Lecture note on Solid State Physics de Haas-van Alphen effect
|
|
|
- Erick Price
- 10 years ago
- Views:
Transcription
1 Ltur not on Solid Stt Phsis d Hs-vn Alphn fft Mstsugu Suzuki nd Itsuko S. Suzuki Stt Univrsit of Nw York t Binghmton Binghmton Nw York 39-6 (April 6 6) ABSTRACT Hr th phsis on th d Hs-vn Alphn (dhva) fft is prsntd. Thr hv bn mn ltur nots (in Wb sits) on th dhva fft. Mn of thm hv bn writtn b thorists who hv no prin on th msurmnt of th dhva fft. On of th uthors (M.S.) hs studid th frqun miing fft (dhva) nd th stti skin fft (Shubnikov-d Hs fft) of bismuth (Bi) s prt of his Ph.D. Thsis (Phsis) (Univrsit of Toko 977) undr th instrution of Prof. Si-ihi Tnum (Ph.D. dvisor). Around 974 Prof. Dvid Shonbrg (th lt) visitd th Univrsit of Toko nd gv n llnt tlk on th dhva fft of oppr t th Phsis Colloquium (Prof Rogo Kubo ws lso prsnt). Whn h plind th dhva priod rltd to th dog s bon h pronound it in Jpns inu no hon. His tlk ws vr imprssiv nd grtl ntrtind th udin of th Phsis Dprtmnt. Bfor his tlk Prof. Shonbrg lso visitd th Institut of Solid Stt Phsis t th Univrsit of Toko. At tht tim M.S. msurd th dhva fft of oppr to min th possibilit of th zon osilltion fft. Prof. Shonbrg gv invlubl suggstions to M.S. on th primnt (unfortuntl this primnt hs fild) nd grtl nourgd M.S. to ontinu to do th dhva primnts. This ltur not is writtn bsd on th prin of M.S. during his Ph.D. work on th dhva fft. Not tht th pionring works on th dhva of Bi wr don b Prof. Shonbrg [Pro. Ro. So. A (936) Pro. Ro. So. A 56 7 (936) Pro. Ro. So. A 7 34 (936)]. Numril lultions (lthough th r vr simpl lultions) r md b Mthmti 5.. For onvnin on progrm is lso givn in th Appndi. Nottions: : Plnk onstnt : vloit of th light -: hrg of ltron m : mss of fr ltron m : lotron mss m: mss of ltron (in thor) ω : lotron frqun ( /( m)) µ B Bohr mgnton ( µ /( )) Φ : quntum fluoid (Φ 7 /.678 Guss m ) B B: mgnti fild l: mgnti lngth ( l / B) T: Tsl ( T 4 O) O unit of th mgnti fild ( Guss) ε F : th Frmi nrg S : trml ross-stionl r of th Frmi surf in pln norml to th mgnti fild.
2 Contnts. Introdution. Frmi surf of Bi. Enrg disprsion rltion. Brillouin zon nd Frmi surf of Bi 3. Thniqus for th msurmnt of dhva 3. Fild modultion mthod 3. Torqu mthod 4. Rsuls of dhva in Bi 4. Rsult from modultion mthod 4. Rsult from torqu d Hs 4.3 Rsult from dhva fft (Bhrgrv) 5. Chng of Frmi nrg s funtion of mgnti fild 6. Thortil bkground 6.. Th dnsit of stts: dgnr of th Lndu lvl 6.. Smilssil quntiztion of orbits in mgnti fild 6.3 Quntum mhnis 6.3. Lndu gug smmtri gug nd gug trnsformtion 6.3. Oprtors in quntum mhnis Shrödingr qution (Lndu gug) Anothr mthod 6.4 Th Zmn splitting of th Lndu lvl du to th spin mgnti momnt 6.5 Numril lultions using Mthmti Enrg disprsion rltion of th Lndu lvl 6.5. Solution of Shrödingr qution (Lndu gug) Wv funtions 7. Gnrl form of th osilltor mgntiztion (Lifshitz-Kosvih) 8. Simpl modl to undrstnd th dhva fft 9. Drivtion of th osilltor bhvior in D modl. Totl nrg vs B. Mgntiztion M vs B. Conlusion REFERENCES Appndi Mthmti progrm. Introdution Th d Hs-vn Alphn (dhva) fft is n osilltor vrition of th dimgnti susptibilit s funtion of mgnti fild strngth (B). Th mthod provids dtils of th trml rs of Frmi surf. Th first primntl obsrvtion of this bhvior ws md b d Hs nd vn Alphn (93). Th hv msurd mgntiztion M of smimtl bismuth (Bi) s funtion of th mgnti fild (B) in high filds t 4. K nd found tht th mgnti susptibilit M/B is priodi funtion of th riprol of th mgnti fild (/B). This phnomnon is obsrvd onl t low
3 tmprturs nd high mgnti filds. Similr osilltor bhvior hs bn lso obsrvd in mgntorsistn (so lld th Shubnikov-d Hs fft). Th dhva phnomnon ws plind b Lndu s dirt onsqun of th quntiztion of losd ltroni orbits in mgnti fild nd thus s dirt obsrvtionl mnifsttion of purl quntum mhnis. Th phnomnon bm of vn grtr intrst nd importn whn Onsgr pointd out tht th hng in /B through singl priod of osilltion ws dtrmind b th rmrkbl simpl rltion P ( ) () F B S whr P is th priod (Guss - ) of th dhva osilltion in /B F is th dhva frqun (Guss) nd S is n trml ross-stionl r of th Frmi surf in pln norml to th mgnti fild. If th z is is tkn long th mgnti fild thn th r of Frmi surf ross stion t hight k z is S(k z ) nd th trml rs S r th vlus of S(k z ) t th k z whr ds ( k z ) / dk z. Thus mimum nd minimum ross stions r mong th trml ons. Sin ltring th mgnti fild dirtion brings diffrnt trml rs into pl ll trml rs of th Frmi surf n b mppd out. Whn thr r two trml ross-stionl r of th Frmi surf in pln norml to th mgnti fild nd ths two priods r nrl qul bt phnomnon of th two priods will b obsrvd. Eh priod must b disntngld through th nlsis of th Fourir trnsform. Fig. Frmi surf of th hol pokt for Bi. Th mgnti fild (dnotd b rrows) is in th YZ pln. Fig. Frmi surf of th ltron () pokt for Bi. Th mjor is of th llipsoid is tiltd b 6.5º from th bistri is. Eprimntll th vlu of S (m - ) n b dtrmind from mor onvnint form 3
4 S P Φ P 7 (Guss - m - )/P(Guss - ) [m - ] () whr P is in unit of Guss - 7 nd Φ ( /.678 Guss m ) is th quntum fluoid. Th dhva fft n b obsrvd in vr pur mtls onl t low tmprturs nd in strong mgnti filds tht stisf ε F >> ω >> k B T. (3) Th first inqulit mns tht th ltron sstm is quntum-mhnill dgnrt vn though s rquird b th sond inqulit th mgnti fild is suffiintl strong. On th othr hnd th obsrvtion of dhva osilltion is dtrmind b B ω 4. (4) B ε F Tht is for th obsrvtion of osilltions th flututions Β in n mgnti fild should b smll nd th ltron dnsit should not b too high bus th priod dpnds on th rtio ω / ε. F. Frmi surf of Bi 3-. Enrg disprsion rltion Bismuth is tpil smimtl. Th modl of th bnd strutur of Bi onsists of st of thr quivlnt ltron llipsoids t th L point nd singl hol llipsoid t th T point (s th Brillouin zon in S.). In on of th ltron llipsoids (-pokt) th nrg E is rltd to th momntum p in th bsn of mgnti fild b E E( ) p m * p (5) EG m (L modl 5 or llipsoidl non-prboli modl) whr E G is th nrg gp to th nt lowr bnd nd m* is th fftiv mss tnsor in units of th fr ltron mss m. Th fftiv mss tnsor m * is of th form m m * m m (6) m 4 m 4 3 whr nd 3 rfr to th binr (X) th bistri (Y) nd th trigonl (Z) s rsptivl. Th othr two ltron llipsoids (b nd pokts) r obtind b rottions of ±º bout th trigonl is rsptivl. Th fftiv mss tnsors m b * for th b pokt nd m * for th pokt r givn b ( m m ) m 3m 3 3m4 ± ± 4 4 3( m m ) 3m m m4 m b* ±. (7) 4 4 3m4 m4 ± m3 4
5 For th hols th nrg momntum rltionship in th bsn of mgnti fild is tkn to b E E p M * p (8) m whr E is th nrg of th top of th hol bnd rltiv to th bottom of th ltron bnd nd th fftiv mss tnsor M* for th hol pokt is M M * M. (9) M 3 Th Frmi surf onsists of on hol llipsoid of rvolution nd thr ltron llipsoids. On ltron llipsoid hs its mjor is tiltd b smll positiv ngl ( 6.5º) from th bistri dirtion. Tbl I Bi bnd prmtrs usd b Tkno nd Kwmur 8. Brillouin zon nd Frmi surf of Bi Th Brillouin zon nd th Frmi surf of Bi r shown hr. 5
6 Fig.3 Brillouin zon of bismuth 3- Fig.4 Frmi surf of bismuth: binr is (X) bistri (Y) nd trigonl (Z). b r th ltron pokt (Frmi surfs) nd h is th hol pokt. 6
7 3. Thniqus for th msurmnt of dhva Thr r two mjor thniqus to msur th dhva osilltions: () fild modultion mthod using lok-in mplifir. () torqu mthod. Bus of th Frmi surf in Bi is so smll th dhva fft n b obsrvd in quit smll filds s low s O t.3 K nd t firl high tmprturs up to or 3 K t filds of fw ko). It is in ft th mtl in whih th dhva fft ws first disovrd nd hv probbl bn mor studid vr sin thn n othr mtl. 3. Fild-modultion mthod Th sstm onsists of dtting oil ompnstion oil nd fild modultion oil. Th stti mgnti fild B (supronduting mgnt or ion or mgnt) is modultd b smll AC fild h osωt (ω is ngulr frqun) gnrtd b th fild modultion oil. Th dirtion of th AC fild is prlll to tht of stti mgnti fild B. Th voltg indud in th pik-up oil is givn b M M v ω { h sin( ωt) h sin(ω t)...} () h h whr h << B. Th signl obtind from th pik-up oil is phs snsitivl dttd t th first hrmoni or sond hrmoni mods with lok-in mplifir. Th DC signl is M M proportionl to ω h for th first-hrmoni mod nd ωh for th sondhrmoni mod. Ths signls r priodi in /B. Th Fourir nlsis lds to th h h dhva frqun F (or th dhva priod P /F). Fig.5 Th blok digrm of th pprtus for th msurmnt of th dhva fft b mns of th fild modultion mthod. 7
8 3. Torqu mthod Whn n trnl mgnti fild is pplid to th smpl thr is torqu on th smpl givn M BV whr M is th omponnt of M prpndiulr to B nd V is th volum. Using this mthod th bsolut vlu of th mgntiztion n b tl dtrmind. Not tht th torqu is qul to zro whn th dirtion of th mgnti fild is prlll to th smmtri dirtion of th smpl. Fig.6 Th blok digrm of th pprtus for msuring th dhva fft b Torqu d Hs mthod Rsults of dhva fft in Bi 4. Rsult from th modultion mthod (Suzuki.9 ) W show tpil mpls of th dhva fft in Bi nd th Fourir sptr for th dh vh priods. 8
9 Fig.7 Th dhva fft of Bi in th YZ pln. T.5 K. This signl orrsponds to th first hrmonis ( M / h ). Fig.8 Th dhva fft of Bi in th YZ pln. T.5 K. Th signl orrsponds to th sond hrmonis ( M/ h ). 4. Rsult of torqu d Hs (Suzuki 9 ) W show tpil mpls of th torqu d Hs in Bi. 9
10 Fig.9 Angulr dpndn of th torqu d Hs in th YZ pln. Th torqu is zro t th smmtr s (Y nd Z). B 5 ko. T 4. K. Fig. Th torqu d Hs in th YZ pln. T.5 K.
11 Fig. Th Fourir sptrum of th dhva osilltion. Th mgnti fild is orintd in th YZ pln. Th Z is orrsponds to º. Th brnhs A B nd C orrspond to th - b- nd -ltron pokts rsptivl. Th brnh E orrsponds to th frqun miing du to th quntum osilltion of th Frmi nrg (s S.5). Fig. Th Fourir sptrum of th dhva osilltion. Th mgnti fild is orintd to mk -36º from th Z is in th YZ pln. Th brnhs A B nd C orrspond to th - b- nd -ltron pokts rsptivl.
12 Fig.3 Th ngulr dpndn of th dhva frqunis in th YZ pln. Th brnhs A B nd C orrspond to th - b- nd -ltron pokts rsptivl. Th dhva frqun F F is pproimtl qul to F 3A nd F D nd F E oinid with F A F BC. Not tht th b- nd - pokts sprt into two brnhs in th rng of th fild ngls from -48º to -7º nd this might b rsult of th ft tht th dirtion of mgnti fild dos not tl li in th YZ pln. Not tht th frqun of α-osilltion is dnotd s F α whr α mns A BC D E A or 3A. 4.3 Rsult of dhva fft in Bi (Bhrgrv 7 ) Tbl II Th summr of rsults of dhva fft in Bi. 7 : binr : bistri 3: trigonl
13 Fig.4 Th ngulr dpndn of ltron dhva priod P in th XY pln for Bi. Th solid lin is fit ssuming n llipsoidl Frmi surf nd using th msurd vlus of priods in th rstl is nd tilt ngl of 6.5º. 7 Fig.5 Th ngulr dpndn of ltron dhva priods in th YZ pln. Th tilt ngl msurd is 6.5±.5º. Th shdd r shows th rgion whr ltron priods wr nvr rportd. Th solid lin is fit using n llipsoidl Frmi surf Chng of Frmi nrg s funtion of mgnti fild Th dimnsion of th Frmi surf of Bi is vr smll omprd with tht of ordinr mtls. Thrfor th quntum numbr of th Lndu lvl t th Frmi nrg hs smll vlu vn t low mgnti fild. Th Frmi nrg vris with mgnti fild in qusi osilltor w sin th Lndu lvl intrvls of th hol nd ltrons r gnrll diffrnt to h othr. Th Frmi nrg is dtrmind from th hrg b nutrlit ondition tht Nh ( B) N ( B) N ( B) N ( B). Th fild dpndn of th Frmi nrg in Bi is shown blow whn B is prlll to th binr bistri nd trigonl s rsptivl. W not tht th dhva frqun miing hs bn obsrvd in Bi b Suzuki t l.. Th Frmi nrg hngs t mgnti filds whr th Lndu lvl rosss th Frmi 3
14 nrg so tht th Frmi nrg shows psudo priodi vrition with th fild. This vrition is rmrkbl vn t low mgnti fild in Bi. Th obsrvd frqun miing is du to this fft. () B // th binr is (X) Fig.6 Th mgnti fild dpndn of th Frmi nrg (B //X T K). Th dottd nd solid lins orrspond to th Lndu lvls of th ltron nd hol rsptivl. Th urv of E F vs B hibits kinks t th filds whr th Lndu lvls ross th Frmi nrg. BCn±: th Lndu lvl of th ltron b- nd pokts with th quntum numbr n nd th spin up () (down (-))-stt. hn±: th Lndu lvl of th hol pokts with th quntum numbr n nd th spin up () (down (-))-stt. E ( n σ ) ω ( n ν sσ ) whr ν s is spin-splitting ftor dfind in S.6.4 nd σ ±. Th prssion of E(n σ)will b disussd ltr. Th ground Lndu lvl is dsribd b ithr Brff 6 modl (dnotd B) or L 5 modl (dnotd b L). (b) B // th bistri (Y) Fig.7 Th mgnti fild dpndn of th Frmi nrg (T K). Mgnti fild is long th Y is (bistri). 9 4
15 () B //th trigonl is (Z) Fig.8 Th mgnti fild dpndn of th Frmi nrg (T K). Mgnti fild is long th Z is (trigonl) Thortil Bkground Th dnsit of stts: dgnr of th Lndu lvl Th ltrons in ubi sstm with sid L r hrtrizd b thir quntum numbr k with omponnts whr k (k k k z ) /L (n n n z ) nd n n nd n z r intgrs. Th nrg of th sstm is givn b E ( k) k m whr m is th mss of ltrons (w ssum m instd of m in th thor for onvnin). Th k sp ontours of onstnt nrg r sphrs nd for givn k n ltron hs vloit givn b v k E( k). () k Wht hppns in mgnti fild to th distribution of orbitls in k sp? Whn mgnti fild B is pplid long th z is th ltron motion in this dirtion is unfftd b this fild but in th ( ) pln th Lorntz for indus irulr motion of th ltrons. Th Lorntz for uss rprsnttiv point in k sp to rott in th (k k ) pln with frqun ω B/m (w us this nottion in this Stion) whr - is th hrg of ltron. This frqun whih is known s th lotron frqun is indpndnt of k so th whol sstm of th rprsnttiv points rott bout n is (prlll to B) through th origin of k sp. This rgulr priodi motion introdus nw quntiztion of th nrg lvls (Lndu lvls) in th (k k ) pln orrsponding to thos of hrmoni osilltor with frqun ω nd nrg ε n ω ( n ) k () m whr k is th mgnitud of th in-pln wv vtor nd th quntum numbr n tks intgr vlus 3... Eh Lndu ring is ssoitd with n r of k sp. Th r S n is th r of th orbit n with th rdius k k S n B kn ( n ). (3) n 5
16 Thus in mgnti fild th r of th orbit in k sp is quntizd. Th r btwn two djnt Lndu rings is B Sn Sn Sn (l: th mgnti lngth) (4) l Fig.9 Quntiztion shm for fr ltrons. Eltron stts r dnotd b points in th k sp in th bsn nd prsn of trnl mgnti fild B. Th stts on h irl r dgnrt. () Whn B thr is on stt pr r (/L). (b) Whn B th ltron nrg is quntizd into Lndu lvls. Eh irl rprsnts Lndu lvl with nrg E ω ( n / ). Th dgnr of quntum numbr n (th numbr of stts) is Sn B L BL D B ρ L or ρ (5) L 6. Smilssil quntiztion of orbits in mgnti fild Th Onsgr-Lifshitz id ws bsd on simpl smi-lssil trtmnt of how ltrons mov in mgnti fild using th Bohr-Sommrfld ondition to quntiz th motion. Th dhva frqun F (i.. th riprol of th priod in /B) is dirtl proportionl to th trml ross-stion r S of th Frmi surf. Th Lgrngin of th ltron in th prsn of ltri nd mgnti fild is givn b L mv q( φ v A) (6) whr m nd q r th mss nd hrg of th prtil. Cnonil momntum: L q p mv A. (7) v Mhnil momntum: q mv p A. (8) n 6
17 Th Hmiltonin: q q H p v L ( mv A) v L mv qφ ( p A) qφ. (9) m Th Hmiltonin formlism uss th vtor potntil A nd th slr potntil φ nd not E nd B dirtl. Th rsult is tht th dsription of th prtil dpnds on th gug hosn. W ssum tht th orbits in mgnti fild r quntizd b th Bohr-Sommrfld rltion q m v k p A p A. () p dr ( n γ ). () γ / for fr ltron. whr q - (>) is th hrg of ltron n is n intgr nd γ is th phs orrtion: p dr k dr A dr ( n γ ). () Th qution of motion of n ltron in mgnti fild is givn b dk v B. (3) dt This mns tht th hng in th vtor k is norml to th dirtion of B nd is lso norml to v (norml to th nrg surf). Thus k must b onfind to th orbit dfind b th intrstion of th Frmi surf with norml to B. Sin v ( / ) k εk d r / dt k r r ) B (4) ( whr r [( )] is th position vtor of th ntr of th orbit (guiding ntr): k k B (5) B In th ompl pln w hv th rltion i / ( ) i( ) ( k ik ). (6) B This mns tht th mgnitud of th position vtor r r ( - ) of th ltron is rltd to tht of th wv vtor k (k k ) b sling ftor η l / B. Th phs of th position vtor is diffrnt from tht of th wv vtor b / for th ltron Frmi surf. l is so-lld mgnti lngth. 7
18 Fig. Th orbitl motion of ltron in th prsn of B (B is dirtd out of pg) in th k-sp is similr to tht in th r-sp but sld b th ftor η nd through /. Not w ssum r in this figur. k dr r B dr B ( r dr) B An Φ. (7) whr ( r d r) (r nlosd within th orbit) n (gomtril rsult) nd Φ is th mgnti flu ontind within th orbit in rl sp Φ B An. On th othr hnd A dr ( A) d B d Φ (8) b th Stoks thorm. Thn w hv p dr Φ Φ Φ ( n γ ). (9) It follows tht th orbit of n ltron is quntizd in suh w tht th flu through it is Φn ( n γ ) Φ( n γ ) (Onsgr rltion) (3) whr Φ is quntum fluoid nd is givn b h 7 Φ.678 Guss m. (3) In th dhva w nd th r of th orbit in th k-sp. W dfin S n (r) s n r nlosd b th orbit in th rl sp (r) nd S n (k) s n r nlosd b th orbit in th k-sp. Thn w hv rltion S n( r) Sn( k) l Sn( k). (3) B Th quntizd mgnti flu is givn b 8
19 Φn BSn( r ) Bl Sn( k) ( n γ ) Φ( n γ ) (33) or B S n ( k ) ( n γ ) ( n γ ) B. (34) B Not tht this qution n lso b drivd from th orrspondn prinipl. Th frqun for motion long losd orbit is ω B m (35) whr ω is dfind s S m (36) ε In th smilssil limit on should obtin quidistnt lvls with sprtion ε qul to ω. Hn B ε ω (37) ( S / ε ) or S B ε S. (38) ε In th Frmi surf primnts w m b intrstd in th inrmnt Β for whih two sussiv orbits n nd n hv th sm r in th k-sp on th Frmi surf Sn ( k) Sn ( k) S( k) ( n γ ) Bn ( n γ ) Bn S( k) ( n γ ) S( k) ( n γ ) (39) Bn Bn or S( k )( ). (4) B B n n 6.3 Quntum mhnis 6.3. Lndu gug smmtri gug nd gug trnsformtion q H ( p A) qφ ( p A) φ. (4) m m In th prsn of th mgnti fild B (onstnt) w n hoos th vtor potntil s z A ( B r) B ( B B) (smmtri gug). (4) z Hr w dfin gug trnsformtion btwn th vtor potntils A nd A A' A χ 9
20 whr χ B. Sin χ B( ) (43) th nw vtor potntil A ' is obtind s A ' ( B) (Lndu gug). (44) Th orrsponding gug trnsformtion for th wv funtions iqχ ib ψ '( r ) p( ) ψ ( r) p( ) ψ ( r) (45) with q - (>) Oprtors in quntum mhnis W bgin b th rltion p A. [ ] [ p A p A ] [ p A ] [ p A ] (46) A A Bz i i i or [ ] Bz (47) i A A whr Bz. Similrl w hv [ z] B nd [ z ] B (48) i i Sin A ommut with r (A is funtion of r ) [ ] [ p ] i [ ] [ p ] i [ z ] [ z p ] i. z z [ ] [ p A] [ ] [ p A ] (49) Whn B (B) or B z B B [ ] [ z ] [ z ] (5) i Not tht B [ ] i (5) i whr l is lld s mgnti lngth nd it is lotron rdius for th ground stt Lndu lvl: / B Hr w dfin th oprtors X nd Y for th guiding-ntr oordints.
21 l B X l Y (5) Th ommuttion rltion is givn b 4 ] [ ] [ ] [ ] [ ] [ il l l l l l Y X ] [ ] [ ] [ ] [ l l X ] [ ] [ ] [ ] [ l l Y. (53) Whn th unrtintis X nd Y r dfind b > < ) ( X X nd > < ) ( Y Y rsptivl w hv th unrtint rltion 4 4) (/ ] [ 4) (/ ) ( ) ( l Y X Y X or ) (/ ) )( ( l Y X. Th Hmiltonin Ĥ is givn b ) ( ) ( m m H A p (54) W dfin th rtion nd nnihiltion oprtors ) ( i ) ( i (55)(56) or ) ( ) ( i (57) ) ( ] [ ] [ ] [ i i i i i ) ( ) ( ] ) ( ) [( Thus w hv ) ( ) ( m H ω (58) whr m B B m m ) / ( ω. Whn N th Hmiltonin is dsribd b ) ( N H ω. (59) W thus find th nrg lvls for th fr ltrons in homognous mgnti fild- lso known s Lndu lvls Shrödingr qution (Lndu gug) W onsidr th Hmiltonin givn b
22 H [ p ( ) p B pz ] m (6) p p B (6) Th guiding-ntr oordints r X l l l l ( p B) p Y p (6) Th Hmiltonin Ĥ ommuts with p nd p z. [ H ] nd [ H ] p Th Hmiltonin Ĥ lso ommuts with X : [ H X ]. H n k k E n k k z n z p z nd p n k k z k n k k z nd p z n k kz kz n k kz p n k kz k n k kz z p n k k z k n k k z or n k kz k n k kz z n k kz kz z n k kz i i z Shrödingr qution [( ) ( B) ( ) ] ψ ( z) εψ ( z) (63) m i i i ik ik z z ψ ( z) φ( ) (64) ξ mω with β B nd β ω B m k ξ β k k. B B W ssum th priodi boundr ondition long th is. ψ ( L z) ψ ( z) (65) or or ik L k ( / L ) n (n : intgrs) (66) Thn w hv. φ"( ξ ) [( ξ ξ) ( me kz )] φ( ξ ) B W put or kz E ω ( n ) (Lndu lvl) (67) m
23 B me kz m ω ( n ) kz ( n ) φ "( ξ ) [( ξ ξ) (n )] φ( ξ ). Finll w gt diffrntil qution for φ (ξ ). φ"( ξ ) [n ( ξ ξ) ] φ( ξ ). Th solution of this diffrntil qution is ( ξ ξ ) n φ ( ) (!) / n ξ n H n( ξ ξ) (68) with ξ k k B B ξ ξ k β Th oordint is th ntr of orbits. Suppos tht th siz of th sstm long th is is L. Th oordint should stisf th ondition < <L. Sin th nrg of th sstm is indpndnt of this stt is dgnrt. ξ < ξ k < L (69) β or k n < L L or LL n <. Thus th dgnr is givn b th numbr of llowd k vlus for th sstm. L L A A BA Φ g (7) Φ Φ B whr 7 Φ.678 Guss m. Th nrg disprsion is plottd s funtion of k z for h Lndu lvl with th ind n. kz E( n kz ) ω ( n ). (7) m Anothr mthod H ( p A) [ p A ( p A A p)] m m p A A p p A p A p A A p A p A p z z z z 3
24 Thn w hv H [ p m [ p A ] [ p A ] [ p A ] A p z z A A p. i A ( A A p )] i ( p A A A p ) m i Sin A B B H ( p A A p ) p p m m m m whr B B ω mω B m m m B m H ω p ω p p ω p. m m m Th first nd sond trms of this Hmiltonin r tht of th simpl hrmonis long th is. This Hmiltonin Ĥ ommuts with p nd p z. Thus th wv funtion n b dsribd b th form i( k k z z ) ψ ( z) φ ( ). n 6.4 Th Zmn splitting of th Lndu lvl Hr w onsidr th fft of th spin mgnti momnt on th Lndu lvl. Fig. Spin ngulr momntum S nd spin mgnti momnt µ s for fr ltron. S /. ( S / ). µ / m (Bohr mgntron). s µ B B Th spin mgnti momnt µ s is givn b µ s g µ B( S / ) ( gµ B / ) whr µ /( m B ) (Bohr mgnton). Th ftor g is lld th Lndé-g ftor nd is qul to g.3 for fr ltrons. In th prsn of mgnti fild B long th z is th Zmn nrg is givn b 4
25 g µ B m gσ s B Bσ ω ( ) ων sσ (7) m whr ν s gm / m nd σ ±. Thus w hv th splitting of th Lndu lvl in th prsn of mgnti fild s E ( n σ ) ω ( n ν sσ ). (73) whr ν s is muh smllr thn for Bi. 6.5 Numril lultions using Mthmti ((Mthmti 5.-)) Enrg disprsion of th Lndu lvl W onsidr th nrg disprsion of th Lndu lvl with th quntum numbr n s funtion of k z. Hr w ssum tht ω nd m for numril lultions. n. G n_ : n m rul{ m kz } { m } GG[n]/.rul kz n PlotEvlutTblGn kz PlotStl TblHu.i i Prolog AbsolutThiknss Bkground GrLvl.5 AsLbl z " "k z " "Enk PlotRng 8 8 z Enk k z Grphis Fig. Enrg disprsion of th Lndu lvls with n nd k z for 3D ltron gs in th prsn of mgnti fild long th z is. 5
26 6.5.. ((Mthmti 5.-)) Solution of Shrödingr qution (*Lndu lvl*) : D # & # B : D# & [ z [z]] B z B! B z B! z: z B D # & z [ [ [z]]]//simplif Nst[ [z]]//simplif z"! z"! z## z## f$ % Nst&' ) )* m (& z Nst&' z) ) * (& Nst&' z) ) z) --. z(& / E(& Simplif z 3 m B. 3 /45 z6 B/45 3. /45 z7/45 z8889 E/ z (*W ssum th form of wv funtion [z](ep[: : ; k kz z] [] *) rul{ (Ep[: : ; k # kz #3] [#]&)} <>?@Ak#BAkz#3CD #E &FG ff/.rul//simplif HIJKkLkzzM m z7 NNO B P BkQ P N Em O N k P kz RQRRST UP QSVVT URW X qy ZZ[ \ B Bk] \ m[ \ ^]^^_` \ ]_bb`^ d f Z E Zk kz B Bkg f d d kf hghhi j kf gillj k m Em kz qn Solvoqpqqorr ss ss Simplif Flttn tuvvw Bk } z { Em} z k}kz~ ~~ uw q3 ƒ ƒ.q { zb 6
27 B Bk Em k vhngeq z_ f_: f n_nst Eq.D Df zd# z&z z!!"########## hng % &'''''''' ( of vribl m$ % B kz n ) B m is dimnsionlss sq*vhngq3 5: --./FullSimplif 9;Bk58: rul>?@abbbbbbbbb CD <8<<<456< 9;Em:9k :kz B J K L PkQSTTTTTTTT sqsq/.rul//simplif klmbhnok L B MNOMNOPBQLRMNOEmPMNOk Rkz UVWLUVWUVWXYQZRB LX[[YQZUVW\ sq3]solv^sq_``^bbsimplifflttn dffghij l mpemok pkhqrrrrrrr s tuvntuvtuvghi mk okz B Š B Œ Bn w sq4zz{ }~zz{ }.sq3 FullSimplif ƒ Š ŽEm Žk Œ ƒ k kz B BŒ œœœœœœœœ š šk B B k B rul3žÿk B EFG HIIIIIIIII B šk B œœœœœœœœ B š l Š 7
28 k B BEmkz sq5sq4/.rul3//simplif B E Th nrg E B n kz m m rul4e B "! # n! kz $E% 'n() m ' * m B& kz ) -./ m m sq6sq5/.rul4//simplif 7789:;< 4-./ n DSolv[sq65[6]6] C9;HrmitH9n:A:;B C9;HprgomtriFCAn D:A:EFGG ((Mthmti 5.-3)) Plot of th Lndu wv funtion s funtion of ξ whr ξ. (*Simpl Hrmonis wv funtion*) (*plot of Hn[6]*) onjugtrulijcomplkr_ im_lmcomplkrnimlo; UnprottKSuprStrL;SuprStrP:p_Q:IpP. onjugtrul; ProttKSuprStrL {SuprStr} _ HrmitHSnTU RSn_T_U:VWnXYWX4Zn[\WX Ep]^T pt[n_]:plot[evlut[`[n6]]{6-66}plotlbl{n}plotpointsplotrngalldisplfun tionidntitfrmtru] ptevlut[tbl[pt[n]{n8}]];show[grphisarr[prti tion[pt]]] 8
29 GrphisArr Plot[Evlut[Tbl[ `[n6]{n6}]]{6-66}prologabsolutthiknss[]plotstltbl[hu[. i]{i8}]aslbl{"6"" [n6]"}frmtrubkgroundgrlvl[.5]] 9
30 n Grphis Fig.3 Plot of th wv funtion φ n (ξ ) with ξ s funtion of ξ. n nd Gnrl form of th osilltor mgntiztion (Lifshitz-Kosvih) Th prssion of th osilltor mgntiztion is drivd b Lifshitz nd Kosvih s / 3 / T ( / ) S Tm S m M S p( )sin( ± ) os( ) (74) 3 / B / pz B B 4 m whr th sum ovr tnds ll trml ross-stionl r of th Frmi surf th phs /4 if S / pz> (minimum) nd -/4 if S / pz < (mimum) m is mss of fr ltron nd m ( / ) S / ε. Th trm os( m / m ) riss from th Zmn splitting of spins. Th mgntiztion osilltions r priodi in /B. Th priod is ( ) (75) H S Th influn of ltron sttring is not tkn into ount in th drivtion givn bov. Its fft is sil stimtd. A propr ount of th influn of ollisions givs ris to n dditionl ftor. If th mn tim btwn ollisions is τ th orrsponding unrtint in ltron nrgis / τ is quivlnt to tmprtur so-lld Dingl tmprtur m kbtd m p( ) p( ) (76) τh H whr T d is th Dingl tmprtur nd is dfind b T d. kbτ 8. Simpl modl to undrstnd th dhva fft 36 Considr th figur showing Lndu lvls ssoitd with sussiv vlus of n s. Th uppr grn lin rprsnts th Frmi lvl ε F. Th lvls blow ε F r filld thos bov r mpt. Sin ε F is muh lrgr thn th lvl-sprtion ω th 3
31 numbr n s of oupid lvls is vr lrg. Lt us ssum tht th mgnti fild is inrsd slightl. Th lvl sprtion will inrs nd on of th lowr lvls will vntull ross th Frmi lvl. Th rsulting distribution of lvls is similr to th originl on pt tht th numbr of filld lvls blow ε F is now n s- instd of n s. Sin n is lrg this diffrn is ssntill ngligibl so tht on pts th nw stt to b quivlnt to th originl on. This implis priodi dpndn of th mgntiztion. Fig.4 Shmti nrg digrm of D fr ltron gs in th bsn nd prsn of B. At B th stts blow ε F r oupid. Th nrg lvls r split into th Lndu lvls with () n nd s for spifid fild nd (b) n nd s- for nothr spifid fild. Th totl nrg of th ltrons is th sm s in th bsn of mgnti fild. ((Mthmti 5.-4)) Shmti nrg digrm s funtion of /B This figur shows th shmti digrm of th lotion of h Lndu lvls s funtion of ε / ω. Whn ε / ω s (intgr) thr r s Lndu lvls blow th F Frmi lvl ε F. F Plot Evlut Tbl i n UnitStp n UnitStp n n 3 i n 3 Prolog AbsolutThiknss 3 PlotStl Tbl Hu.j j PlotRng 3 3
32 Grphis Fig.5 Shmti digrm for th sprtion of th Lndu lvl s funtion of /B. Th is is s N/(ρB). Th is is qul to th nrg normlizd b th Frmi nrg ε F. Th numbr of th Lndu lvls blow ε F is qul to s t s. 9. Drivtion of th osilltor bhvior in D modl. Th nrg lvl of h Lndu lvl is givn b ( n / ) whr n.. Eh on of th Lndu lvl is dgnrt nd ontins ρb stts. W now onsidr svrl ss. ω (A) Th n s- stts r oupid. n s stt is mpt. Fig.6 ε F ω s. 3
33 N ρbs. Th totl nrg is onstnt s U U ρb( n ) ω ωρb[ s( s ) s] ωρb s ε F N. (77) n (B) Th s whr th n s stt is not filld. W now onsidr th s whn ω drss. This orrsponds to th drs of B. (i) ε < ω / whr ε is th nrg diffrn dfind b th figur blow. Fig.7 (ii) ω / < ε < ω Fig.8 ε ω ε F s 33
34 with < ε < ω. Th n (s-) lvls r oupid nd th n s lvl is not filld. Th totl numbr of ltrons is N. Th nrg du to th prtill oupid n s stt is ( N ρ Bs) ω( s ). Thn th totl nrg is s U U ρ B( n ) ω ε F N ( N ρbs) ω( s ) n ω ( ) ( ρ B s ε F N N ρ Bs ω s ) (78) whr ρ Bs < N < ρb( s ) nd s ω < ε F ( s ) ω. Hr w introdu λ s λ N ρbs. Th prmtr λ stisfis th inqulit < λ < ρb ρs ρ( s ) for < <. Th prmtr λ dnots th numbr of ltrons prtill N B N oupid in th n s stt Th prmtr µ ρbs is th totl numbr of ltrons oupid in th n ρs ρ( s ) s- stts for < <. N B N (iii) Th n s stts r oupid. n s stt is mpt. Fig.9 In this s w hv ε ( s ). F ω 34
35 N ρ B( s ). U U ω ρb s n ρb( n ) ω ( s ) ε F N ω ρb[ s( s ). Totl nrg vs B W now disuss th totl nrg s funtion of B. N( s ) Th totl nrg hs lol minimum t B. ρs( s ) ((Proof)) Sin B ω ( ) B µ BB m m th totl nrg is prssd b U U ω ρb s ε F N ( N ρbs) ω( s ( ) s )] µ BρB s ε F N µ BBN(s ) µ BρB s(s ) ε F N µ BBN(s ) µ BρB s( s ) f ( B). f '( B) µ BN(s ) µ BρBs( s ). N( s ) Thn f(b) hs lol mimum t B ρs( s ) or ρ s( s ). B N s W lso show tht th totl nrg f (B) boms zro t sρ ( s )ρ nd. B N B N ((Proof)) W not tht U - U t ε F ω s nd N ρbs. s N Thn ε F ωs B sb µ B. m m ρ or N f ( B) µ B µ BBN(s ) µ BρB s( s ) ρ 35
36 µ B f ( B) [ ρ B s( s ) NρB(s ) N ] ρ or N N N N f ( B) µ Bρ[ B s( s ) B(s ) ] µ ρ( sb )[( s ) B ] B. ρ ρ ρ ρ Th solution of f(b) is sρ ( s )ρ nd. B N B N. Mgntiztion M vs B Th mgntiztion M is givn b U B U U N µ B F M (79) B ρ whr B ρ ρ F s( s ) (s ) N N F ρ ρ s( s ) (s ) 3 N N N µ B F N µ B ρ ρ M [ s( s ) (s )]. ρ ρ N N M t s( s ) ρ. s N ((Mthmti 5.-5)) Th Mthmti progrm is in th Appndi. In this numril lultion w us n µ B nd ρ. for simpliit. (*d Hs vn Alphn fft*) U s B s s B EF B N B N EF. N B BN s B N s s B B B qd[ub] N s B s B Solv[q Bs B N B] s s! "" s U#_ s_$ :% B' && U&. Simplif U[s] 36
37 N B Ns s s U s U N PowrEpnd N Simplif BN s s s N Solv[U s ]//Simplif s N N m!." # s$% s&' *!! N(s% U s ) Simplif N B 8s - 8s rul{n. /. B. } {N 3 B } U4 s6 7 U5 UnitStp89 s: N ;9UnitStp89 < >: s ;? BAB C ND Ns E F sgd shf E IJK L UnitStpME sf GD shf N E E NO N UnitStpM N U4U/.{. /} P BQR ST NU NsV W X W st N U sv XYZ[ QRS UnitStp\ W sx N ]WUnitStp\ W T U svx ] Y Z[ N N N (*Fr nrg s funtion of /B*) pplot[evlut[tbl[u/.rul{s}]]{.}plots tl. Hu[]Prolog. AbsolutThiknss[]Bkground. GrLv l[.5]plotpoints. 5AsLbl. {"/B""U-U"}] U_U `.5.5 Grphis` ^B pplot[evlut[tbl[u/.rul{s}]]{.4}plot Stl. Hu[]Prolog. AbsolutThiknss[]Bkground. GrLv l[.5]plotpoints. AsLbl. {"/B""U-U"}] 37
38 U_U ` Grphis` ^B Fig.3 Th plot of U-U vs /B (th dtil). pplot[evlut[tbl[u4/.rul{s}]]{.}plo tstl. Hu[]Prolog. AbsolutThiknss[]PlotPoints. 5Plo trng. {{}{7}}Bkground. GrLvl[.5]AsLbl. { "B""F"}] F ` Grphis` Fig.3 Plot of U-U vs B. D M U Simplif N Ns B s s DirDlt BN s s s UnitStp B N (*Mgntiztion s funtion of /B*) s s N DirDlt N UnitStp s N s N pplot[evlut[tbl[m/.rul{s}]]{.}plotst l. Hu[.4]Prolog. AbsolutThiknss[]Bkground. GrLv l[.5]plotpoints. AsLbl. {"/B""M"}] 38
39 M ^B - -4 ` Grphis` Fig.33 of M vs /B Show[ppPlotRng. {{}{-88}}] U_U ^B ` -8 Grphis` NNN-/ B s N-B s NN[_s_]NN/.B. ///Simplif Fig.33 Plot of U-U nd M s funtion of /B. (* Th prmtrs N-/ Bs nd / Bs*) N s NN3 s NN UnitStp s N s UnitStp s N UnitStp s N UnitStp s N N NN4 s UnitStp s N UnitStp s" s! N #UnitStp$% ' % UnitStp$% ()s*& ' s&n N bplot[evlut[tbl[nn3/.rul{s}]]{.}plot Stl. Hu[]Prolog. AbsolutThiknss[]Bkground. GrLv l[.5]aslbl. {"/B"" "}] 39
40 5 4 3 `.5.5 Grphis` ^B Fig.34 Plot of λ vs /B (rd). bplot[evlut[tbl[nn4/.rul{s}]]{.}plot Stl. Hu[.5]Prolog. AbsolutThiknss[]Bkground. GrL vl[.5]aslbl. {"/B"" "}] ` Grphis` Fig.35 Plot of µ vs /B (blu). Show[bb] ^B 6 4 `.5.5 Grphis` ^B Fig.36 Plot of λ vs /B (rd) nd µ vs /B (blu). 4
41 . Conlusion Th phsis on th dhva fft of mtls (in prtiulr bismuth) hs bn prsntd with th id of Mthmti 5.. Appndi Mthmti 5. progrm (5) in S. is givn for onvnin. REFERENCES. L. Lndu Z. Phs (93).. L. Onsgr Phil. Mg (95). 3. D. Shonbrg Pro. Ro. So. A 7 34 (939). 4. M.H. Cohn Phs. Rv. 387 (96). 5. R.N. Brown J.G. Mvroids nd B. L Phs. Rv (963). 6. G.E. Smith G.A. Brff nd J.M. Rowll Phs. Rv. B 35 A8 (964). 7. R.N. Bhrgrv Phs. Rv (967). 8. S. Tkno nd H. Kwmur J. Phs. So. Jpn (97). 9. M. Suzuki; Ph.D. Thsis t th Univrsit of Toko (977).. M. Suzuki H. Sumtsu nd S. Tnum J. Phs. So. Jpn (977).. I.M. Lifshitz nd A.M. Kosvih Sov. Phs. JETP 636 (956).. A.B. Pipprd Dnmis of ondution ltrons. (Gordon nd Brh Nw York 965). 3. A.A. Abrikosov Solid Stt Phsis Supplmnt Introdution to th thor of norml mtls (Admi Prss Nw York 97). 4. D. Shonbrg Mgnti osilltions in mtls. (Cmbridg Univrsit Prss London 984). 5. C. Kittl Introdution to Solid Stt Phsis Sith dition (John Wil nd Sons In. Nw York 986). 4
Higher. Exponentials and Logarithms 160
hsn uknt Highr Mthmtics UNIT UTCME Eponntils nd Logrithms Contnts Eponntils nd Logrithms 6 Eponntils 6 Logrithms 6 Lws of Logrithms 6 Eponntils nd Logrithms to th Bs 65 5 Eponntil nd Logrithmic Equtions
AC Circuits Three-Phase Circuits
AC Circuits Thr-Phs Circuits Contnts Wht is Thr-Phs Circuit? Blnc Thr-Phs oltgs Blnc Thr-Phs Connction Powr in Blncd Systm Unblncd Thr-Phs Systms Aliction Rsidntil Wiring Sinusoidl voltg sourcs A siml
Important result on the first passage time and its integral functional for a certain diffusion process
Lcturs Mtmátics Volumn 22 (21), págins 5 9 Importnt rsult on th first pssg tim nd its intgrl functionl for crtin diffusion procss Yousf AL-Zlzlh nd Bsl M. AL-Eidh Kuwit Univrsity, Kuwit Abstrct. In this
Fundamentals of Tensor Analysis
MCEN 503/ASEN 50 Chptr Fundmntls of Tnsor Anlysis Fll, 006 Fundmntls of Tnsor Anlysis Concpts of Sclr, Vctor, nd Tnsor Sclr α Vctor A physicl quntity tht cn compltly dscrid y rl numr. Exmpl: Tmprtur; Mss;
Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993
(Rul 5(10)) Shul C Noti in trms o Rul 5(10) o th Cpitl Gins Ruls, 1993 Sttmnt to sumitt y trnsror o shrs whr thr is trnsr o ontrolling intrst Prt 1 - Dtils o Trnsror Nm Arss ROC No (ompnis only) Inom Tx
Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years
Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957
ME 612 Metal Forming and Theory of Plasticity. 6. Strain
Mtal Forming and Thory of Plasticity -mail: [email protected] Makin Mühndisliği Bölümü Gbz Yüksk Tknoloji Enstitüsü 6.1. Uniaxial Strain Figur 6.1 Dfinition of th uniaxial strain (a) Tnsil and (b) Comprssiv.
Quality and Pricing for Outsourcing Service: Optimal Contract Design
Qulity nd Pricing for Outsourcing Srvic: Optiml Contrct Dsign Smr K. Mukhopdhyy Univrsity of Wisconsin-Milwuk Co-uthor: Xiowi Zhu, Wst Chstr Univrsity of PA Third nnul confrnc, POMS Collg of Srvic Oprtions
Traffic Flow Analysis (2)
Traffic Flow Analysis () Statistical Proprtis. Flow rat distributions. Hadway distributions. Spd distributions by Dr. Gang-Ln Chang, Profssor Dirctor of Traffic safty and Oprations Lab. Univrsity of Maryland,
Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6
Rin Stion 9.6 Minimum Spnnin Trs Outlin Minimum Spnnin Trs Prim s Alorithm Kruskl s Alorithm Extr:Distriut Shortst-Pth Alorithms A Fil Shrin Prolm Sy unh o usrs wnt to istriut il monst thmslvs. Btwn h
11 + Non-verbal Reasoning
Prti Tst + Non-vrl Rsoning R th instrutions rfully. Do not gin th tst or opn th ooklt until tol to o so. Work s quikly n s rfully s you n. Cirl th orrt lttr from th options givn to nswr h qustion. You
QUANTITATIVE METHODS CLASSES WEEK SEVEN
QUANTITATIVE METHODS CLASSES WEEK SEVEN Th rgrssion modls studid in prvious classs assum that th rspons variabl is quantitativ. Oftn, howvr, w wish to study social procsss that lad to two diffrnt outcoms.
New Basis Functions. Section 8. Complex Fourier Series
Nw Basis Functions Sction 8 Complx Fourir Sris Th complx Fourir sris is prsntd first with priod 2, thn with gnral priod. Th connction with th ral-valud Fourir sris is xplaind and formula ar givn for convrting
AP Calculus AB 2008 Scoring Guidelines
AP Calculus AB 8 Scoring Guidlins Th Collg Board: Conncting Studnts to Collg Succss Th Collg Board is a not-for-profit mmbrship association whos mission is to connct studnts to collg succss and opportunity.
Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture
Distriut Systms Prinipls n Prigms Mrtn vn Stn VU mstrm, Dpt. Computr Sin [email protected] Chptr 11: Vrsion: Dmr 10, 2012 1 / 14 Gnrl gol Try to mk fil systm trnsprntly vill to rmot lints. 1. Fil mov to lint
Question 3: How do you find the relative extrema of a function?
ustion 3: How do you find th rlativ trma of a function? Th stratgy for tracking th sign of th drivativ is usful for mor than dtrmining whr a function is incrasing or dcrasing. It is also usful for locating
The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.
Rsourc Allocation Abstract This is a small toy xampl which is wll-suitd as a first introduction to Cnts. Th CN modl is dscribd in grat dtail, xplaining th basic concpts of C-nts. Hnc, it can b rad by popl
Density Curve. Continuous Distributions. Continuous Distribution. Density Curve. Meaning of Area Under Curve. Meaning of Area Under Curve
Continuous Distributions Rndom Vribles of the Continuous Tye Density Curve Perent Density funtion f () f() A smooth urve tht fit the distribution 6 7 9 Test sores Density Curve Perent Probbility Density
Network Analyzer Error Models and Calibration Methods
Ntwork Anlyzr Error Modls nd Clirtion Mthods y Doug Rytting Pg This ppr is n ovrviw of rror modls nd clirtion mthods for vctor ntwork nlyzrs. Prsnttion Outlin Ntwork Anlyzr Block Digrm nd Error Modl ystm
AREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000
hsn uknt Highr Mathmatics UNIT Mathmatics HSN000 This documnt was producd spcially for th HSNuknt wbsit, and w rquir that any copis or drivativ works attribut th work to Highr Still Nots For mor dtails
Lecture 3: Diffusion: Fick s first law
Lctur 3: Diffusion: Fick s first law Today s topics What is diffusion? What drivs diffusion to occur? Undrstand why diffusion can surprisingly occur against th concntration gradint? Larn how to dduc th
Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)
con 37: Answr Ky for Problm St (Chaptr 2-3) Instructor: Kanda Naknoi Sptmbr 4, 2005. (2 points) Is it possibl for a country to hav a currnt account dficit at th sam tim and has a surplus in its balanc
Revised Conditions (January 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS
Rvis Conitions (Jnury 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS Contnts 1 Who r th prtis?... 2 Wht o wors n phrss in ol typ mn?... 3 Whn i my pln strt?... 4 How o I invst in my pln?... 5 Who owns
CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0
Ctlog E 074486 08/00 Eition ComptPCI Conntors. to PIGMG.0 Rv. 3.0 Gnrl Lt in 999 PCI Inustril Computr Mnufturrs Group (PICMG) introu th nw rvision 3.0 of th ComptPCI Cor Spifition. Vrsion 3.0 of this spifition
Chapter 3 Chemical Equations and Stoichiometry
Chptr Chmicl Equtions nd Stoichiomtry Homwork (This is VERY importnt chptr) Chptr 27, 29, 1, 9, 5, 7, 9, 55, 57, 65, 71, 75, 77, 81, 87, 91, 95, 99, 101, 111, 117, 121 1 2 Introduction Up until now w hv
December Homework- Week 1
Dcmbr Hmwrk- Wk 1 Mth Cmmn Cr Stndrds: K.CC.A.1 - Cunt t 100 by ns nd by tns. K.CC.A.2 - Cunt frwrd bginning frm givn numbr within th knwn squnc (instd f hving t bgin t 1). K.CC.B.4.A - Whn cunting bjcts,
CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions
CPS 22 Thory of Computation REGULAR LANGUAGES Rgular xprssions Lik mathmatical xprssion (5+3) * 4. Rgular xprssion ar built using rgular oprations. (By th way, rgular xprssions show up in various languags:
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).
PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a
Uses for Binary Trees -- Binary Search Trees
CS122 Algorithms n Dt Struturs MW 11:00 m 12:15 pm, MSEC 101 Instrutor: Xio Qin Ltur 10: Binry Srh Trs n Binry Exprssion Trs Uss or Binry Trs Binry Srh Trs n Us or storing n rtriving inormtion n Insrt,
Projections - 3D Viewing. Overview Lecture 4. Projection - 3D viewing. Projections. Projections Parallel Perspective
Ovrviw Lctur 4 Projctions - 3D Viwing Projctions Paralll Prspctiv 3D Viw Volum 3D Viwing Transformation Camra Modl - Assignmnt 2 OFF fils 3D mor compl than 2D On mor dimnsion Displa dvic still 2D Analog
Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at www.irs.gov/form990.
SCHEDULE H Hospitls OMB No. 1545-0047 (Form 990) Complt if th orgniztion nswr "Ys" to Form 990, Prt IV, qustion 20. Atth to Form 990. Opn to Puli Dprtmnt of th Trsury Intrnl Rvnu Srvi Informtion out Shul
WAVEGUIDES (& CAVITY RESONATORS)
CAPTR 3 WAVGUIDS & CAVIT RSONATORS AND DILCTRIC WAVGUIDS OPTICAL FIBRS 導 波 管 & 共 振 腔 與 介 質 導 波 管 光 纖 W t rqu is t irowv rg >4 G? t losss o wv i two-odutor trsissio li du to iprt odutor d loss diltri o
MORTALITY SWAPS AND TAX ARBITRAGE IN THE CANADIAN INSURANCE AND ANNUITY MARKETS
Th Journal of Risk and Insuran, 2001, Vol. 68, No. 2, MORTALITY SWAPS AND TAX ARBITRAGE IN THE CANADIAN INSURANCE AND ANNUITY MARKETS Narat Charupat Mosh Ary Milvsky ABSTRACT Th authors analyz
Parallel and Distributed Programming. Performance Metrics
Paralll and Distributd Programming Prformanc! wo main goals to b achivd with th dsign of aralll alications ar:! Prformanc: th caacity to rduc th tim to solv th roblm whn th comuting rsourcs incras;! Scalability:
CCD CHARGE TRANSFER EFFICIENCY (CTE) DERIVED FROM SIGNAL VARIANCE IN FLAT FIELD IMAGES The CVF method
CCD CHARGE TRANSFER EFFICIENCY (CTE) DERIVED FROM SIGNAL VARIANCE IN FLAT FIELD IMAGES Th CVF mthod Fbrc Chrstn 1, Konrd Kujkn 1,, Dtrch Bd 3, Cyrl Cvdor 4, Sbstn Drs 3, Olf Iwrt 3. 1 Kptyn Astronomcl
A Note on Approximating. the Normal Distribution Function
Applid Mathmatical Scincs, Vol, 00, no 9, 45-49 A Not on Approimating th Normal Distribution Function K M Aludaat and M T Alodat Dpartmnt of Statistics Yarmouk Univrsity, Jordan Aludaatkm@hotmailcom and
Whey protein concentrate gels with different sucrose content: instrumental texture measurements and sensory perception
Ymul, Digo K. ; Glmrini, Mr V. ; Lupno, Cili E. ; Zmor, Mrí C. Why protin onntrt gls with diffrnt suros ontnt: instrumntl txtur msurmnts nd snsory prption L vrsión dfinitiv d st rtíulo stá publid n Intrntionl
Lecture 20: Emitter Follower and Differential Amplifiers
Whits, EE 3 Lctur 0 Pag of 8 Lctur 0: Emittr Followr and Diffrntial Amplifirs Th nxt two amplifir circuits w will discuss ar ry important to lctrical nginring in gnral, and to th NorCal 40A spcifically.
Magic Message Maker Amaze your customers with this Gift of Caring communication piece
Magic Mssag Makr maz your customrs with this Gift of aring communication pic Girls larn th powr and impact of crativ markting with this attntion grabbing communication pic that will hlp thm o a World of
Future Trends in Airline Pricing, Yield. March 13, 2013
Future Trends in Airline Pricing, Yield Management, &AncillaryFees March 13, 2013 THE OPPORTUNITY IS NOW FOR CORPORATE TRAVEL MANAGEMENT BUT FIRST: YOU HAVE TO KNOCK DOWN BARRIERS! but it won t hurt much!
Automatic Modeling of Musical Style
Automati Modling of Musial Styl O. Lartillot 1, S. Dubnov 2, G. Assayag 1, G. Bjrano 3 1 Iram (Institut d Rhrh t Coordination Aoustiqu/Musiqu), Paris, Fran 2 Bn Gurion Univrsity, Isral 3 Institut of Computr
Ratio and Proportion
Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty
CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.
Elmntary Rndring Elmntary rastr algorithms for fast rndring Gomtric Primitivs Lin procssing Polygon procssing Managing OpnGL Stat OpnGL uffrs OpnGL Gomtric Primitivs ll gomtric primitivs ar spcifid by
tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu -
1 B Ihsu dulcs cuncts [Supr 1] [Supr 2] Tnr B B B B - B - B - Ih - Ih - Ih - su su su cs cs cs cunc - cunc - cunc - Amns, Bblthèqu Cntl L Agn, ms 162 D, ff 2v-10 ts, ts, ts, E-tr - E-tr - E-tr - n p n
B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.
Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation
by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia
Studnt Nots Cost Volum Profit Analysis by John Donald, Lcturr, School of Accounting, Economics and Financ, Dakin Univrsity, Australia As mntiond in th last st of Studnt Nots, th ability to catgoris costs
AP Calculus Multiple-Choice Question Collection 1969 1998. connect to college success www.collegeboard.com
AP Calculus Multipl-Choic Qustion Collction 969 998 connct to collg succss www.collgboard.com Th Collg Board: Conncting Studnts to Collg Succss Th Collg Board is a not-for-profit mmbrship association whos
THE EFFECT OF GROUND SETTLEMENTS ON THE AXIAL RESPONSE OF PILES: SOME CLOSED FORM SOLUTIONS CUED/D-SOILS/TR 341 (Aug 2005) By A. Klar and K.
THE EFFECT OF GROUND SETTEMENTS ON THE AXIA RESPONSE OF PIES: SOME COSED FORM SOUTIONS CUED/D-SOIS/TR 4 Aug 5 By A. Klr d K. Sog Klr d Sog "Th Effct of Groud Displcmt o Axil Rspos of Pils: Som Closd Form
Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA
Features: Glass passivated junction Low incremental surge resistance, excellent clamping capability 600W peak pulse power capability with a 10/1,000μs waveform, repetition rate (duty cycle): 0.01% Very
Adverse Selection and Moral Hazard in a Model With 2 States of the World
Advrs Slction and Moral Hazard in a Modl With 2 Stats of th World A modl of a risky situation with two discrt stats of th world has th advantag that it can b natly rprsntd using indiffrnc curv diagrams,
Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks
Algorithmi Aspts o Ass Ntworks Dsign in BG/G Cllulr Ntworks Dvi Amzllg, Josph (Si) Nor,DnnyRz Computr Sin Dprtmnt Thnion, Hi 000, Isrl {mzllg,nny}@s.thnion..il Mirosot Rsrh On Mirosot Wy, Rmon, WA 980
Menu Structure. Section 5. Introduction. General Functions Menu
Menu Structure Section 5 Introduction General Functions Menu Most workstation functions are accessed by menu selections. This section explains the menu structure and provides a tree structured view of
Organic Pigments. Azo Pigments
Organic Pigments Azo Pigments Holtint Fast Yellow G Yellow 1 Holtint Fast Yellow 10 G Yellow 3 Holtint Fast Yellow 5G Yellow 5 Holtint Diaryl Yellow DHG Yellow 12 Holtint Diaryl Yellow GR Yellow 13 Holtint
T c k D E GR EN S. R a p p o r t M o d u le Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r BJB 06 013-0009 0 M /V. ja a r.
D a t a b a n k m r in g R a p p o r t M Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r I d e n t if ic a t ie v a n d e m S e c t o r BJB V o lg n r. 06 013-0009 0 V o o r z ie n in g N ie u w la
Change Your History How Can Soccer Knowledge Improve Your Business Processes?
Symposium Inuurl Lctur o Hjo Rijrs, VU, 26-6-2015 Chn Your History How Cn Soccr Knowl Improv Your Businss Procsss? Wil vn r Alst TU/ n DSC/ 1970 born Oostrbk 1988-1992 CS TU/ 1992-1994 TS TU/ 1994-1996
(Analytic Formula for the European Normal Black Scholes Formula)
(Analytic Formula for th Europan Normal Black Schols Formula) by Kazuhiro Iwasawa Dcmbr 2, 2001 In this short summary papr, a brif summary of Black Schols typ formula for Normal modl will b givn. Usually
Constraint-Based Analysis of Gene Deletion in a Metabolic Network
Constraint-Basd Analysis of Gn Dltion in a Mtabolic Ntwork Abdlhalim Larhlimi and Alxandr Bockmayr DFG-Rsarch Cntr Mathon, FB Mathmatik und Informatik, Fri Univrsität Brlin, Arnimall, 3, 14195 Brlin, Grmany
Foreign Exchange Markets and Exchange Rates
Microconomics Topic 1: Explain why xchang rats indicat th pric of intrnational currncis and how xchang rats ar dtrmind by supply and dmand for currncis in intrnational markts. Rfrnc: Grgory Mankiw s Principls
The Swedish Radiation Protection Institute s Regulations on X- ray Diagnostics;
SSI FS 2000:2 Th Swish Rition Prottion Institut s Rgultions on X- ry Dignostis; issu on April 28, 2000. On th sis of 7 of th Rition Prottion Orinn (1988:293) n ftr onsulttion with th Ntionl Bor of Hlth
Upper Bounding the Price of Anarchy in Atomic Splittable Selfish Routing
Uppr Bounding th Pric of Anarchy in Atomic Splittabl Slfish Routing Kamyar Khodamoradi 1, Mhrdad Mahdavi, and Mohammad Ghodsi 3 1 Sharif Univrsity of Tchnology, Thran, Iran, [email protected] Sharif
Incentive Contracts in Delegated Portfolio Management
Incntiv Contrcts in Dlgtd Portfolio Mngnt WEI LI * nd ASHISH TIWARI * * My 8 W r grtful to to nonyous rfrs nd Rn Uppl (th ditor) for thir hlpful conts. * Dprtnt of Finnc, Ourso Collg of Businss Adinistrtion,
Frederikshavn kommunale skolevæsen
Frederikshavn kommunale skolevæsen Skoleåret 1969-70 V e d K: Hillers-Andersen k. s k o l e d i r e k t ø r o g Aage Christensen f u l d m æ g t i g ( Fr e d e rik sh av n E k sp r e s- T ry k k e rie
3 3RG78 45 program overview
Overview RG78 45 light curtains and arrays with integrated processing unit for type 4 in accordance with IEC/EN 61496 With "Standard" function package Resolutions: 14, 0, 50, and 90 Protective zone height:
C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t
5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:
.4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This
Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur
Module 5 Three-hse A iruits Version EE IIT, Khrgur esson 8 Three-hse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (-7), the study of iruits, onsisting of the liner elements resistne,
Factorials! Stirling s formula
Author s not: This articl may us idas you havn t larnd yt, and might sm ovrly complicatd. It is not. Undrstanding Stirling s formula is not for th faint of hart, and rquirs concntrating on a sustaind mathmatical
Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means
Qian t al. Journal of Inqualitis and Applications (015) 015:1 DOI 10.1186/s1660-015-0741-1 R E S E A R C H Opn Accss Sharp bounds for Sándor man in trms of arithmtic, gomtric and harmonic mans Wi-Mao Qian
Long run: Law of one price Purchasing Power Parity. Short run: Market for foreign exchange Factors affecting the market for foreign exchange
Lctur 6: Th Forign xchang Markt xchang Rats in th long run CON 34 Mony and Banking Profssor Yamin Ahmad xchang Rats in th Short Run Intrst Parity Big Concpts Long run: Law of on pric Purchasing Powr Parity
Inorganic Chemistry review sheet Exam #1
Inorganic hemistry review sheet Exam #1 h. 1 General hemistry review reaction types: A/B, redox., single displacement, elimination, addition, rearrangement and solvolysis types of substances: elements,
Graphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only
Prediction of Speed and Behaviour of a Ship in a Seaway
ISP, Volum 3, No. 65, 1976 Rprintd: 13-09-001 Wbsit: www.shipmotions.nl Rpport 047-P, 1976, Dlft Univrsity of Tchnology, Ship Hydromchnics Lbortory, Mklwg, 68 CD Dlft, Th Nthrlnds. Prdiction of Spd nd
Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis
Flow-Insnsitiv Pointr Anlysis Lst tim Intrprocurl nlysis Dimnsions of prcision (flow- n contxt-snsitivity) Flow-Snsitiv Pointr Anlysis Toy Flow-Insnsitiv Pointr Anlysis CIS 570 Lctur 12 Flow-Insnsitiv
Lecture 27. Rectangular Metal Waveguides
Lctu 7 Rctgul Mtl Wvguids I this lctu u will l: Rctgul tl wvguids T d TM guidd ds i ctgul tl wvguids C 303 Fll 006 Fh R Cll Uivsit Plll Plt Mtl Wvguids d 1 T Mds: Dispsi lti: ( ) si { 1,, d d d 1 TM Mds:
Rural and Remote Broadband Access: Issues and Solutions in Australia
Rural and Rmot Broadband Accss: Issus and Solutions in Australia Dr Tony Warrn Group Managr Rgulatory Stratgy Tlstra Corp Pag 1 Tlstra in confidnc Ovrviw Australia s gographical siz and population dnsity
Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
SPECIAL VOWEL SOUNDS
SPECIAL VOWEL SOUNDS Plas consult th appropriat supplmnt for th corrsponding computr softwar lsson. Rfr to th 42 Sounds Postr for ach of th Spcial Vowl Sounds. TEACHER INFORMATION: Spcial Vowl Sounds (SVS)
Operational Procedure: ACNC Data Breach Response Plan
OP 2015/03 Oprtionl Prour: ACNC Dt Brh Rspons Pln This Oprtionl Prour is issu unr th uthority of th Assistnt Commissionr Gnrl Counsl n shoul r togthr with th ACNC Poliy Frmwork, whih sts out th sop, ontxt
Lecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
HOMEWORK FOR UNIT 5-1: FORCE AND MOTION
Nam Dat Partnrs HOMEWORK FOR UNIT 51: FORCE AND MOTION 1. You ar givn tn idntial springs. Dsrib how you would dvlop a sal of for (i., a mans of produing rpatabl fors of a varity of sizs) using ths springs.
[ ] These are the motor parameters that are needed: Motor voltage constant. J total (lb-in-sec^2)
MEASURING MOOR PARAMEERS Fil: Motor paramtrs hs ar th motor paramtrs that ar ndd: Motor voltag constant (volts-sc/rad Motor torqu constant (lb-in/amp Motor rsistanc R a (ohms Motor inductanc L a (Hnris
AAPT UNITED STATES PHYSICS TEAM AIP 2010
2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD
Instruction: Solving Exponential Equations without Logarithms. This lecture uses a four-step process to solve exponential equations:
49 Instuction: Solving Eponntil Equtions without Logithms This lctu uss fou-stp pocss to solv ponntil qutions: Isolt th bs. Wit both sids of th qution s ponntil pssions with lik bss. St th ponnts qul to
Oracle PL/SQL Programming Advanced
Orl PL/SQL Progrmming Avn In orr to lrn whih qustions hv n nswr orrtly: 1. Print ths pgs. 2. Answr th qustions. 3. Sn this ssssmnt with th nswrs vi:. FAX to (212) 967-3498. Or. Mil th nswrs to th following
Vibrational Spectroscopy
Vibrational Spctroscopy armonic scillator Potntial Enrgy Slction Ruls V( ) = k = R R whr R quilibrium bond lngth Th dipol momnt of a molcul can b pandd as a function of = R R. µ ( ) =µ ( ) + + + + 6 3
The recoil nature of electrostatic and gravitational forces
BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 55, No. 4, 7 Th roil natur of ltrostati and gravitational fors S.L. HAHN Polish Aadmy of Sins, 1 Dfilad Sq., -91 Warszawa, Poland Abstrat.
Use a high-level conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects
Chaptr 3: Entity Rlationship Modl Databas Dsign Procss Us a high-lvl concptual data modl (ER Modl). Idntify objcts of intrst (ntitis) and rlationships btwn ths objcts Idntify constraints (conditions) End
Lectures 8 and 9 1 Rectangular waveguides
1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves
Transistor is a semiconductor device with fast respond and accuracy. There are two types
Tranitor Amplifir Prpard y: Poa Xuan Yap Thory: Tranitor i a miondutor dvi with fat rpond and auray. Thr ar two typ of tranitor, a Bipolar Juntion Tranitor and a Fild Efft Tranitor. Hr, w will looking
Or more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
SE3BB4: Software Design III Concurrent System Design. Sample Solutions to Assignment 1
SE3BB4: Softwre Design III Conurrent System Design Winter 2011 Smple Solutions to Assignment 1 Eh question is worth 10pts. Totl of this ssignment is 70pts. Eh ssignment is worth 9%. If you think your solution
SPREAD OPTION VALUATION AND THE FAST FOURIER TRANSFORM
RESEARCH PAPERS IN MANAGEMENT STUDIES SPREAD OPTION VALUATION AND THE FAST FOURIER TRANSFORM M.A.H. Dmpstr & S.S.G. Hong WP 26/2000 Th Judg Institut of Managmnt Trumpington Strt Cambridg CB2 1AG Ths paprs
Predicting Current User Intent with Contextual Markov Models
Priting Currnt Usr Intnt with Contxtul Mrkov Mols Juli Kislv, Hong Thnh Lm, Mykol Phnizkiy Dprtmnt of Computr Sin Einhovn Univrsity of Thnology P.O. Box 513, NL-5600MB, th Nthrlns {t.l.hong, j.kislv, m.phnizkiy}@tu.nl
Section 7.4: Exponential Growth and Decay
1 Sction 7.4: Exponntial Growth and Dcay Practic HW from Stwart Txtbook (not to hand in) p. 532 # 1-17 odd In th nxt two ction, w xamin how population growth can b modld uing diffrntial quation. W tart
