios, where the AS may not be present in reality. Another problem arises in case of roaming authentication. WDAP is not ideally suited for use in roaming authentication since it works only for roaming into new APs, and does not consider the case of back roaming in which an MC may need to re-connect with another MC or an AP with whom it was authenticated earlier. As a result, the WDAP session key revocation mechanisms has some shortcomings that makes it unsuitable for deployment in real-world WMNs. An approach that adapts IEEE i to the multi-hop communication has been presented in (Moustafa et al., 2006a). An extended forwarding capability in i is proposed without compromising on its security features to setup authenticated links in layer 2 to achieve secure wireless access as well as confidential data transfer in ad hoc multi-hop environments. The general objective of this approach is to support secure and seamless

12 14 Applied Cryptography and Network Security access to the Internet by the MCs situated near public WLAN hotspots, even when these nodes may move beyond the coverage area of the WLAN. To accomplish the authentication, authorization and accounting (AAA) process for an MC within the WLAN communication range, classical i authentication and message exchange take place. Fig. 4. Schematic diagram of adapted i with EAP-TLS for multi-hop communication [Source: (Moustafa, 2007)] As shown in Fig. 4, for accomplishing the AAA process for MCs that are beyond the WLAN communication range but belong to the ad hoc clusters, i is extended to support forwarding capabilities. In this case, the notion of friend nodes is introduced to allow each MC to initiate the authentication process through a selected node in its proximity. The friend node plays the role of an auxiliary authenticator that forwards the authentication request of the MC to the actual authenticator (i.e., the AP). If the friend node is not within the communication range of the AP, it invokes other friend nodes in a recursive manner until the AP is reached. The concept of proxy RADIUS (Rigney et al., 2000) is used for ensuring forwarding compatibility and secure message exchange over multi-hops. Proxy chaining (Aboba & Vollbrecht, 1999) takes place if the friend node is not directly connected to an AP. To achieve higher level of security on each authenticated link between the communicating nodes, i encryption is used by invoking the four-way handshake between each MC and its authenticator (AP or friend node). This approach is useful in open mesh network scenarios, since it allows authentication by delegation among the mesh nodes. In addition, since the authentication keys are stored in the immediate nodes, the reauthentication process is optimized in case of roaming of the MCs. However, an adaptation is needed that allows establishment of multiple simultaneous connections to the authenticators - APs and the friend nodes in a dense mesh topology. Also, a solution is needed to support fast and secure roaming across multiple wireless mesh routers (WMRs). A possible solution is through sharing session keys of authenticated clients among the WMRs (Moustafa, 2007).

13 Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks Data packet authentication An approach to prevent unauthorized node getting access to the network services in WMNs is to authenticate the transmitted data packets. Following this approach, a lightweight hop-by-hop access protocol (LHAP) (Zhu et al., 2003; Zhu et al., 2006) has been proposed for authenticating MCs for preventing resource consumption attacks in WMNs. LHAP implements light-weight hop-by-hop authentication, where intermediate nodes authenticate all the packets they receive before forwarding them further in the network. In this protocol, an MC first performs some light-weight authentication operations to bootstrap a trust relationship with its neighbors. It then invokes a light-weight protocol for subsequent traffic authentication and data encryption. LHAP is ideally suited for ad hoc networks, where it resides between the data link layer and the network layer and can be seamlessly integrated with secure routing protocols to provide high-level of security in a communication network. LHAP employs a packet authentication technique based on the use of one-way hash chains (Lamport, 1981). Moreover, it uses TESLA (Perrig et al., 2001) protocol to reduce the number of public key operations for bootstrapping and maintaining trust among the nodes. For every traffic packet received from the network layer, LHAP adds its own header, which includes the node ID, a packet type field indicating a traffic packet, and an authentication tag. The packet is then passed to the data link layer and control packets are generated for establishing and maintaining trust relationships with the neighbor nodes. For a received packet, LHAP verifies its authenticity based on the authentication tag in the packet header. If the packet is valid, LHAP removes the LHAP header and passes the packet to the network layer; otherwise, it discards the packet. LHAP control packets are passed to the network layer with the goal to allow LHAP execution without affecting the operation of the other layers. LHAP is very suitable for WMN applications. For secure roaming, LHAP can be useful in distributing session keys among MCs employing a special type of packet designated for this purpose. However, the focus of this protocol is on preventing resource consumption attack on the network. However, LHAP cannot prevent insider attacks and hence complementary mechanisms are needed for this purpose (Moustafa, 2007). 4.4 Proactive authentication and pre-authentication schemes In (Pack & Choi, 2004), a fast handoff scheme based on prediction of mobility pattern has been proposed. In this scheme, an MC on entering in the coverage area of an access point performs authentication procedures for multiple MRs (or APs). When an MC sends an authentication request, the AAA server authenticates the all the relevant APs (or MRs) and sends multiple session keys to the MC. A prediction method known as frequent handoff region (FHR) selection is utilized to reduce the handoff delay further. FHR selection algorithm takes into account user mobility pattern, service classes etc. to make a selection of frequent MRs suitable for handoff. To increase the accuracy of the user mobility prediction, a proactive key distribution approach has been proposed in (Mishra et al., 2004). A new data structure neighbor graphs is used to determine the candidate MR sets for the MC to associate with.

14 16 Applied Cryptography and Network Security A reliable re-authentication scheme has been proposed in (Aura & Roe, 2005), in which an MR issues a credential for the MC it is currently serving. The credential can be used later (by the next MR) to certify the authenticity of the MC. A fast authentication and key exchange mechanism to support seamless handoff has been proposed in (Soltwisch et al., 2004). The mechanism uses the context transfer protocol (CTP) (Loughney et al., 2005) to forward session key from the previous router to the new access router. 4.5 Extensible authentication protocols IEEE 802.1X has been applied to resolve some of the security problems in the standard, where the MC and the AS authenticate each other by applying an upper layer authentication protocol like extensible authentication protocol encapsulating transport layer security (EAP-TLS) protocol (Aboba & Simon, 1999). Although EAP-TLS offers mutual authentication, it introduces high latency in WMNs because each terminal acts as an authenticator for its neighbor to reach the AS. This can lead to longer paths to the AS. Furthermore, in case of high mobility of terminals, re-authentication due to frequent handoffs can make be detrimental to real-time applications. Consequently, variants of EAP have been proposed by researchers to adapt 802.1X authentication model to multi-hop communications in WMNs. Some of these mechanisms are briefly discussed below. EAP with token-based re-authentication: a fast and secure hand-off protocol is presented in (Fantacci et al., 2006), which allows mutual authentication and access control thereby preventing insider attacks during the re-authentication process. To achieve this, old authentication keys are revoked. Thus, a node should ask for the keys from its neighbors or from the AS when its needs the keys. The mechanism involves a token-based reauthentication scheme based on a two-way handshake between the node that performs the handshake and the AS. The AS is involved in every hand-off to have a centralized entity for monitoring the network. An authentication token, in the form of keying material is provided by the authenticator of the network to the AS to obtain the PMK key. The authenticator can be an AP or a host in the WMN. Initially, the MC performs a full EAP-TLS authentication, generating a PMK key that is then shared between the MC and its authenticator. Whenever the MC performs hand-off to another authenticator, the new authenticator should receive the PMK key to avoid a full re-authentication. The new authenticator issues a request to the AS for the PMK and adds a token to the request. The token is a cryptographic material to prove that the authenticator is in contact with the MC which owns the requested PMK. The token was earlier generated by the MC while performing the hand-off and was transmitted to the new authenticator. The AS verifies the token, and issues the PMK to the new authenticator. This protocol is secure and involves centralized key management. However, the need to involve the AS in each re-authentication is not suitable for scenarios where MCs have random and frequent mobility (Moustafa, 2007). A distributed token verification will be more suitable for open and multi-hop WMN environments. EAP-TLS over PANA: a security architecture suitable for multi-hop mesh network is presented in (Cheikhrouhou et al., 2006) that employs EAP-TLS over protocol for carrying authentication and network access (PANA) (Parthasarathy, 2006). It proposes an authentication solution for WMNs adapting IEE 802.1X so that MCs can be authenticated by MRs. The

15 Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks 17 authentication between MCs and MRs requires MCs to be directly connected to the MRs. Since PANA enables MCs to authenticate to the access network using IP protocol, it is used in this mechanism to overcome the problem of association between MCs and MRs that can be attached through more than one intermediate node. When a new MC joins the network, it first gets an IP address (pre-pana address) from a local DHCP server. Then, the PANA protocol is initiated so that the mobile node discovers the PANA access (PAA) router to authenticate itself. After successful authentication, the MC initiates the Internet key exchange (IKE) protocol with the MR for establishing a security association. Finally, IPSec tunnel ensures data protection over the radio link and a data access control by the MR. During the authentication and authorization phases, PANA uses EAP message exchange between the MC and the PAA, where PAA relays EAP messages to the AS using EAP over RADIUS. EAP-TLS message is used in this approach. The protocol is suited for heterogeneous WMNs since it is independent of the technology of the wireless media. However, PANA requires use of IP addresses in the mesh nodes. This puts a restriction in its use since all elements of a WMN may not use IP as the addressing standard. EAP-TLS using proxy chaining: the combinations of (Moustafa et al., 2006a; Moustafa et al., 2006b) propose adaptive EAP solutions for authentication and access control in the multihop wireless environment. In (Moustafa et al., 2006a), an adapted EAP-TLS approach is used to allow authentication of mobile nodes. A delegation process is used among mobile nodes by use of auxiliary authenticators in a recursive manner until the AS is reached. To allow extended forwarding and exchange of EAP-TLS authentication messages, proxy RADIUS is involved using proxy chaining among the intermediate nodes between the MCs requesting the authentication and the AS. This approach permits the storage of authentication keys of the MCs in the auxiliary authenticators. This speeds up the re-authentication process and enhances the performance of the adaptive EAP-TLS mechanism. This solution is applicable for WMNs, especially in multi-hop communications. However, to support secure roaming across different wireless mesh routers (WMRs), communication is required between the old and the new WMRs. This can be done by using central elements or switches that link the WMRs and allow storing of information in a central location and distribution of information among the WMRs. EAP-enhanced pre-authentication: an EAP-enhanced pre-authentication scheme for mobile WMN (IEEE 802.e) in the link layer has been proposed in (Hur et al., 2008). In this scheme, the PKMv2 (public key management version 2) has been slightly modified based on the key hierarchy in a way that the communication key can be established between the MC and the target MR before hand-off in a proactive way. The modification allows the master session key generated by the authentication server to bind the MR identification (i.e., base station identification) and the MAC address of the MC. In the pre-authentication phase, the authentication server generates and delivers the unique public session keys for the neighbor MRs of the MC. The neighboring MRs are the access points that the MC potentially moves to. These MRs can use the public session key to derive an authorization key of the corresponding MC. In the same way, the MC can derive the public session key and the authorization key for its neighbor MRs, with the MR identification. Once the handoff is complete, the MC only needs to perform a three-way handshake and update the encryption key since the MC and MR already possess the authentication key. Thus a re-authentication with the authentication server is avoided and the associated delay is reduced.

16 18 Applied Cryptography and Network Security Distributed authentication: a distributed authentication for minimizing the authentication delay has been proposed in (Lee et al., 2008), in which multiple trusted nodes are distributed over a WMN to act on the behalf of an authentication server. This makes management of the network easy, and it also incurs less storage overhead in the MRs. However, the performance of the scheme will degrade when multiple MCs send out their authentication requests, since the number of trusted nodes acting as the authentication server is limited compared to the number of access routers. In (He et al., 2010), a distributed authenticated key establishment scheme (AKES) has been proposed based on hierarchical multi-variable symmetric functions (HMSF). In this scheme, MCs and MRs can mutually authenticate each other and establish pair-wise communication keys without the need of interaction with any central authentication server. The authors have extended the polynomial-based key generation concept (Blundo et al., 1993) to the asymmetric function for mutual authentication among the MCs and MRs. Based on the symmetric polynomial and an asymmetric function, an efficient and hierarchical key establishment scheme is designed This substantially reduces the communication overhead and authentication delay. Secure authentication: an improved security protocol for WMNs has been proposed in (Lukas & Fackroth, 2009). The protocol is named WMNSec, which is based on the fourway handshake mechanism in i. In WMNSec, a dedicated station - mesh key distributor (MKD) generates one single dynamically generated key for the whole network. This key is called the global key (GK). The GK is distributed from the MKD to the authenticated stations (MRs) using the four-way handshake from i. A newly joined MR would become another authenticator after it is authenticated and become the authenticated part of the WMN. Thus, the iterative authentication forms a spanning tree rooted as the MKD and spanning the whole network. To provide a high level of security, each key has a limited validity period. Periodic re-keying ensures that the keys used in all stations are up-to-date. 4.6 Authentication using identity-based cryptography Identity-based cryptography (IBC) is a public key cryptography in which public key of a user is derived from some publicly available unique identity information about the user, e.g. SSN, address etc. Although the concept of IBC was first introduced by Shamir (Shamir, 1984), a fully functional IBC scheme was not established till Boneh and Franklin applied Weil pairing to construct a bilinear map (Boneh & Franklin, 2001). Using IBC, an attack-resilient security architecture called ARSA for WMNs has been proposed in (Zhang & Fang, 2006). The relationship among three entities in this scheme, e.g., brokers, users and network operators are made analogous to that among a bank, a credit card holder, and a merchant. The broker acts as a TTP that distributes secure pass to each authenticated user. Each secure pass has the ID of the user enveloped in it and the WMN operator grants access to all the users those possess secure passes. The users are not bound to any specific operator, and can get ubiquitous network access by a universal pass issued by a third-party broker. ARSA also provides an efficient mutual authentication and key agreement (AKA) between a user and a serving WMN domain or between users served by the same WMN domain.

17 Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks Privacy protection schemes in WMNs Traffic privacy preservation is an important issue in WMNs. In a community mesh network, the traffic of mobile users can be observed by the MRs residing at its neighbors, which could reveal sensitive personal information. A mesh network privacy-preserving architecture is presented in (T. Wu et al., 2006). The mechanism aims to achieve traffic confidentiality based on the concept of traffic pattern concealment by controlling the routing process using multipaths. The traffic from the source (i.e., IGW) to the destination (i.e., MR) is split into multiple paths. Hence, each relaying nodes along the path from the source to the destination can observe only a portion of the entire traffic. The traffic is split in a random manner (both spatially and temporally) so that an intermediate node can have little knowledge to figure out the overall traffic pattern. In this way the traffic confidentially is achieved. The mechanism defines an information-theoretic metric, and then proposes a penalty-based routing algorithm to allow traffic pattern hiding by exploiting multiple available paths between a pair of nodes. Source routing strategy is adopted so that a node can easily know the topology of its neighborhood. The protocol can also ensure communication privacy in WMNs, where each destination node is able to consistently limit the proportion of mutual information it shares with the observing node. However, the traffic splitting can increase delay in communication and hence this mechanism may not be suitable for real-time applications in WMNs. A novel privacy and security scheme named PEACE (Privacy Enhanced yet Accountable security framework) for WMNs has been proposed in (Ren et al., 2010). The scheme achieves explicit mutual authentication and key establishment between users (i.e. MCs) and MRs and between the users themselves (i.e., between the MCs). It also enables unilateral anonymous authentication between users and the MRs and bilateral anonymous authentication between a pair of users. Moreover, it enables user accountability by regulating user behaviors and protects WMNs from being abused and attacked. Network communications can be audited in cases of disputes and frauds. The high level architecture of PEACE trust model consists of four kinds of network entities: the network operator, user group managers, user groups and a trusted third party (TTP). Before accessing the WMN services, each user has to enroll in at least one user group whose manager, thus, knows the essential and non-essential attributes of the user. The users do not directly register with the network operator; instead, each group manager subscribes to the network operator on behalf of its group members. Upon registration from a group manager, the network operator allocates a set of group secret keys to this user group. The network operator divides each group secret key into two parts one part is sent to the requesting group manager and the other part to the TTP. To access network services, each user request one part of the group secret key from his group manager and the other part from the TTP to recover a complete group secret key. The user also needs to return signed acknowledgments to both the group manager and the TTP. PEACE uses a variation of the short group signature scheme proposed in (Boneh & Shacham, 2004) to ensure sophisticated user privacy. The scheme is resistant to bogus data injection attacks, data phishing attacks and DoS attacks (Ren et al., 2010). A security architecture named SAT has been proposed in (Sun et al., 2008; Sun et al., 2011). The system consists of ticket-based protocols, which resolves the conflicting security requirements of unconditional anonymity for honest users and traceability of misbehaving users in a WMN. By utilizing the tickets, self-generated pseudonyms, and the hierarchical identity-based cryptography, the architecture has been demonstrated to achieve the desired

18 20 Applied Cryptography and Network Security security objectives and the performance efficiency. The system uses a blind signature technique from the payment systems. (Brands, 1993; Wei et al., 2006; Figueiredo et al., 2005; Chaum, 1982), and hence it achieves the anonymity by delinking user identities from their activities. The pseudonym technique also renders user location information unexposed. The pseudonym generation mechanism does not rely on a central authority, e.g. the broker in (Zhang & Fang, 2006), the domain authority in (Ateniese et al., 1999), the transportation authority or the manufacturer in (Raya & Hubaux, 2007), and the trusted authority in (Zhang et al., 2006), who can derive the user s identity from his pseudonyms and illegally trace on an honest user. However, the system is not intended for achieving routing anonymity. Hierarchical identitybased cryptography (HIBC) for inter-domain authentication is adopted to avoid domain parameter certification in order to ensure anonymous access control. 5. The hierarchical architecture of a WMN In this section, we first present a standard architecture of a typical WMN for which we propose a security and privacy protocol. The architecture is a very generic one that represents majority of the real-world deployment scenarios for WMNs. The architecture of a hierarchical WMN consists of three layers as shown in Fig. 5. At the top layers are the Internet gateways (IGWs) that are connected to the wired Internet. They form the backbone infrastructure for providing Internet connectivity to the elements in the second level. The entities at the second level are called wireless mesh routers (MRs) that eliminate the need for wired infrastructure at every MR and forward their traffic in a multi-hop fashion towards the IGW. At the lowest level are the mesh clients (MCs) which are the wireless devices of the users. Internet connectivity and peer-to-peer communications inside the mesh are two important applications for a WMN. Therefore design of an efficient and low-overhead communication protocol which ensure security and privacy of the users is a critical requirement which poses significant research challenges. Fig. 5. A three-tier architecture of a wireless mesh network (WMN)

19 Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks 21 For designing the proposed protocol and to specify the WMN deployment scenario, the following assumptions are made. 1. Each MR which is authorized to join the wireless backbone (through the IGWs), has two certificates to prove its identity. One certificate is used during the authentication phase that occurs when a new node joins the network. EAP-TLS (Aboba et al., 2004) for 802.1X authentication is used for this purpose since it is the strongest authentication method provided by EAP (Aboba et al., 2004), whereas the second certificate is used for the authentication with the authentication server (AS). 2. The certificates used for authentication with the RADIUS server and the AS are signed by the same certificate authority (CA). Only recognized MRs are authorized to join the backbone. 3. Synchronization of all MRs is achieved by use of the network time protocol (NTP) protocol (Mills, 1992). The proposed security protocol serves the dual purpose of providing security in the access network (i.e., between the MCs and the MRs) and the backbone network (i.e., between the MRs and the IGWs). These are described the following sub-sections. 5.1 Access network security The access mechanism to the WMN is assumed to be the same as that of a local area network (LAN), where mobile devices authenticate themselves and connect to an access point (AP). This allows the users to the access the services of the WMN exploiting the authentication and authorization mechanisms without installing any additional software. It is evident that such security solution provides protection to the wireless links between the MCs and the MRs. A separate security infrastructure is needed for the links in the backbone networks. This is discussed in Section 5.2. Fig. 6. Secure information exchange among the MCs A and B through the MRs 1 and 2 Fig. 6 illustrates a scenario where users A and B are communicating in a secure way to MRs 1 and 2 respectively. If the wireless links are not protected, an intruder M will be able to eavesdrop on and possibly manipulate the information being exchanged over the network. This situation is prevented in the proposed security scheme which encrypts all the traffic transmitted on the wireless link using a stream cipher in the data link layer of the protocol stack.

20 22 Applied Cryptography and Network Security 5.2 Backbone network security For providing security for the traffic in the backbone network, a two-step approach is adopted. When a new MR joins the network, it first presents itself as an MC and completes the association formalities. It subsequently upgrades its association by successfully authenticating to the AS. In order to make such authentication process efficient in a high mobility scenario, the key management and distribution processes have been designed in a way so as to minimize the effect of the authentication overhead on the network performance. The overview of the protocol is discussed as follows. Fig. 7 shows the three phases of the authentication process that a MR (say N) undergoes. When N wants to join the network, it scans all the radio channels to detect any MR that is already connected to the wireless backbone. Once such an MR (say A) is detected, N requests A for access to network services including authentication and key distribution. After connecting to A, N can perform the tasks prescribed in the IEEE i protocol to complete a mutual authentication with the network and establish a security association with the entity to which it is physically connected. This completes the Phase I of the authentication process. Essentially, during this phase, a new MR performs all the steps that an MC has to perform to establish a secure channel with an MR for authentication and secure communication over the WMN. Fig. 7. Steps performed by a new MR (N) using backbone encrypted traffic to join the WMN During Phase II of the authentication process, the MRs use the transport layer security (TLS) protocol. Only authorized MRs that have the requisite credentials can authenticate to the AS and obtain the cryptographic credentials needed to derive the key sequence used to protect the wireless backbone. In the proposed protocol, an end-to-end secure channel between the AS and the MR is established at the end of a successful authentication through which the cryptographic credentials can be exchanged in a secure way. To eliminate any possibility of the same key being used over a long time, a server-initiated protocol is proposed for secure key management. The protocol is presented in Section 6. As mentioned earlier in this section, all the MRs are assumed to be synchronized with a central server using the NTP protocol.

Cross-layer security and resilience in wireless mesh networks

Cross-layer security and resilience in wireless mesh networks Cross-layer security and resilience in wireless mesh networks By Ioannis Askoxylakis¹, Boldizsar Bencsath², Levente Buttyan², Laszlo Dora², Vasilios Siris¹ and Apostolos Traganitis¹ ¹ Foundation for Research

More information

Wireless Sensor Networks Chapter 14: Security in WSNs

Wireless Sensor Networks Chapter 14: Security in WSNs Wireless Sensor Networks Chapter 14: Security in WSNs António Grilo Courtesy: see reading list Goals of this chapter To give an understanding of the security vulnerabilities of Wireless Sensor Networks

More information

Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen

Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen Mobile Security Wireless Mesh Network Security Sascha Alexander Jopen Overview Introduction Wireless Ad-hoc Networks Wireless Mesh Networks Security in Wireless Networks Attacks on Wireless Mesh Networks

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK AN OVERVIEW OF MOBILE ADHOC NETWORK: INTRUSION DETECTION, TYPES OF ATTACKS AND

More information

Security and Privacy Issues in Wireless Mesh Networks: A Survey

Security and Privacy Issues in Wireless Mesh Networks: A Survey Security and Privacy Issues in Wireless Mesh Networks: A Survey Jaydip Sen Innovation Labs, Tata Consultancy Services Ltd. Kolkata, INDIA email: jaydip.sen@acm.org 1. Introduction Wireless mesh networking

More information

12/3/08. Security in Wireless LANs and Mobile Networks. Wireless Magnifies Exposure Vulnerability. Mobility Makes it Difficult to Establish Trust

12/3/08. Security in Wireless LANs and Mobile Networks. Wireless Magnifies Exposure Vulnerability. Mobility Makes it Difficult to Establish Trust Security in Wireless LANs and Mobile Networks Wireless Magnifies Exposure Vulnerability Information going across the wireless link is exposed to anyone within radio range RF may extend beyond a room or

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 21 CHAPTER 1 INTRODUCTION 1.1 PREAMBLE Wireless ad-hoc network is an autonomous system of wireless nodes connected by wireless links. Wireless ad-hoc network provides a communication over the shared wireless

More information

How To Write A Transport Layer Protocol For Wireless Networks

How To Write A Transport Layer Protocol For Wireless Networks Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks Introduction Issues Design Goals Classifications TCP Over Ad Hoc Wireless Networks Other Transport Layer Protocols Security

More information

Security vulnerabilities in the Internet and possible solutions

Security vulnerabilities in the Internet and possible solutions Security vulnerabilities in the Internet and possible solutions 1. Introduction The foundation of today's Internet is the TCP/IP protocol suite. Since the time when these specifications were finished in

More information

Wireless Sensor Network Security. Seth A. Hellbusch CMPE 257

Wireless Sensor Network Security. Seth A. Hellbusch CMPE 257 Wireless Sensor Network Security Seth A. Hellbusch CMPE 257 Wireless Sensor Networks (WSN) 2 The main characteristics of a WSN include: Power consumption constrains for nodes using batteries or energy

More information

Security and Privacy Issues in Wireless Ad Hoc, Mesh, and Sensor Networks

Security and Privacy Issues in Wireless Ad Hoc, Mesh, and Sensor Networks Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 4 (2014), pp. 381-388 Research India Publications http://www.ripublication.com/aeee.htm Security and Privacy Issues in Wireless

More information

Security for Ad Hoc Networks. Hang Zhao

Security for Ad Hoc Networks. Hang Zhao Security for Ad Hoc Networks Hang Zhao 1 Ad Hoc Networks Ad hoc -- a Latin phrase which means "for this [purpose]". An autonomous system of mobile hosts connected by wireless links, often called Mobile

More information

ssumathy@vit.ac.in upendra_mcs2@yahoo.com

ssumathy@vit.ac.in upendra_mcs2@yahoo.com S. Sumathy 1 and B.Upendra Kumar 2 1 School of Computing Sciences, VIT University, Vellore-632 014, Tamilnadu, India ssumathy@vit.ac.in 2 School of Computing Sciences, VIT University, Vellore-632 014,

More information

SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS)

SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS) SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS) Neha Maurya, ASM S IBMR ABSTRACT: Mobile Ad hoc networks (MANETs) are a new paradigm of wireless network, offering unrestricted mobility without any underlying

More information

Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem

Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem Ernesto Jiménez Caballero Helsinki University of Technology erjica@gmail.com Abstract intrusion detection

More information

Lecture Objectives. Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks. Agenda. References

Lecture Objectives. Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks. Agenda. References Lecture Objectives Wireless Networks and Mobile Systems Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks Introduce security vulnerabilities and defenses Describe security functions

More information

Client Server Registration Protocol

Client Server Registration Protocol Client Server Registration Protocol The Client-Server protocol involves these following steps: 1. Login 2. Discovery phase User (Alice or Bob) has K s Server (S) has hash[pw A ].The passwords hashes are

More information

7 Network Security. 7.1 Introduction 7.2 Improving the Security 7.3 Internet Security Framework. 7.5 Absolute Security?

7 Network Security. 7.1 Introduction 7.2 Improving the Security 7.3 Internet Security Framework. 7.5 Absolute Security? 7 Network Security 7.1 Introduction 7.2 Improving the Security 7.3 Internet Security Framework 7.4 Firewalls 7.5 Absolute Security? 7.1 Introduction Security of Communications data transport e.g. risk

More information

Security Considerations for Intrinsic Monitoring within IPv6 Networks: Work in Progress

Security Considerations for Intrinsic Monitoring within IPv6 Networks: Work in Progress Security Considerations for Intrinsic Monitoring within IPv6 Networks: Work in Progress Alan Davy and Lei Shi Telecommunication Software&Systems Group, Waterford Institute of Technology, Ireland adavy,lshi@tssg.org

More information

chap18.wireless Network Security

chap18.wireless Network Security SeoulTech UCS Lab 2015-1 st chap18.wireless Network Security JeongKyu Lee Email: jungkyu21@seoultech.ac.kr Table of Contents 18.1 Wireless Security 18.2 Mobile Device Security 18.3 IEEE 802.11 Wireless

More information

All vulnerabilities that exist in conventional wired networks apply and likely easier Theft, tampering of devices

All vulnerabilities that exist in conventional wired networks apply and likely easier Theft, tampering of devices Wireless Security All vulnerabilities that exist in conventional wired networks apply and likely easier Theft, tampering of devices Portability Tamper-proof devices? Intrusion and interception of poorly

More information

CS 356 Lecture 29 Wireless Security. Spring 2013

CS 356 Lecture 29 Wireless Security. Spring 2013 CS 356 Lecture 29 Wireless Security Spring 2013 Review Chapter 1: Basic Concepts and Terminology Chapter 2: Basic Cryptographic Tools Chapter 3 User Authentication Chapter 4 Access Control Lists Chapter

More information

SY0-201. system so that an unauthorized individual can take over an authorized session, or to disrupt service to authorized users.

SY0-201. system so that an unauthorized individual can take over an authorized session, or to disrupt service to authorized users. system so that an unauthorized individual can take over an authorized session, or to disrupt service to authorized users. From a high-level standpoint, attacks on computer systems and networks can be grouped

More information

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility

More information

Security in Ad Hoc Network

Security in Ad Hoc Network Security in Ad Hoc Network Bingwen He Joakim Hägglund Qing Gu Abstract Security in wireless network is becoming more and more important while the using of mobile equipments such as cellular phones or laptops

More information

Securing MANET Using Diffie Hellman Digital Signature Scheme

Securing MANET Using Diffie Hellman Digital Signature Scheme Securing MANET Using Diffie Hellman Digital Signature Scheme Karamvir Singh 1, Harmanjot Singh 2 1 Research Scholar, ECE Department, Punjabi University, Patiala, Punjab, India 1 Karanvirk09@gmail.com 2

More information

Security in IEEE 802.11 WLANs

Security in IEEE 802.11 WLANs Security in IEEE 802.11 WLANs 1 IEEE 802.11 Architecture Extended Service Set (ESS) Distribution System LAN Segment AP 3 AP 1 AP 2 MS MS Basic Service Set (BSS) Courtesy: Prashant Krishnamurthy, Univ Pittsburgh

More information

Secure Routing in Wireless Mesh Networks

Secure Routing in Wireless Mesh Networks 11 Secure Routing in Wireless Mesh Networks Jaydip Sen Innovation Lab, Tata Consultancy Services Ltd. India 1. Introduction Wireless mesh networks (WMNs) have emerged as a promising concept to meet the

More information

Authentication and Security in IP based Multi Hop Networks

Authentication and Security in IP based Multi Hop Networks 7TH WWRF MEETING IN EINDHOVEN, THE NETHERLANDS 3RD - 4TH DECEMBER 2002 1 Authentication and Security in IP based Multi Hop Networks Frank Fitzek, Andreas Köpsel, Patrick Seeling Abstract Network security

More information

BSc (Hons.) Computer Science with Network Security. Examinations for 2011/2012 - Semester 2

BSc (Hons.) Computer Science with Network Security. Examinations for 2011/2012 - Semester 2 BSc (Hons.) Computer Science with Network Security BCNS/09/FT Examinations for 2011/2012 - Semester 2 MODULE: WIRELESS NETWORK SECURITY MODULE CODE: SECU 3105 Duration: 2 Hours 15 Minutes Reading time:

More information

Final exam review, Fall 2005 FSU (CIS-5357) Network Security

Final exam review, Fall 2005 FSU (CIS-5357) Network Security Final exam review, Fall 2005 FSU (CIS-5357) Network Security Instructor: Breno de Medeiros 1. What is an insertion attack against a NIDS? Answer: An insertion attack against a network intrusion detection

More information

Authentication in WLAN

Authentication in WLAN Authentication in WLAN Flaws in WEP (Wired Equivalent Privacy) Wi-Fi Protected Access (WPA) Based on draft 3 of the IEEE 802.11i. Provides stronger data encryption and user authentication (largely missing

More information

An Overview of ZigBee Networks

An Overview of ZigBee Networks An Overview of ZigBee Networks A guide for implementers and security testers Matt Hillman Contents 1. What is ZigBee?... 3 1.1 ZigBee Versions... 3 2. How Does ZigBee Operate?... 3 2.1 The ZigBee Stack...

More information

SBSCET, Firozpur (Punjab), India

SBSCET, Firozpur (Punjab), India Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based

More information

Bit Chat: A Peer-to-Peer Instant Messenger

Bit Chat: A Peer-to-Peer Instant Messenger Bit Chat: A Peer-to-Peer Instant Messenger Shreyas Zare shreyas@technitium.com https://technitium.com December 20, 2015 Abstract. Bit Chat is a peer-to-peer instant messaging concept, allowing one-to-one

More information

Tema 5.- Seguridad. Problemas Soluciones

Tema 5.- Seguridad. Problemas Soluciones Tema 5.- Seguridad Problemas Soluciones Wireless medium is easy to snoop on Routing security vulnerabilities Due to ad hoc connectivity and mobility, it is hard to guarantee access to any particular node

More information

SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET

SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET MR. ARVIND P. PANDE 1, PROF. UTTAM A. PATIL 2, PROF. B.S PATIL 3 Dept. Of Electronics Textile and Engineering

More information

Ariadne A Secure On-Demand Routing Protocol for Ad-Hoc Networks

Ariadne A Secure On-Demand Routing Protocol for Ad-Hoc Networks Ariadne A Secure On-Demand Routing Protocol for Ad-Hoc Networks Authors: Yih-Chun Hu, Adrian Perrig, David B Johnson Presenter: Sameer Korrapati Date: 4/21/2003 Overview of presentation Introduction :

More information

Security Sensor Network. Biswajit panja

Security Sensor Network. Biswajit panja Security Sensor Network Biswajit panja 1 Topics Security Issues in Wired Network Security Issues in Wireless Network Security Issues in Sensor Network 2 Security Issues in Wired Network 3 Security Attacks

More information

Enterprise A Closer Look at Wireless Intrusion Detection:

Enterprise A Closer Look at Wireless Intrusion Detection: White Paper Enterprise A Closer Look at Wireless Intrusion Detection: How to Benefit from a Hybrid Deployment Model Josh Wright Senior Security Researcher Introduction As wireless enterprise networks become

More information

Prediction of DDoS Attack Scheme

Prediction of DDoS Attack Scheme Chapter 5 Prediction of DDoS Attack Scheme Distributed denial of service attack can be launched by malicious nodes participating in the attack, exploit the lack of entry point in a wireless network, and

More information

IPv6 SECURITY. May 2011. The Government of the Hong Kong Special Administrative Region

IPv6 SECURITY. May 2011. The Government of the Hong Kong Special Administrative Region IPv6 SECURITY May 2011 The Government of the Hong Kong Special Administrative Region The contents of this document remain the property of, and may not be reproduced in whole or in part without the express

More information

Preventing Unauthorized Messages and Achieving End-to-End Security in Delay Tolerant Heterogeneous Wireless Networks

Preventing Unauthorized Messages and Achieving End-to-End Security in Delay Tolerant Heterogeneous Wireless Networks 152 JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 2, FEBRUARY 2010 Preventing Unauthorized Messages and Achieving End-to-End Security in Delay Tolerant Heterogeneous Wireless Networks Hany Samuel and Weihua Zhuang

More information

Link Layer and Network Layer Security for Wireless Networks

Link Layer and Network Layer Security for Wireless Networks White Paper Link Layer and Network Layer Security for Wireless Networks Abstract Wireless networking presents a significant security challenge. There is an ongoing debate about where to address this challenge:

More information

An Implementation of Secure Wireless Network for Avoiding Black hole Attack

An Implementation of Secure Wireless Network for Avoiding Black hole Attack An Implementation of Secure Wireless Network for Avoiding Black hole Attack Neelima Gupta Research Scholar, Department of Computer Science and Engineering Jagadguru Dattaray College of Technology Indore,

More information

Intrusion Detection for Mobile Ad Hoc Networks

Intrusion Detection for Mobile Ad Hoc Networks Intrusion Detection for Mobile Ad Hoc Networks Tom Chen SMU, Dept of Electrical Engineering tchen@engr.smu.edu http://www.engr.smu.edu/~tchen TC/Rockwell/5-20-04 SMU Engineering p. 1 Outline Security problems

More information

Security. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1

Security. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1 Contents Security requirements Public key cryptography Key agreement/transport schemes Man-in-the-middle attack vulnerability Encryption. digital signature, hash, certification Complete security solutions

More information

Wireless Security Overview. Ann Geyer Partner, Tunitas Group Chair, Mobile Healthcare Alliance 209-754-9130 ageyer@tunitas.com

Wireless Security Overview. Ann Geyer Partner, Tunitas Group Chair, Mobile Healthcare Alliance 209-754-9130 ageyer@tunitas.com Wireless Security Overview Ann Geyer Partner, Tunitas Group Chair, Mobile Healthcare Alliance 209-754-9130 ageyer@tunitas.com Ground Setting Three Basics Availability Authenticity Confidentiality Challenge

More information

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1) Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

More information

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 6. Wireless Network Security

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 6. Wireless Network Security Security+ Guide to Network Security Fundamentals, Third Edition Chapter 6 Wireless Network Security Objectives Overview of IEEE 802.11 wireless security Define vulnerabilities of Open System Authentication,

More information

Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks

Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks Vikram Gupta +, Srikanth Krishnamurthy, and Michalis Faloutsos Abstract Department of Computer Science and Engineering, UC Riverside,

More information

Single Sign-On Secure Authentication Password Mechanism

Single Sign-On Secure Authentication Password Mechanism Single Sign-On Secure Authentication Password Mechanism Deepali M. Devkate, N.D.Kale ME Student, Department of CE, PVPIT, Bavdhan, SavitribaiPhule University Pune, Maharashtra,India. Assistant Professor,

More information

Certified Wireless Security Professional (CWSP) Course Overview

Certified Wireless Security Professional (CWSP) Course Overview Certified Wireless Security Professional (CWSP) Course Overview This course will teach students about Legacy Security, encryption ciphers and methods, 802.11 authentication methods, dynamic encryption

More information

Authentication Application

Authentication Application Authentication Application KERBEROS In an open distributed environment servers to be able to restrict access to authorized users to be able to authenticate requests for service a workstation cannot be

More information

A Closer Look at Wireless Intrusion Detection: How to Benefit from a Hybrid Deployment Model

A Closer Look at Wireless Intrusion Detection: How to Benefit from a Hybrid Deployment Model A Closer Look at Wireless Intrusion Detection: How to Benefit from a Hybrid Deployment Model Table of Contents Introduction 3 Deployment approaches 3 Overlay monitoring 3 Integrated monitoring 4 Hybrid

More information

NETWORK ACCESS CONTROL AND CLOUD SECURITY. Tran Song Dat Phuc SeoulTech 2015

NETWORK ACCESS CONTROL AND CLOUD SECURITY. Tran Song Dat Phuc SeoulTech 2015 NETWORK ACCESS CONTROL AND CLOUD SECURITY Tran Song Dat Phuc SeoulTech 2015 Table of Contents Network Access Control (NAC) Network Access Enforcement Methods Extensible Authentication Protocol IEEE 802.1X

More information

SANE: A Protection Architecture For Enterprise Networks

SANE: A Protection Architecture For Enterprise Networks Fakultät IV Elektrotechnik und Informatik Intelligent Networks and Management of Distributed Systems Research Group Prof. Anja Feldmann, Ph.D. SANE: A Protection Architecture For Enterprise Networks WS

More information

Link Layer and Network Layer Security for Wireless Networks

Link Layer and Network Layer Security for Wireless Networks Link Layer and Network Layer Security for Wireless Networks Interlink Networks, Inc. May 15, 2003 1 LINK LAYER AND NETWORK LAYER SECURITY FOR WIRELESS NETWORKS... 3 Abstract... 3 1. INTRODUCTION... 3 2.

More information

HANDBOOK 8 NETWORK SECURITY Version 1.0

HANDBOOK 8 NETWORK SECURITY Version 1.0 Australian Communications-Electronic Security Instruction 33 (ACSI 33) Point of Contact: Customer Services Team Phone: 02 6265 0197 Email: assist@dsd.gov.au HANDBOOK 8 NETWORK SECURITY Version 1.0 Objectives

More information

Study of Different Types of Attacks on Multicast in Mobile Ad Hoc Networks

Study of Different Types of Attacks on Multicast in Mobile Ad Hoc Networks Study of Different Types of Attacks on Multicast in Mobile Ad Hoc Networks Hoang Lan Nguyen and Uyen Trang Nguyen Department of Computer Science and Engineering, York University 47 Keele Street, Toronto,

More information

Ebonyi State University Abakaliki 2 Department of Computer Science. Our Saviour Institute of Science and Technology 3 Department of Computer Science

Ebonyi State University Abakaliki 2 Department of Computer Science. Our Saviour Institute of Science and Technology 3 Department of Computer Science Security Measures taken in Securing Data Transmission on Wireless LAN 1 AGWU C. O., 2 ACHI I. I., AND 3 OKECHUKWU O. 1 Department of Computer Science Ebonyi State University Abakaliki 2 Department of Computer

More information

To Study the Various Attacks and Protocols in MANET

To Study the Various Attacks and Protocols in MANET International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Issue-4 E-ISSN: 2347-2693 To Study the Various Attacks and Protocols in MANET Harkiranpreet Kaur 1* and Rasneet

More information

1. discovery phase 2. authentication and association phase 3. EAP/802.1x/RADIUS authentication 4. 4-way handshake 5. group key handshake 6.

1. discovery phase 2. authentication and association phase 3. EAP/802.1x/RADIUS authentication 4. 4-way handshake 5. group key handshake 6. 1. discovery phase 2. authentication and association phase 3. EAP/802.1x/RADIUS authentication 4. 4-way handshake 5. group key handshake 6. secure data communication. The access point periodically advertise

More information

QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES

QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES SWATHI NANDURI * ZAHOOR-UL-HUQ * Master of Technology, Associate Professor, G. Pulla Reddy Engineering College, G. Pulla Reddy Engineering

More information

Denial of Service in Sensor Networks

Denial of Service in Sensor Networks Denial of Service in Sensor Networks Authors : From: Anthony D. Wood John A. Stankovic University of Virginia Presented by: Luba Sakharuk Agenda for the DOS in Sensor Networks Abstract Theory and Application

More information

An Experimental Study on Wireless Security Protocols over Mobile IP Networks

An Experimental Study on Wireless Security Protocols over Mobile IP Networks An Experimental Study on Wireless Security Protocols over Mobile IP Networks Avesh K. Agarwal Department of Computer Science Email: akagarwa@unity.ncsu.edu Jorinjit S. Gill Department of Electrical and

More information

Network Security 網 路 安 全. Lecture 1 February 20, 2012 洪 國 寶

Network Security 網 路 安 全. Lecture 1 February 20, 2012 洪 國 寶 Network Security 網 路 安 全 Lecture 1 February 20, 2012 洪 國 寶 1 Outline Course information Motivation Introduction to security Basic network concepts Network security models Outline of the course 2 Course

More information

Bootstrapping Security in Mobile Ad Hoc Networks Using Identity-Based Schemes with Key Revocation

Bootstrapping Security in Mobile Ad Hoc Networks Using Identity-Based Schemes with Key Revocation Bootstrapping Security in Mobile Ad Hoc Networks Using Identity-Based Schemes with Key Revocation Katrin Hoeper and Guang Gong khoeper@engmail.uwaterloo.ca, ggong@calliope.uwaterloo.ca Department of Electrical

More information

How To Secure Wireless Networks

How To Secure Wireless Networks Lecture 24 Wireless Network Security modified from slides of Lawrie Brown Wireless Security Overview concerns for wireless security are similar to those found in a wired environment security requirements

More information

The following chart provides the breakdown of exam as to the weight of each section of the exam.

The following chart provides the breakdown of exam as to the weight of each section of the exam. Introduction The CWSP-205 exam, covering the 2015 objectives, will certify that the successful candidate understands the security weaknesses inherent in WLANs, the solutions available to address those

More information

Information Security Basic Concepts

Information Security Basic Concepts Information Security Basic Concepts 1 What is security in general Security is about protecting assets from damage or harm Focuses on all types of assets Example: your body, possessions, the environment,

More information

STUDY OF IMPLEMENTATION OF INTRUSION DETECTION SYSTEM (IDS) VIA DIFFERENT APPROACHS

STUDY OF IMPLEMENTATION OF INTRUSION DETECTION SYSTEM (IDS) VIA DIFFERENT APPROACHS STUDY OF IMPLEMENTATION OF INTRUSION DETECTION SYSTEM (IDS) VIA DIFFERENT APPROACHS SACHIN MALVIYA Student, Department of Information Technology, Medicaps Institute of Science & Technology, INDORE (M.P.)

More information

Preventing Resource Exhaustion Attacks in Ad Hoc Networks

Preventing Resource Exhaustion Attacks in Ad Hoc Networks Preventing Resource Exhaustion Attacks in Ad Hoc Networks Masao Tanabe and Masaki Aida NTT Information Sharing Platform Laboratories, NTT Corporation, 3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585

More information

DATA SECURITY 1/12. Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0

DATA SECURITY 1/12. Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0 DATA SECURITY 1/12 Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0 Contents 1. INTRODUCTION... 3 2. REMOTE ACCESS ARCHITECTURES... 3 2.1 DIAL-UP MODEM ACCESS... 3 2.2 SECURE INTERNET ACCESS

More information

Key Hopping A Security Enhancement Scheme for IEEE 802.11 WEP Standards

Key Hopping A Security Enhancement Scheme for IEEE 802.11 WEP Standards White Paper Key Hopping A Security Enhancement Scheme for IEEE 802.11 WEP Standards By Dr. Wen-Ping Ying, Director of Software Development, February 2002 Introduction Wireless LAN networking allows the

More information

Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs

Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs Why Network Security? Keep the bad guys out. (1) Closed networks

More information

Mobility, AAA, Security, Privacy : How can we support Real-World Network Mobility?

Mobility, AAA, Security, Privacy : How can we support Real-World Network Mobility? NEXT GENERATION NETWORKING 2011 Multi-Service Network Workshop 7-8 July 2011, Cosener s House, Abingdon, UK Mobility, AAA, Security, Privacy : How can we support Real-World Network Mobility? Panagiotis

More information

Overview. SSL Cryptography Overview CHAPTER 1

Overview. SSL Cryptography Overview CHAPTER 1 CHAPTER 1 Note The information in this chapter applies to both the ACE module and the ACE appliance unless otherwise noted. The features in this chapter apply to IPv4 and IPv6 unless otherwise noted. Secure

More information

State of Kansas. Interim Wireless Local Area Networks Security and Technical Architecture

State of Kansas. Interim Wireless Local Area Networks Security and Technical Architecture State of Kansas Interim Wireless Local Area Networks Security and Technical Architecture October 6, 2005 Prepared for Wireless Policy Committee Prepared by Revision Log DATE Version Change Description

More information

15 th TF-Mobility Meeting Sensor Networks. Torsten Braun Universität Bern braun@iam.unibe.ch www.iam.unibe.ch/~rvs

15 th TF-Mobility Meeting Sensor Networks. Torsten Braun Universität Bern braun@iam.unibe.ch www.iam.unibe.ch/~rvs 15 th TF-Mobility Meeting Sensor Networks Torsten Braun Universität Bern braun@iam.unibe.ch www.iam.unibe.ch/~rvs Overview 2 Ubiquitous Computing > Vision defined by Mark Weiser in 1991 Seamless integration

More information

A Catechistic Method for Traffic Pattern Discovery in MANET

A Catechistic Method for Traffic Pattern Discovery in MANET A Catechistic Method for Traffic Pattern Discovery in MANET R. Saranya 1, R. Santhosh 2 1 PG Scholar, Computer Science and Engineering, Karpagam University, Coimbatore. 2 Assistant Professor, Computer

More information

Wireless Network Security 14-814 Spring 2014

Wireless Network Security 14-814 Spring 2014 Wireless Network Security 14-814 Spring 2014 Patrick Tague Class #8 Broadcast Security & Key Mgmt 1 Announcements 2 Broadcast Communication Wireless networks can leverage the broadcast advantage property

More information

2. From a control perspective, the PRIMARY objective of classifying information assets is to:

2. From a control perspective, the PRIMARY objective of classifying information assets is to: MIS5206 Week 13 Your Name Date 1. When conducting a penetration test of an organization's internal network, which of the following approaches would BEST enable the conductor of the test to remain undetected

More information

Preventing DDOS attack in Mobile Ad-hoc Network using a Secure Intrusion Detection System

Preventing DDOS attack in Mobile Ad-hoc Network using a Secure Intrusion Detection System Preventing DDOS attack in Mobile Ad-hoc Network using a Secure Intrusion Detection System Shams Fathima M.Tech,Department of Computer Science Kakatiya Institute of Technology & Science, Warangal,India

More information

Lecture slides by Lawrie Brown for Cryptography and Network Security, 5/e, by William Stallings, Chapter 14 Key Management and Distribution.

Lecture slides by Lawrie Brown for Cryptography and Network Security, 5/e, by William Stallings, Chapter 14 Key Management and Distribution. Lecture slides by Lawrie Brown for Cryptography and Network Security, 5/e, by William Stallings, Chapter 14 Key Management and Distribution. 1 Opening quote. 2 The topics of cryptographic key management

More information

White paper. Testing for Wi-Fi Protected Access (WPA) in WLAN Access Points. http://www.veryxtech.com

White paper. Testing for Wi-Fi Protected Access (WPA) in WLAN Access Points. http://www.veryxtech.com White paper Testing for Wi-Fi Protected Access (WPA) in WLAN Access Points http://www.veryxtech.com White Paper Abstract Background The vulnerabilities spotted in the Wired Equivalent Privacy (WEP) algorithm

More information

An Oracle White Paper December 2013. The Value of Diameter Signaling in Security and Interworking Between 3G and LTE Networks

An Oracle White Paper December 2013. The Value of Diameter Signaling in Security and Interworking Between 3G and LTE Networks An Oracle White Paper December 2013 The Value of Diameter Signaling in Security and Interworking Between 3G and LTE Networks Introduction Today s mobile networks are no longer limited to voice calls. With

More information

A Dynamic Extensible Authentication Protocol for Device Authentication in Transport Layer Raghavendra.K 1, G. Raghu 2, Sumith N 2

A Dynamic Extensible Authentication Protocol for Device Authentication in Transport Layer Raghavendra.K 1, G. Raghu 2, Sumith N 2 A Dynamic Extensible Authentication Protocol for Device Authentication in Transport Layer Raghavendra.K 1, G. Raghu 2, Sumith N 2 1 Dept of CSE, P.A.College of Engineering 2 Dept of CSE, Srnivas institute

More information

Wi-Fi in Healthcare:

Wi-Fi in Healthcare: Wi-Fi in Healthcare: Security Solutions for Hospital Wi-Fi Networks Wi-Fi Alliance February 2012 The following document and the information contained herein regarding Wi-Fi Alliance programs and expected

More information

Internet Anonymity and the Design Process - A Practical Approach

Internet Anonymity and the Design Process - A Practical Approach anon.next: A Framework for Privacy in the Next Generation Internet Matthew Wright Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA, mwright@uta.edu,

More information

Wireless Security with Cyberoam

Wireless Security with Cyberoam White paper Cyberoam UTM Wireless Security with Cyberoam Robust, Fault-tolerant security is a must for companies sporting wireless networks. Cyberoam UTM strengthens the existing Wireless Security Architecture

More information

Digital Certificates (Public Key Infrastructure) Reshma Afshar Indiana State University

Digital Certificates (Public Key Infrastructure) Reshma Afshar Indiana State University Digital Certificates (Public Key Infrastructure) Reshma Afshar Indiana State University October 2015 1 List of Figures Contents 1 Introduction 1 2 History 2 3 Public Key Infrastructure (PKI) 3 3.1 Certificate

More information

Secure Unicast Position-based Routing Protocols for Ad-Hoc Networks

Secure Unicast Position-based Routing Protocols for Ad-Hoc Networks Acta Polytechnica Hungarica Vol. 8, No. 6, 2011 Secure Unicast Position-based Routing Protocols for Ad-Hoc Networks Liana Khamis Qabajeh, Miss Laiha Mat Kiah Faculty of Computer Science and Information

More information

CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs

CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs CHAPTER 6 VOICE COMMUNICATION OVER HYBRID MANETs Multimedia real-time session services such as voice and videoconferencing with Quality of Service support is challenging task on Mobile Ad hoc Network (MANETs).

More information

A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS

A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS Sumanta Saha, Md. Safiqul Islam, Md. Sakhawat Hossen School of Information and Communication Technology The Royal Institute of Technology (KTH) Stockholm,

More information

Security for Ubiquitous and Adhoc Networks

Security for Ubiquitous and Adhoc Networks Security for Ubiquitous and Adhoc Networks Mobile Adhoc Networks Collection of nodes that do not rely on a predefined infrastructure Adhoc networks can be formed merged together partitioned to separate

More information

Secure SCTP against DoS Attacks in Wireless Internet

Secure SCTP against DoS Attacks in Wireless Internet Secure SCTP against DoS Attacks in Wireless Internet Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwjoe@hanyang.ac.kr Abstract. The Stream Control Transport Protocol

More information

STUDY OF VARIOUS WIRELESS NETWORK SECURITY ISSUES: A REVIEW

STUDY OF VARIOUS WIRELESS NETWORK SECURITY ISSUES: A REVIEW STUDY OF VARIOUS WIRELESS NETWORK SECURITY ISSUES: A REVIEW Jyoti 1, Mrs. Sonal Beniwal 2 1 M.Tech Scholar BPSMV, Khanpur, Sonepat 2 Assistant Professor, BPSMV, Khanpur, Sonepat Abstract: Wireless security

More information

Bandwidth Management Framework for Multicasting in Wireless Mesh Networks

Bandwidth Management Framework for Multicasting in Wireless Mesh Networks Bandwidth Management Framework for Multicasting in Wireless Mesh Networks Manaswi Saha and P. Venkata Krishna Abstract Wireless mesh networks (WMNs) provide a reliable and a scalable solution for multicasting.

More information