Cryptography and Network Security
|
|
|
- Jacob Harrington
- 10 years ago
- Views:
Transcription
1 Cryptography and Network Security Fifth Edition by William Stallings Chapter 9 Public Key Cryptography and RSA
2 Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications are compromised also is symmetric, parties are equal hence does not protect sender from receiver forging a message & claiming is sent by sender
3 Public-Key Cryptography probably most significant advance in the 3000 year history of cryptography uses two keys a public & a private key asymmetric since parties are not equal uses clever application of number theoretic concepts to function complements rather than replaces private key crypto
4 Why Public-Key Cryptography? developed to address two key issues: key distribution how to have secure communications in general without having to trust a KDC with your key digital signatures how to verify a message comes intact from the claimed sender public invention due to Whitfield Diffie & Martin Hellman at Stanford Uni in 1976 known earlier in classified community
5 Public-Key Cryptography public-key/two-key/asymmetric cryptography involves the use of two keys: a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures a related private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures infeasible to determine private key from public is asymmetric because those who encrypt messages or verify signatures cannot decrypt messages or create signatures
6 Public-Key Cryptography
7 Symmetric vs Public-Key
8 Public-Key Cryptosystems
9 Public-Key Applications can classify uses into 3 categories: encryption/decryption (provide secrecy) digital signatures (provide authentication) key exchange (of session keys) some algorithms are suitable for all uses, others are specific to one
10 Public-Key Requirements Public-Key algorithms rely on two keys where: it is computationally infeasible to find decryption key knowing only algorithm & encryption key it is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known either of the two related keys can be used for encryption, with the other used for decryption (for some algorithms) these are formidable requirements which only a few algorithms have satisfied
11 Public-Key Requirements need a trapdoor one-way function one-way function has Y = f(x) easy X = f 1 (Y) infeasible a trap-door one-way function has Y = f k (X) easy, if k and X are known X = f k 1 (Y) easy, if k and Y are known X = f k 1 (Y) infeasible, if Y known but k not known a practical public-key scheme depends on a suitable trap-door one-way function
12 Security of Public Key Schemes like private key schemes brute force exhaustive search attack is always theoretically possible but keys used are too large (>512bits) security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems more generally the hard problem is known, but is made hard enough to be impractical to break requires the use of very large numbers hence is slow compared to private key schemes
13 RSA by Rivest, Shamir & Adleman of MIT in 1977 best known & widely used public-key scheme based on exponentiation in a finite (Galois) field over integers modulo a prime nb. exponentiation takes O((log n) 3 ) operations (easy) uses large integers (eg bits) security due to cost of factoring large numbers nb. factorization takes O(e log n log log n ) operations (hard)
14 RSA En/decryption to encrypt a message M the sender: obtains public key of recipient PU={e,n} computes: C = M e mod n, where 0 M<n to decrypt the ciphertext C the owner: uses their private key PR={d,n} computes: M = C d mod n note that the message M must be smaller than the modulus n (block if needed)
15 RSA Key Setup each user generates a public/private key pair by: selecting two large primes at random: p, q computing their system modulus n=p.q note ø(n)=(p-1)(q-1) selecting at random the encryption key e where 1<e<ø(n), gcd(e,ø(n))=1 solve following equation to find decryption key d e.d=1 mod ø(n) and 0 d n publish their public encryption key: PU={e,n} keep secret private decryption key: PR={d,n}
16 Why RSA Works because of Euler's Theorem: a ø(n) mod n = 1 where gcd(a,n)=1 in RSA have: n=p.q ø(n)=(p-1)(q-1) carefully chose e & d to be inverses mod ø(n) hence e.d=1+k.ø(n) for some k hence : C d = M e.d = M 1+k.ø(n) = M 1.(M ø(n) ) k = M 1.(1) k = M 1 = M mod n
17 RSA Example - Key Setup 1. Select primes: p=17 & q=11 2. Calculate n = pq =17 x 11= Calculate ø(n)=(p 1)(q-1)=16x10= Select e: gcd(e,160)=1; choose e=7 5. Determine d: de=1 mod 160 and d < 160 Value is d=23 since 23x7=161= 10x Publish public key PU={7,187} 7. Keep secret private key PR={23,187}
18 RSA Example - En/Decryption sample RSA encryption/decryption is: given message M = 88 (nb. 88<187) encryption: C = 88 7 mod 187 = 11 decryption: M = mod 187 = 88
19 Exponentiation can use the Square and Multiply Algorithm a fast, efficient algorithm for exponentiation concept is based on repeatedly squaring base and multiplying in the ones that are needed to compute the result look at binary representation of exponent only takes O(log 2 n) multiples for number n eg. 7 5 = = 3.7 = 10 mod 11 eg = = 5.3 = 4 mod 11
20 Exponentiation c = 0; f = 1 for i = k downto 0 do c = 2 x c f = (f x f) mod n if b i == 1 then c = c + 1 f = (f x a) mod n return f
21 Efficient Encryption encryption uses exponentiation to power e hence if e small, this will be faster often choose e=65537 (2 16-1) also see choices of e=3 or e=17 but if e too small (eg e=3) can attack using Chinese remainder theorem & 3 messages with different modulii if e fixed must ensure gcd(e,ø(n))=1 ie reject any p or q not relatively prime to e
22 Efficient Decryption decryption uses exponentiation to power d this is likely large, insecure if not can use the Chinese Remainder Theorem (CRT) to compute mod p & q separately. then combine to get desired answer approx 4 times faster than doing directly only owner of private key who knows values of p & q can use this technique
23 RSA Key Generation users of RSA must: determine two primes at random - p, q select either e or d and compute the other primes p,q must not be easily derived from modulus n=p.q means must be sufficiently large typically guess and use probabilistic test exponents e, d are inverses, so use Inverse algorithm to compute the other
24 RSA Security possible approaches to attacking RSA are: brute force key search - infeasible given size of numbers mathematical attacks - based on difficulty of computing ø(n), by factoring modulus n timing attacks - on running of decryption chosen ciphertext attacks - given properties of RSA
25 Factoring Problem mathematical approach takes 3 forms: factor n=p.q, hence compute ø(n) and then d determine ø(n) directly and compute d find d directly currently believe all equivalent to factoring have seen slow improvements over the years as of May-05 best is 200 decimal digits (663) bit with LS biggest improvement comes from improved algorithm cf QS to GHFS to LS currently assume bit RSA is secure ensure p, q of similar size and matching other constraints
26 Progress in Factoring
27 Progress in Factoring
28 Summary have considered: principles of public-key cryptography RSA algorithm, implementation, security
29 Timing Attacks developed by Paul Kocher in mid-1990 s exploit timing variations in operations eg. multiplying by small vs large number or IF's varying which instructions executed infer operand size based on time taken RSA exploits time taken in exponentiation countermeasures use constant exponentiation time add random delays blind values used in calculations
30 Chosen Ciphertext Attacks RSA is vulnerable to a Chosen Ciphertext Attack (CCA) attackers chooses ciphertexts & gets decrypted plaintext back choose ciphertext to exploit properties of RSA to provide info to help cryptanalysis can counter with random pad of plaintext or use Optimal Asymmetric Encryption Padding (OASP)
31 Cryptography and Network Security Fifth Edition by William Stallings Chapter 10 Public Key Cryptosystems
32 Diffie-Hellman Key Exchange first public-key type scheme proposed by Diffie & Hellman in 1976 along with the exposition of public key concepts note: now know that Williamson (UK CESG) secretly proposed the concept in 1970 is a practical method for public exchange of a secret key used in a number of commercial products
33 Diffie-Hellman Key Exchange a public-key distribution scheme cannot be used to exchange an arbitrary message rather it can establish a common key known only to the two participants value of key depends on the participants (and their private and public key information) based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy security relies on the difficulty of computing discrete logarithms (similar to factoring) hard
34 Diffie-Hellman Setup all users agree on global parameters: large prime integer or polynomial q a being a primitive root mod q each user (eg. A) generates their key chooses a secret key (number): x A < q compute their public key: y A = a xa mod q each user makes public that key y A
35 Diffie-Hellman Key Exchange shared session key for users A & B is K AB : K AB = a x A. xb mod q = y A x B mod q (which B can compute) = y B x A mod q (which A can compute) K AB is used as session key in private-key encryption scheme between Alice and Bob if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys attacker needs an x, must solve discrete log
36 Diffie-Hellman Example users Alice & Bob who wish to swap keys: agree on prime q=353 and a=3 select random secret keys: A chooses x A =97, B chooses x B =233 compute respective public keys: y A =3 97 mod 353 = 40 (Alice) y B =3 233 mod 353 = 248 (Bob) compute shared session key as: K AB = y B x A mod 353 = = 160 (Alice) K AB = y A x B mod 353 = = 160 (Bob)
37 Key Exchange Protocols users could create random private/public D-H keys each time they communicate users could create a known private/public D-H key and publish in a directory, then consulted and used to securely communicate with them both of these are vulnerable to a meet-in-the-middle Attack authentication of the keys is needed
38 Man-in-the-Middle Attack 1. Darth prepares by creating two private / public keys 2. Alice transmits her public key to Bob 3. Darth intercepts this and transmits his first public key to Bob. Darth also calculates a shared key with Alice 4. Bob receives the public key and calculates the shared key (with Darth instead of Alice) 5. Bob transmits his public key to Alice 6. Darth intercepts this and transmits his second public key to Alice. Darth calculates a shared key with Bob 7. Alice receives the key and calculates the shared key (with Darth instead of Bob) Darth can then intercept, decrypt, re-encrypt, forward all messages between Alice & Bob
39 Elliptic Curve Cryptography majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials imposes a significant load in storing and processing keys and messages an alternative is to use elliptic curves offers same security with smaller bit sizes newer, but not as well analysed
40 Real Elliptic Curves an elliptic curve is defined by an equation in two variables x & y, with coefficients consider a cubic elliptic curve of form y 2 = x 3 + ax + b where x,y,a,b are all real numbers also define zero point O consider set of points E(a,b) that satisfy have addition operation for elliptic curve geometrically sum of P+Q is reflection of the intersection R
41 Real Elliptic Curve Example
42 Finite Elliptic Curves Elliptic curve cryptography uses curves whose variables & coefficients are finite have two families commonly used: prime curves E p (a,b) defined over Z p use integers modulo a prime best in software binary curves E 2 m(a,b) defined over GF(2 n ) use polynomials with binary coefficients best in hardware
43 Elliptic Curve Cryptography ECC addition is analog of modulo multiply ECC repeated addition is analog of modulo exponentiation need hard problem equiv to discrete log Q=kP, where Q,P belong to a prime curve is easy to compute Q given k,p but hard to find k given Q,P known as the elliptic curve logarithm problem Certicom example: E 23 (9,17)
44 ECC Diffie-Hellman can do key exchange analogous to D-H users select a suitable curve E q (a,b) select base point G=(x 1,y 1 ) with large order n s.t. ng=o A & B select private keys n A <n, n B <n compute public keys: P A =n A G, P B =n B G compute shared key: K=n A P B, K=n B P A same since K=n A n B G attacker would need to find k, hard
45 ECC Encryption/Decryption several alternatives, will consider simplest must first encode any message M as a point on the elliptic curve P m select suitable curve & point G as in D-H each user chooses private key n A <n and computes public key P A =n A G to encrypt P m : C m ={kg, P m +kp b }, k random decrypt C m compute: P m +kp b n B (kg) = P m +k(n B G) n B (kg) = P m
46 ECC Security relies on elliptic curve logarithm problem fastest method is Pollard rho method compared to factoring, can use much smaller key sizes than with RSA etc for equivalent key lengths computations are roughly equivalent hence for similar security ECC offers significant computational advantages
47 Comparable Key Sizes for Equivalent Security Symmetric scheme (key size in bits) ECC-based scheme (size of n in bits) RSA/DSA (modulus size in bits)
48 Pseudorandom Number Generation (PRNG) based on Asymmetric Ciphers asymmetric encryption algorithm produce apparently random output hence can be used to build a pseudorandom number generator (PRNG) much slower than symmetric algorithms hence only use to generate a short pseudorandom bit sequence (eg. key)
49 PRNG based on RSA have Micali-Schnorr PRNG using RSA in ANSI X9.82 and ISO 18031
50 PRNG based on ECC dual elliptic curve PRNG NIST SP 800-9, ANSI X9.82 and ISO some controversy on security /inefficiency algorithm for i = 1 to k do set s i = x(s i-1 P ) set r i = lsb 240 (x(s i Q)) end for return r 1,..., r k only use if just have ECC
51 Summary have considered: Diffie-Hellman key exchange ElGamal cryptography Elliptic Curve cryptography Pseudorandom Number Generation (PRNG) based on Asymmetric Ciphers (RSA & ECC)
Cryptography and Network Security Chapter 9
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,
Notes on Network Security Prof. Hemant K. Soni
Chapter 9 Public Key Cryptography and RSA Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications
Cryptography and Network Security Chapter 10
Cryptography and Network Security Chapter 10 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 10 Other Public Key Cryptosystems Amongst the tribes of Central
Public Key (asymmetric) Cryptography
Public-Key Cryptography UNIVERSITA DEGLI STUDI DI PARMA Dipartimento di Ingegneria dell Informazione Public Key (asymmetric) Cryptography Luca Veltri (mail.to: [email protected]) Course of Network Security,
CSCE 465 Computer & Network Security
CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Public Key Cryptogrophy 1 Roadmap Introduction RSA Diffie-Hellman Key Exchange Public key and
Computer Security: Principles and Practice
Computer Security: Principles and Practice Chapter 20 Public-Key Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Public-Key Cryptography
CS549: Cryptography and Network Security
CS549: Cryptography and Network Security by Xiang-Yang Li Department of Computer Science, IIT Cryptography and Network Security 1 Notice This lecture note (Cryptography and Network Security) is prepared
The Mathematics of the RSA Public-Key Cryptosystem
The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through
Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY. Sourav Mukhopadhyay
Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Modern/Public-key cryptography started in 1976 with the publication of the following paper. W. Diffie
Elements of Applied Cryptography Public key encryption
Network Security Elements of Applied Cryptography Public key encryption Public key cryptosystem RSA and the factorization problem RSA in practice Other asymmetric ciphers Asymmetric Encryption Scheme Let
Secure Network Communication Part II II Public Key Cryptography. Public Key Cryptography
Kommunikationssysteme (KSy) - Block 8 Secure Network Communication Part II II Public Key Cryptography Dr. Andreas Steffen 2000-2001 A. Steffen, 28.03.2001, KSy_RSA.ppt 1 Secure Key Distribution Problem
Final Exam. IT 4823 Information Security Administration. Rescheduling Final Exams. Kerberos. Idea. Ticket
IT 4823 Information Security Administration Public Key Encryption Revisited April 5 Notice: This session is being recorded. Lecture slides prepared by Dr Lawrie Brown for Computer Security: Principles
Public Key Cryptography Overview
Ch.20 Public-Key Cryptography and Message Authentication I will talk about it later in this class Final: Wen (5/13) 1630-1830 HOLM 248» give you a sample exam» Mostly similar to homeworks» no electronic
SECURITY IMPROVMENTS TO THE DIFFIE-HELLMAN SCHEMES
www.arpapress.com/volumes/vol8issue1/ijrras_8_1_10.pdf SECURITY IMPROVMENTS TO THE DIFFIE-HELLMAN SCHEMES Malek Jakob Kakish Amman Arab University, Department of Computer Information Systems, P.O.Box 2234,
RSA Attacks. By Abdulaziz Alrasheed and Fatima
RSA Attacks By Abdulaziz Alrasheed and Fatima 1 Introduction Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first revealed in the August 1977 issue of Scientific American.
1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies
1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies Dave Corbett Technical Product Manager Implementing Forward Secrecy 1 Agenda Part 1: Introduction Why is Forward Secrecy important?
Cryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 7: Public-key cryptography and RSA Ion Petre Department of IT, Åbo Akademi University 1 Some unanswered questions
Network Security. Chapter 2 Basics 2.2 Public Key Cryptography. Public Key Cryptography. Public Key Cryptography
Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Encryption/Decryption using Public Key Cryptography Network Security Chapter 2 Basics 2.2 Public Key Cryptography
CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives
CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Application of hash
Overview of Public-Key Cryptography
CS 361S Overview of Public-Key Cryptography Vitaly Shmatikov slide 1 Reading Assignment Kaufman 6.1-6 slide 2 Public-Key Cryptography public key public key? private key Alice Bob Given: Everybody knows
Public Key Cryptography: RSA and Lots of Number Theory
Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver
Public Key Cryptography and RSA. Review: Number Theory Basics
Public Key Cryptography and RSA Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Review: Number Theory Basics Definition An integer n > 1 is called a prime number if its positive divisors are 1 and
CIS 5371 Cryptography. 8. Encryption --
CIS 5371 Cryptography p y 8. Encryption -- Asymmetric Techniques Textbook encryption algorithms In this chapter, security (confidentiality) is considered in the following sense: All-or-nothing secrecy.
Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms
Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport
Software Implementation of Gong-Harn Public-key Cryptosystem and Analysis
Software Implementation of Gong-Harn Public-key Cryptosystem and Analysis by Susana Sin A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master
Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures
Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike
Table of Contents. Bibliografische Informationen http://d-nb.info/996514864. digitalisiert durch
1 Introduction to Cryptography and Data Security 1 1.1 Overview of Cryptology (and This Book) 2 1.2 Symmetric Cryptography 4 1.2.1 Basics 4 1.2.2 Simple Symmetric Encryption: The Substitution Cipher...
Digital Signature. Raj Jain. Washington University in St. Louis
Digital Signature Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/
CRYPTOGRAPHY IN NETWORK SECURITY
ELE548 Research Essays CRYPTOGRAPHY IN NETWORK SECURITY AUTHOR: SHENGLI LI INSTRUCTOR: DR. JIEN-CHUNG LO Date: March 5, 1999 Computer network brings lots of great benefits and convenience to us. We can
Lukasz Pater CMMS Administrator and Developer
Lukasz Pater CMMS Administrator and Developer EDMS 1373428 Agenda Introduction Why do we need asymmetric ciphers? One-way functions RSA Cipher Message Integrity Examples Secure Socket Layer Single Sign
Symmetric Key cryptosystem
SFWR C03: Computer Networks and Computer Security Mar 8-11 200 Lecturer: Kartik Krishnan Lectures 22-2 Symmetric Key cryptosystem Symmetric encryption, also referred to as conventional encryption or single
7! Cryptographic Techniques! A Brief Introduction
7! Cryptographic Techniques! A Brief Introduction 7.1! Introduction to Cryptography! 7.2! Symmetric Encryption! 7.3! Asymmetric (Public-Key) Encryption! 7.4! Digital Signatures! 7.5! Public Key Infrastructures
Applied Cryptography Public Key Algorithms
Applied Cryptography Public Key Algorithms Sape J. Mullender Huygens Systems Research Laboratory Universiteit Twente Enschede 1 Public Key Cryptography Independently invented by Whitfield Diffie & Martin
SFWR ENG 4C03 - Computer Networks & Computer Security
KEY MANAGEMENT SFWR ENG 4C03 - Computer Networks & Computer Security Researcher: Jayesh Patel Student No. 9909040 Revised: April 4, 2005 Introduction Key management deals with the secure generation, distribution,
A SOFTWARE COMPARISON OF RSA AND ECC
International Journal Of Computer Science And Applications Vol. 2, No. 1, April / May 29 ISSN: 974-13 A SOFTWARE COMPARISON OF RSA AND ECC Vivek B. Kute Lecturer. CSE Department, SVPCET, Nagpur 9975549138
Implementation of Elliptic Curve Digital Signature Algorithm
Implementation of Elliptic Curve Digital Signature Algorithm Aqeel Khalique Kuldip Singh Sandeep Sood Department of Electronics & Computer Engineering, Indian Institute of Technology Roorkee Roorkee, India
The science of encryption: prime numbers and mod n arithmetic
The science of encryption: prime numbers and mod n arithmetic Go check your e-mail. You ll notice that the webpage address starts with https://. The s at the end stands for secure meaning that a process
Lecture 6 - Cryptography
Lecture 6 - Cryptography CSE497b - Spring 2007 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse497b-s07 Question 2 Setup: Assume you and I don t know anything about
2. Cryptography 2.4 Digital Signatures
DI-FCT-UNL Computer and Network Systems Security Segurança de Sistemas e Redes de Computadores 2010-2011 2. Cryptography 2.4 Digital Signatures 2010, Henrique J. Domingos, DI/FCT/UNL 2.4 Digital Signatures
Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23
Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest
Module: Applied Cryptography. Professor Patrick McDaniel Fall 2010. CSE543 - Introduction to Computer and Network Security
CSE543 - Introduction to Computer and Network Security Module: Applied Cryptography Professor Patrick McDaniel Fall 2010 Page 1 Key Distribution/Agreement Key Distribution is the process where we assign
Overview of Cryptographic Tools for Data Security. Murat Kantarcioglu
UT DALLAS Erik Jonsson School of Engineering & Computer Science Overview of Cryptographic Tools for Data Security Murat Kantarcioglu Pag. 1 Purdue University Cryptographic Primitives We will discuss the
Software Tool for Implementing RSA Algorithm
Software Tool for Implementing RSA Algorithm Adriana Borodzhieva, Plamen Manoilov Rousse University Angel Kanchev, Rousse, Bulgaria Abstract: RSA is one of the most-common used algorithms for public-key
Network Security. Gaurav Naik Gus Anderson. College of Engineering. Drexel University, Philadelphia, PA. Drexel University. College of Engineering
Network Security Gaurav Naik Gus Anderson, Philadelphia, PA Lectures on Network Security Feb 12 (Today!): Public Key Crypto, Hash Functions, Digital Signatures, and the Public Key Infrastructure Feb 14:
Authentication requirement Authentication function MAC Hash function Security of
UNIT 3 AUTHENTICATION Authentication requirement Authentication function MAC Hash function Security of hash function and MAC SHA HMAC CMAC Digital signature and authentication protocols DSS Slides Courtesy
Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1
Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 8-1 Public Key Cryptography symmetric key crypto v requires sender, receiver know shared secret
EXAM questions for the course TTM4135 - Information Security May 2013. Part 1
EXAM questions for the course TTM4135 - Information Security May 2013 Part 1 This part consists of 5 questions all from one common topic. The number of maximal points for every correctly answered question
Public Key Cryptography. c Eli Biham - March 30, 2011 258 Public Key Cryptography
Public Key Cryptography c Eli Biham - March 30, 2011 258 Public Key Cryptography Key Exchange All the ciphers mentioned previously require keys known a-priori to all the users, before they can encrypt
CUNSHENG DING HKUST, Hong Kong. Computer Security. Computer Security. Cunsheng DING, HKUST COMP4631
Cunsheng DING, HKUST Lecture 08: Key Management for One-key Ciphers Topics of this Lecture 1. The generation and distribution of secret keys. 2. A key distribution protocol with a key distribution center.
Discrete Mathematics, Chapter 4: Number Theory and Cryptography
Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility
A Factoring and Discrete Logarithm based Cryptosystem
Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 11, 511-517 HIKARI Ltd, www.m-hikari.com A Factoring and Discrete Logarithm based Cryptosystem Abdoul Aziz Ciss and Ahmed Youssef Ecole doctorale de Mathematiques
Mathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information
The : Keeping Eve The Eavesdropper Away From Your Credit Card Information Department of Mathematics North Dakota State University 16 September 2010 Science Cafe Introduction Disclaimer: is not an internet
The application of prime numbers to RSA encryption
The application of prime numbers to RSA encryption Prime number definition: Let us begin with the definition of a prime number p The number p, which is a member of the set of natural numbers N, is considered
159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology
Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication
Lecture 9: Application of Cryptography
Lecture topics Cryptography basics Using SSL to secure communication links in J2EE programs Programmatic use of cryptography in Java Cryptography basics Encryption Transformation of data into a form that
How To Know If A Message Is From A Person Or A Machine
The RSA Algorithm Evgeny Milanov 3 June 2009 In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman introduced a cryptographic algorithm, which was essentially to replace the less secure National Bureau
Advanced Cryptography
Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.
Digital Signatures. Meka N.L.Sneha. Indiana State University. [email protected]. October 2015
Digital Signatures Meka N.L.Sneha Indiana State University [email protected] October 2015 1 Introduction Digital Signatures are the most trusted way to get documents signed online. A digital
QUANTUM COMPUTERS AND CRYPTOGRAPHY. Mark Zhandry Stanford University
QUANTUM COMPUTERS AND CRYPTOGRAPHY Mark Zhandry Stanford University Classical Encryption pk m c = E(pk,m) sk m = D(sk,c) m??? Quantum Computing Attack pk m aka Post-quantum Crypto c = E(pk,m) sk m = D(sk,c)
Cryptographic hash functions and MACs Solved Exercises for Cryptographic Hash Functions and MACs
Cryptographic hash functions and MACs Solved Exercises for Cryptographic Hash Functions and MACs Enes Pasalic University of Primorska Koper, 2014 Contents 1 Preface 3 2 Problems 4 2 1 Preface This is a
SECURITY IN NETWORKS
SECURITY IN NETWORKS GOALS Understand principles of network security: Cryptography and its many uses beyond confidentiality Authentication Message integrity Security in practice: Security in application,
Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1
Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 8-1 Goals v understand principles of network security: cryptography and its many uses beyond
MATH 168: FINAL PROJECT Troels Eriksen. 1 Introduction
MATH 168: FINAL PROJECT Troels Eriksen 1 Introduction In the later years cryptosystems using elliptic curves have shown up and are claimed to be just as secure as a system like RSA with much smaller key
CS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: [email protected] my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
On Factoring Integers and Evaluating Discrete Logarithms
On Factoring Integers and Evaluating Discrete Logarithms A thesis presented by JOHN AARON GREGG to the departments of Mathematics and Computer Science in partial fulfillment of the honors requirements
A New Efficient Digital Signature Scheme Algorithm based on Block cipher
IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727Volume 7, Issue 1 (Nov. - Dec. 2012), PP 47-52 A New Efficient Digital Signature Scheme Algorithm based on Block cipher 1
Cryptography Exercises
Cryptography Exercises 1 Contents 1 source coding 3 2 Caesar Cipher 4 3 Ciphertext-only Attack 5 4 Classification of Cryptosystems-Network Nodes 6 5 Properties of modulo Operation 10 6 Vernam Cipher 11
NEW DIGITAL SIGNATURE PROTOCOL BASED ON ELLIPTIC CURVES
NEW DIGITAL SIGNATURE PROTOCOL BASED ON ELLIPTIC CURVES Ounasser Abid 1, Jaouad Ettanfouhi 2 and Omar Khadir 3 1,2,3 Laboratory of Mathematics, Cryptography and Mechanics, Department of Mathematics, Fstm,
1 Digital Signatures. 1.1 The RSA Function: The eth Power Map on Z n. Crypto: Primitives and Protocols Lecture 6.
1 Digital Signatures A digital signature is a fundamental cryptographic primitive, technologically equivalent to a handwritten signature. In many applications, digital signatures are used as building blocks
LUC: A New Public Key System
LUC: A New Public Key System Peter J. Smith a and Michael J. J. Lennon b a LUC Partners, Auckland UniServices Ltd, The University of Auckland, Private Bag 92019, Auckland, New Zealand. b Department of
Network Security: Cryptography CS/SS G513 S.K. Sahay
Network Security: Cryptography CS/SS G513 S.K. Sahay BITS-Pilani, K.K. Birla Goa Campus, Goa S.K. Sahay Network Security: Cryptography 1 Introduction Network security: measure to protect data/information
A Novel Approach to combine Public-key encryption with Symmetric-key encryption
Volume 1, No. 4, June 2012 ISSN 2278-1080 The International Journal of Computer Science & Applications (TIJCSA) RESEARCH PAPER Available Online at http://www.journalofcomputerscience.com/ A Novel Approach
Study of algorithms for factoring integers and computing discrete logarithms
Study of algorithms for factoring integers and computing discrete logarithms First Indo-French Workshop on Cryptography and Related Topics (IFW 2007) June 11 13, 2007 Paris, France Dr. Abhijit Das Department
CIS 433/533 - Computer and Network Security Public Key Crypto/ Cryptographic Protocols
CIS 433/533 - Computer and Network Security Public Key Crypto/ Cryptographic Protocols Professor Kevin Butler Winter 2010 Computer and Information Science Key Distribution/Agreement Key Distribution is
Cryptography and Network Security Chapter 8
Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 8 Introduction to Number Theory The Devil said to Daniel Webster:
An Efficient and Secure Key Management Scheme for Hierarchical Access Control Based on ECC
An Efficient and Secure Key Management Scheme for Hierarchical Access Control Based on ECC Laxminath Tripathy 1 Nayan Ranjan Paul 2 1Department of Information technology, Eastern Academy of Science and
Digital Signature Standard (DSS)
FIPS PUB 186-4 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION Digital Signature Standard (DSS) CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY Information Technology Laboratory National Institute
A New Generic Digital Signature Algorithm
Groups Complex. Cryptol.? (????), 1 16 DOI 10.1515/GCC.????.??? de Gruyter???? A New Generic Digital Signature Algorithm Jennifer Seberry, Vinhbuu To and Dongvu Tonien Abstract. In this paper, we study
Public Key Cryptography of Digital Signatures
ACTA UNIVERSITATIS APULENSIS No 13/2007 MATHEMATICAL FOUNDATION OF DIGITAL SIGNATURES Daniela Bojan and Sidonia Vultur Abstract.The new services available on the Internet have born the necessity of a permanent
Network Security [2] Plain text Encryption algorithm Public and private key pair Cipher text Decryption algorithm. See next slide
Network Security [2] Public Key Encryption Also used in message authentication & key distribution Based on mathematical algorithms, not only on operations over bit patterns (as conventional) => much overhead
Computer Networks. Network Security and Ethics. Week 14. College of Information Science and Engineering Ritsumeikan University
Computer Networks Network Security and Ethics Week 14 College of Information Science and Engineering Ritsumeikan University Security Intro for Admins l Network administrators can break security into two
CS 348: Computer Networks. - Security; 30 th - 31 st Oct 2012. Instructor: Sridhar Iyer IIT Bombay
CS 348: Computer Networks - Security; 30 th - 31 st Oct 2012 Instructor: Sridhar Iyer IIT Bombay Network security Security Plan (RFC 2196) Identify assets Determine threats Perform risk analysis Implement
CSCI-E46: Applied Network Security. Class 1: Introduction Cryptography Primer 1/26/16 CSCI-E46: APPLIED NETWORK SECURITY, SPRING 2016 1
CSCI-E46: Applied Network Security Class 1: Introduction Cryptography Primer 1/26/16 CSCI-E46: APPLIED NETWORK SECURITY, SPRING 2016 1 Welcome to CSCI-E46 Classroom & Schedule 53 Church Street L01 Wednesdays,
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch February 20, 2005 1. Consider slide 12 in the handout for topic 2.2. Prove that the decryption process of a one-round Feistel cipher
Network Security. Security Attacks. Normal flow: Interruption: 孫 宏 民 [email protected] Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室
Network Security 孫 宏 民 [email protected] Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室 Security Attacks Normal flow: sender receiver Interruption: Information source Information destination
Secure File Transfer Using USB
International Journal of Scientific and Research Publications, Volume 2, Issue 4, April 2012 1 Secure File Transfer Using USB Prof. R. M. Goudar, Tushar Jagdale, Ketan Kakade, Amol Kargal, Darshan Marode
Authentication, digital signatures, PRNG
Multimedia Security Authentication, digital signatures, PRNG Mauro Barni University of Siena Beyond confidentiality Up to now, we have been concerned with protecting message content (i.e. confidentiality)
Network Security. HIT Shimrit Tzur-David
Network Security HIT Shimrit Tzur-David 1 Goals: 2 Network Security Understand principles of network security: cryptography and its many uses beyond confidentiality authentication message integrity key
Security. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1
Contents Security requirements Public key cryptography Key agreement/transport schemes Man-in-the-middle attack vulnerability Encryption. digital signature, hash, certification Complete security solutions
Introduction. Digital Signature
Introduction Electronic transactions and activities taken place over Internet need to be protected against all kinds of interference, accidental or malicious. The general task of the information technology
Ch.9 Cryptography. The Graduate Center, CUNY.! CSc 75010 Theoretical Computer Science Konstantinos Vamvourellis
Ch.9 Cryptography The Graduate Center, CUNY! CSc 75010 Theoretical Computer Science Konstantinos Vamvourellis Why is Modern Cryptography part of a Complexity course? Short answer:! Because Modern Cryptography
Schnorr Signcryption. Combining public key encryption with Schnorr digital signature. Laura Savu, University of Bucharest, Romania
Schnorr Signcryption Combining public key encryption with Schnorr digital signature Laura Savu, University of Bucharest, Romania IT Security for the Next Generation European Cup, Prague 17-19 February,
Communications security
University of Roma Sapienza DIET Communications security Lecturer: Andrea Baiocchi DIET - University of Roma La Sapienza E-mail: [email protected] URL: http://net.infocom.uniroma1.it/corsi/index.htm
Chapter 11 Security+ Guide to Network Security Fundamentals, Third Edition Basic Cryptography
Chapter 11 Security+ Guide to Network Security Fundamentals, Third Edition Basic Cryptography What Is Steganography? Steganography Process of hiding the existence of the data within another file Example:
Public Key Cryptography. Performance Comparison and Benchmarking
Public Key Cryptography Performance Comparison and Benchmarking Tanja Lange Department of Mathematics Technical University of Denmark [email protected] 28.08.2006 Tanja Lange Benchmarking p. 1 What
Outline. CSc 466/566. Computer Security. 8 : Cryptography Digital Signatures. Digital Signatures. Digital Signatures... Christian Collberg
Outline CSc 466/566 Computer Security 8 : Cryptography Digital Signatures Version: 2012/02/27 16:07:05 Department of Computer Science University of Arizona [email protected] Copyright c 2012 Christian
Basic Algorithms In Computer Algebra
Basic Algorithms In Computer Algebra Kaiserslautern SS 2011 Prof. Dr. Wolfram Decker 2. Mai 2011 References Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, 1993. Cox, D.; Little,
Public-key cryptography RSA
Public-key cryptography RSA NGUYEN Tuong Lan LIU Yi Master Informatique University Lyon 1 Objective: Our goal in the study is to understand the algorithm RSA, some existence attacks and implement in Java.
