Outline. Probability. Random Variables. Joint and Marginal Distributions Conditional Distribution Product Rule, Chain Rule, Bayes Rule.
|
|
|
- Tracy Douglas
- 9 years ago
- Views:
Transcription
1 Probability 1
2 Probability Random Variables Outline Joint and Marginal Distributions Conditional Distribution Product Rule, Chain Rule, Bayes Rule Inference Independence 2
3 Inference in Ghostbusters A ghost is in the grid somewhere Sensor readings tell how close a square is to the ghost On the ghost: red 1 or 2 away: orange 3 or 4 away: yellow 5+ away: green Sensors are noisy, but we know P(Color Distance)
4 Uncertainty General situation: there are Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms) Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present) Model: Agent knows something about how the known variables relate to the unknown variables Probabilistic reasoning gives us a framework for managing our beliefs and knowledge 4
5 Random Variables A random variable is some aspect of the world about which we (may) have uncertainty R = Is it raining? D = How long will it take to drive to work? L = Where am I? We denote random variables with capital letters, the values for random variables with lower case letters Like variables in a CSP, random variables have domains R in {true, false} (sometimes written as {+r, r}) D in [0, ) L in possible locations, maybe {(0,0), (0,1), } 5
6 Probability Distributions Unobserved random variables have distributions A distribution is a TABLE of probabilities of values A probability is a single number Must have: 6
7 Joint Distributions A joint distribution over a set of random variables: X 1, X 2,, X n specifies a real number for each assignment (or outcome): Size of distribution if n variables with domain sizes d? Must obey: d n For all but the smallest distributions, impractical to write out 7
8 Probabilistic Models A probabilistic model is a joint distribution over a set of random variables Probabilistic models: (Random) variables with domains Assignments are called outcomes Joint distributions: say whether assignments (outcomes) are likely Normalized: sum to 1.0 Ideally: only certain variables directly interact Recall: Constraint satisfaction problems: Variables with domains Constraints: state whether assignments are possible Ideally: only certain variables directly interact 8
9 Events An event is a set E of outcomes From a joint distribution, we can calculate the probability of any event Probability that it s hot AND sunny? Probability that it s hot? Probability that it s hot OR sunny? = = 0.7 Typically, the events we care about are partial assignments, like P(T=hot) 9
10 Marginal Distributions Marginal distributions are sub-tables which eliminate variables Marginalization (summing out): Combine collapsed rows by adding 10
11 Conditional Probabilities A simple relation between joint and conditional probabilities In fact, this is taken as the definition of a conditional probability =.3/.5 =.6 11
12 Conditional Distribution Conditional distributions are probability distributions over some variables given fixed values of others 12
13 Normalization Trick A trick to get a whole conditional distribution at once: Select the joint probabilities matching the evidence Normalize the selection (make it sum to one) Why does this work? Sum of selection is P(evidence)! (P(r), here) 13
14 Probabilistic Inference Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint) We generally want conditional probabilities P(on time no reported accidents) = 0.90 These represent the agent s beliefs given the evidence Probabilities change with new evidence: P(on time no accidents, 5 a.m.) = 0.95 P(on time no accidents, 5 a.m., raining) = 0.80 Observing new evidence causes beliefs to be updated 14
15 Inference by Enumeration: Example Given any joint probability table, we can compute any probability needed. P(sun)? =.65 P(sun winter)? / =.5 P(sun winter, hot)?.10 / =.67 15
16 General case: Inference by Enumeration Evidence variables: E 1 E k = e 1 e k Query variable(s): Q Hidden variables: H 1 H r We want probability distribution of Query variable : P(Q e 1 e k ) First, select the entries consistent with the evidence Second, sum out H to get joint of Query and evidence: Finally, normalize the remaining entries to conditionalize Obvious problems: Worst-case time complexity O(d n ) Space complexity O(d n ) to store the joint distribution Hidden variables are bad news. How to go over hidden variables efficiently
17 The Product Rule Sometimes have conditional distributions but want the joint Example: 17
18 The Chain Rule More generally, can always write any joint distribution as an incremental product of conditional distributions Why is this always true? The chain rule is true for any ordering of variables. 18
19 Baye s Rule Two ways to factor a joint distribution over two variables: Dividing, we get: Why is this at all helpful? Lets us build one conditional from its reverse Often one conditional is tricky but the other one is simple Foundation of many systems (e.g. ASR, MT) This is in the running for most important AI equation! 19
20 Inference with Baye s Rule Example: Diagnostic probability from causal probability Example: m is meningitis, s is stiff neck Note: posterior probability of meningitis still very small Note: you should still get stiff necks checked out! Why? 20
21 Ghostbusters, Revisited We have two distributions: Prior distribution over ghost location: P(G) Let s say this is uniform Sensor reading model: P(R G) Given: we know what our sensors do R = reading color measured at (1,1) E.g. P(R = yellow G=(1,1)) = 0.1 We can calculate the posterior distribution P(G r) over ghost locations given a reading using Bayes rule: 21
22 Independence Two variables are independent in a joint distribution if: Says the joint distribution factors into a product of two simple ones Usually variables aren t independent! Can use independence as a modeling assumption Independence can be a simplifying assumption What could we assume for {Weather, Traffic, Cavity}? Empirical joint distributions: at best close to independent Independence is like something from CSPs: what? 22
23 Example: Independence 23
24 Example: Independence N fair, independent coin flips: 24
15-381: Artificial Intelligence. Probabilistic Reasoning and Inference
5-38: Artificial Intelligence robabilistic Reasoning and Inference Advantages of probabilistic reasoning Appropriate for complex, uncertain, environments - Will it rain tomorrow? Applies naturally to many
Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
Discrete Structures for Computer Science
Discrete Structures for Computer Science Adam J. Lee [email protected] 6111 Sennott Square Lecture #20: Bayes Theorem November 5, 2013 How can we incorporate prior knowledge? Sometimes we want to know
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
The Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
1 Review of Least Squares Solutions to Overdetermined Systems
cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares
Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay. Lecture - 13 Consumer Behaviour (Contd )
(Refer Slide Time: 00:28) Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay Lecture - 13 Consumer Behaviour (Contd ) We will continue our discussion
A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution
A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence
Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1
Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields
Knowledge-based systems and the need for learning
Knowledge-based systems and the need for learning The implementation of a knowledge-based system can be quite difficult. Furthermore, the process of reasoning with that knowledge can be quite slow. This
Sudoku puzzles and how to solve them
Sudoku puzzles and how to solve them Andries E. Brouwer 2006-05-31 1 Sudoku Figure 1: Two puzzles the second one is difficult A Sudoku puzzle (of classical type ) consists of a 9-by-9 matrix partitioned
Decision Trees and Networks
Lecture 21: Uncertainty 6 Today s Lecture Victor R. Lesser CMPSCI 683 Fall 2010 Decision Trees and Networks Decision Trees A decision tree is an explicit representation of all the possible scenarios from
Bayesian probability theory
Bayesian probability theory Bruno A. Olshausen arch 1, 2004 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using probability. The foundations
Decision Making under Uncertainty
6.825 Techniques in Artificial Intelligence Decision Making under Uncertainty How to make one decision in the face of uncertainty Lecture 19 1 In the next two lectures, we ll look at the question of how
Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),
Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables
Basics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar
Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which
Homogeneous systems of algebraic equations A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x + + a n x n = a
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
Attributes Acceptance Sampling Understanding How it Works
Attributes Acceptance Sampling Understanding How it Works Dan O Leary CBE, CQE, CRE, CSSBB, CIRM, LLC 603-209-0600 [email protected] Copyright 2008, 2009 by, LLC Acceptance Sampling 1 Instructor
Introduction to Game Theory IIIii. Payoffs: Probability and Expected Utility
Introduction to Game Theory IIIii Payoffs: Probability and Expected Utility Lecture Summary 1. Introduction 2. Probability Theory 3. Expected Values and Expected Utility. 1. Introduction We continue further
AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics
Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments
The fundamental question in economics is 2. Consumer Preferences
A Theory of Consumer Behavior Preliminaries 1. Introduction The fundamental question in economics is 2. Consumer Preferences Given limited resources, how are goods and service allocated? 1 3. Indifference
Knowledge-Based Probabilistic Reasoning from Expert Systems to Graphical Models
Knowledge-Based Probabilistic Reasoning from Expert Systems to Graphical Models By George F. Luger & Chayan Chakrabarti {luger cc} @cs.unm.edu Department of Computer Science University of New Mexico Albuquerque
Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
1 Learning Goals Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1. Be able to apply Bayes theorem to compute probabilities. 2. Be able to identify
Stat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum
Part III: Machine Learning. CS 188: Artificial Intelligence. Machine Learning This Set of Slides. Parameter Estimation. Estimation: Smoothing
CS 188: Artificial Intelligence Lecture 20: Dynamic Bayes Nets, Naïve Bayes Pieter Abbeel UC Berkeley Slides adapted from Dan Klein. Part III: Machine Learning Up until now: how to reason in a model and
Descriptive Statistics and Measurement Scales
Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample
Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median
Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median 58 What is a Ratio? A ratio is a comparison of two numbers. We generally separate the two numbers in the ratio with a
Bayesian Networks. Read R&N Ch. 14.1-14.2. Next lecture: Read R&N 18.1-18.4
Bayesian Networks Read R&N Ch. 14.1-14.2 Next lecture: Read R&N 18.1-18.4 You will be expected to know Basic concepts and vocabulary of Bayesian networks. Nodes represent random variables. Directed arcs
ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015
ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1
6th Grade Lesson Plan: Probably Probability
6th Grade Lesson Plan: Probably Probability Overview This series of lessons was designed to meet the needs of gifted children for extension beyond the standard curriculum with the greatest ease of use
Statistics and Probability
Statistics and Probability TABLE OF CONTENTS 1 Posing Questions and Gathering Data. 2 2 Representing Data. 7 3 Interpreting and Evaluating Data 13 4 Exploring Probability..17 5 Games of Chance 20 6 Ideas
10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html
10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html
Math 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada [email protected], [email protected] Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
Section 6-5 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
Bayesian Tutorial (Sheet Updated 20 March)
Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that
Representation of functions as power series
Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions
Gibbs Sampling and Online Learning Introduction
Statistical Techniques in Robotics (16-831, F14) Lecture#10(Tuesday, September 30) Gibbs Sampling and Online Learning Introduction Lecturer: Drew Bagnell Scribes: {Shichao Yang} 1 1 Sampling Samples are
Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment,
Uncertainty Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment, E.g., loss of sensory information such as vision Incorrectness in
CURVE FITTING LEAST SQUARES APPROXIMATION
CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship
EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS
EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the
Math Journal HMH Mega Math. itools Number
Lesson 1.1 Algebra Number Patterns CC.3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. Identify and
Sequential Data Structures
Sequential Data Structures In this lecture we introduce the basic data structures for storing sequences of objects. These data structures are based on arrays and linked lists, which you met in first year
2. Information Economics
2. Information Economics In General Equilibrium Theory all agents had full information regarding any variable of interest (prices, commodities, state of nature, cost function, preferences, etc.) In many
Probabilistic Strategies: Solutions
Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1
Informatics 2D Reasoning and Agents Semester 2, 2015-16
Informatics 2D Reasoning and Agents Semester 2, 2015-16 Alex Lascarides [email protected] Lecture 29 Decision Making Under Uncertainty 24th March 2016 Informatics UoE Informatics 2D 1 Where are we? Last
Predict the Popularity of YouTube Videos Using Early View Data
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050
5 Aleatory Variability and Epistemic Uncertainty
5 Aleatory Variability and Epistemic Uncertainty Aleatory variability and epistemic uncertainty are terms used in seismic hazard analysis that are not commonly used in other fields, but the concepts are
LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics
Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
Experiment 4 ~ Resistors in Series & Parallel
Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You
Chapter 4. Probability and Probability Distributions
Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the
PS 271B: Quantitative Methods II. Lecture Notes
PS 271B: Quantitative Methods II Lecture Notes Langche Zeng [email protected] The Empirical Research Process; Fundamental Methodological Issues 2 Theory; Data; Models/model selection; Estimation; Inference.
Elliott-Wave Fibonacci Spread Trading
Elliott-Wave Fibonacci Spread Trading Presented by Ryan Sanden The inevitable disclaimer: Nothing presented constitutes a recommendation to buy or sell any security. While the methods described are believed
Solutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
Experiment 6: Magnetic Force on a Current Carrying Wire
Chapter 8 Experiment 6: Magnetic Force on a Current Carrying Wire 8.1 Introduction Maricourt (1269) is credited with some of the original work in magnetism. He identified the magnetic force centers of
NPV Versus IRR. W.L. Silber -1000 0 0 +300 +600 +900. We know that if the cost of capital is 18 percent we reject the project because the NPV
NPV Versus IRR W.L. Silber I. Our favorite project A has the following cash flows: -1 + +6 +9 1 2 We know that if the cost of capital is 18 percent we reject the project because the net present value is
Nodal and Loop Analysis
Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important
Probability definitions
Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating
The Theory and Practice of Using a Sine Bar, version 2
The Theory and Practice of Using a Sine Bar, version 2 By R. G. Sparber Copyleft protects this document. 1 The Quick Answer If you just want to set an angle with a sine bar and stack of blocks, then take
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint
Cosmological Arguments for the Existence of God S. Clarke
Cosmological Arguments for the Existence of God S. Clarke [Modified Fall 2009] 1. Large class of arguments. Sometimes they get very complex, as in Clarke s argument, but the basic idea is simple. Lets
Section 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
psychology and economics
psychology and economics lecture 9: biases in statistical reasoning tomasz strzalecki failures of Bayesian updating how people fail to update in a Bayesian way how Bayes law fails to describe how people
MATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
Mechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012)
STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) TA: Zhen (Alan) Zhang [email protected] Office hour: (C500 WH) 1:45 2:45PM Tuesday (office tel.: 432-3342) Help-room: (A102 WH) 11:20AM-12:30PM,
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
CSE 473: Artificial Intelligence Autumn 2010
CSE 473: Artificial Intelligence Autumn 2010 Machine Learning: Naive Bayes and Perceptron Luke Zettlemoyer Many slides over the course adapted from Dan Klein. 1 Outline Learning: Naive Bayes and Perceptron
OA3-10 Patterns in Addition Tables
OA3-10 Patterns in Addition Tables Pages 60 63 Standards: 3.OA.D.9 Goals: Students will identify and describe various patterns in addition tables. Prior Knowledge Required: Can add two numbers within 20
Circuit Analysis using the Node and Mesh Methods
Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The
Simple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
It is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important
PROBABILLITY 271 PROBABILITY CHAPTER 15 It is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important subject of human knowledge.
5 Homogeneous systems
5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m
Prime Time: Homework Examples from ACE
Prime Time: Homework Examples from ACE Investigation 1: Building on Factors and Multiples, ACE #8, 28 Investigation 2: Common Multiples and Common Factors, ACE #11, 16, 17, 28 Investigation 3: Factorizations:
Similarity Search and Mining in Uncertain Spatial and Spatio Temporal Databases. Andreas Züfle
Similarity Search and Mining in Uncertain Spatial and Spatio Temporal Databases Andreas Züfle Geo Spatial Data Huge flood of geo spatial data Modern technology New user mentality Great research potential
The Measurement of Situation Awareness for Automobile Technologies of the Future
A presentation to the Driver Metrics Workshop June 2008 The Measurement of Situation Awareness for Automobile Technologies of the Future Cheryl A. Bolstad SA Technologies, Inc. Human Performance Situation
Model-based Synthesis. Tony O Hagan
Model-based Synthesis Tony O Hagan Stochastic models Synthesising evidence through a statistical model 2 Evidence Synthesis (Session 3), Helsinki, 28/10/11 Graphical modelling The kinds of models that
GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book
GAP CLOSING 2D Measurement Intermediate / Senior Student Book 2-D Measurement Diagnostic...3 Areas of Parallelograms, Triangles, and Trapezoids...6 Areas of Composite Shapes...14 Circumferences and Areas
2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials
Name: Section: Date: 2C: One in a Million Drinking water can contain up to 1.3 parts per million (ppm) of copper and still be considered safe. What does parts per million mean? Both living things and the
Robert Collins CSE598G. More on Mean-shift. R.Collins, CSE, PSU CSE598G Spring 2006
More on Mean-shift R.Collins, CSE, PSU Spring 2006 Recall: Kernel Density Estimation Given a set of data samples x i ; i=1...n Convolve with a kernel function H to generate a smooth function f(x) Equivalent
Leak Detection Theory: Optimizing Performance with MLOG
Itron White Paper Water Loss Management Leak Detection Theory: Optimizing Performance with MLOG Rich Christensen Vice President, Research & Development 2009, Itron Inc. All rights reserved. Introduction
( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x
Errata for the ASM Study Manual for Exam P, Eleventh Edition By Dr. Krzysztof M. Ostaszewski, FSA, CERA, FSAS, CFA, MAAA Web site: http://www.krzysio.net E-mail: [email protected] Posted September 21,
Chapter 5 A Survey of Probability Concepts
Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible
3-D Workshop AT A GLANCE:
3-D Workshop AT A GLANCE: Kids will learn about perception and how we can trick our eyes into seeing 3-dimensional images with the physics of color. They also will make their own working 3-D glasses with
5.5. Solving linear systems by the elimination method
55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve
Odds ratio, Odds ratio test for independence, chi-squared statistic.
Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review
OA4-13 Rounding on a Number Line Pages 80 81
OA4-13 Rounding on a Number Line Pages 80 81 STANDARDS 3.NBT.A.1, 4.NBT.A.3 Goals Students will round to the closest ten, except when the number is exactly halfway between a multiple of ten. PRIOR KNOWLEDGE
Differentiated Instruction Strategies
Miss Taylor Brooke Stancil s Differentiated Instruction Strategies Choral Response: Choral response is a very simple technique in which the teacher asks questions to the class as a whole and the students
MONITORING AND DIAGNOSIS OF A MULTI-STAGE MANUFACTURING PROCESS USING BAYESIAN NETWORKS
MONITORING AND DIAGNOSIS OF A MULTI-STAGE MANUFACTURING PROCESS USING BAYESIAN NETWORKS Eric Wolbrecht Bruce D Ambrosio Bob Paasch Oregon State University, Corvallis, OR Doug Kirby Hewlett Packard, Corvallis,
Exact Nonparametric Tests for Comparing Means - A Personal Summary
Exact Nonparametric Tests for Comparing Means - A Personal Summary Karl H. Schlag European University Institute 1 December 14, 2006 1 Economics Department, European University Institute. Via della Piazzuola
Least-Squares Intersection of Lines
Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a
Kenken For Teachers. Tom Davis [email protected] http://www.geometer.org/mathcircles June 27, 2010. Abstract
Kenken For Teachers Tom Davis [email protected] http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.
